CN107765680B - 一种机器人及其转运方法 - Google Patents

一种机器人及其转运方法 Download PDF

Info

Publication number
CN107765680B
CN107765680B CN201610671275.7A CN201610671275A CN107765680B CN 107765680 B CN107765680 B CN 107765680B CN 201610671275 A CN201610671275 A CN 201610671275A CN 107765680 B CN107765680 B CN 107765680B
Authority
CN
China
Prior art keywords
robot
module
distance value
slope
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610671275.7A
Other languages
English (en)
Other versions
CN107765680A (zh
Inventor
彭志远
梁洪军
左恵文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Launch Digital Technology Co Ltd
Original Assignee
Shenzhen Launch Digital Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Launch Digital Technology Co Ltd filed Critical Shenzhen Launch Digital Technology Co Ltd
Priority to CN201610671275.7A priority Critical patent/CN107765680B/zh
Publication of CN107765680A publication Critical patent/CN107765680A/zh
Application granted granted Critical
Publication of CN107765680B publication Critical patent/CN107765680B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0285Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using signals transmitted via a public communication network, e.g. GSM network

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

本发明属于变电站环境监控技术领域,提供了一种机器人及其转运方法。本发明通过采用包括无线通信模块、激光导航雷达模块及主控模块的机器人,通过无线通信模块接收控制终端发送的转运指令,通过主控模块控制机器人移动至预设转运区域,并在激光导航雷达模块检测到机器人前方的斜坡搭建好时,控制机器人沿搭建好的斜坡移动至转运平台,使得操控人员只需通过控制终端发送转运指令至机器人,便可控制机器人按照预设路线经斜坡移动至转运平台,操控简单,且减少了操控人员的工作量。

Description

一种机器人及其转运方法
技术领域
本发明属于变电站环境监控技术领域,尤其涉及一种机器人及其转运方法。
背景技术
变电站是电网的重要设施,保证变电站的安全运转对整个电网的稳定有着重要意义。为了对变电站内各设备的运行状态进行监控,需要定期对变电站进行巡检。目前,很多无人值守或者少人值守的变电站均采用巡检机器人对变电站进行巡检,且多个变电站共用一台巡检机器人,即在巡检机器人完成一个变电站的巡检任务之后,需要通过转运车将其转运至下一个变电站继续进行巡检。
现有的机器人转运方式主要包括以下两种:(1)斜坡转运,即操控人员控制巡检机器人沿搭建于地面和转运车之间的斜坡行走到转运车上;(2)升降平台转运,即操控人员先控制巡检机器人行走到升降平台上,再控制升降平台上升,使升降平台与转运车上的转运平台位于同一水平面,然后控制巡检机器人从升降平台行走到转运车上。
然而,在通过斜坡对巡检机器人进行转运时,需要操控人员全程操控,不仅增加了操控人员的工作量,且对操控人员操作的正确性要求很高,同时,由于巡检机器人较大的体积和较重的重量,增加了操控难度。
综上可知,现有的斜坡式机器人转运方式存在操控难度大、对操控人员操作的正确性要求高且增加操控人员的工作量的问题。
发明内容
本发明的目的在于提供一种机器人及其转运方法,旨在解决现有的斜坡式机器人转运方式存在操控难度大、对操控人员操作的正确性要求高且增加操控人员的工作量的问题。
本发明是这样实现的,一种机器人,受控于控制终端,所述机器人包括:无线通信模块、激光导航雷达模块及主控模块;
所述主控模块的第一通信端和第二通信端分别与所述无线通信模块的通信端和所述激光导航雷达模块的通信端连接;
所述无线通信模块接收所述控制终端发送的转运指令,并将所述转运指令输出至所述主控模块;所述主控模块根据所述转运指令,控制所述机器人移动至预设转运区域;当所述机器人移动至转运区域之后,所述激光导航雷达模块通过激光束扫射并获取所述机器人前方的道路的特征信息,并将所述道路的特征信息输出至所述主控模块;所述主控模块将所述道路的特征信息与预存斜坡特征信息进行对比,并在所述道路的特征信息与所述预存斜坡特征信息相同时,控制所述机器人沿前方已搭建好的斜坡移动至转运平台。
本发明还提供了一种机器人的转运方法,所述转运方法包括:
接收控制终端发送的转运指令;
根据所述转运指令控制所述机器人移动至预设转运区域;
通过激光束扫射并获取所述机器人前方的道路的特征信息;
若所述道路的特征信息与预存斜坡特征信息相同,则控制所述机器人沿前方斜坡移动至转运平台。
本发明通过采用包括无线通信模块、激光导航雷达模块及主控模块的机器人,通过无线通信模块接收控制终端发送的转运指令,通过主控模块控制机器人移动至预设转运区域,并在激光导航雷达模块检测到机器人前方的斜坡搭建好时,控制机器人沿搭建好的斜坡移动至转运平台,使得操控人员只需通过控制终端发送转运指令至机器人,便可控制机器人按照预设路线经斜坡移动至转运平台,操控简单,且减少了操控人员的工作量。
附图说明
图1是本发明实施例提供的机器人的模块结构示意图;
图2是本发明实施例提供的机器人在转运过程中的移动路线示意图;
图3是本发明另一实施例提供的机器人的模块结构示意图;
图4是本发明实施例提供的激光测距模块的模块结构图;
图5是本发明实施例提供的机器人在斜坡上移动时向斜坡发射激光的示意图;
图6是本发明实施例提供的转运平台的结构示意图;
图7是本发明实施例提供的前防撞模块的电路结构示意图;
图8是本发明实施例提供的防撞条的结构示意图;
图9是本发明实施例提供的机器人的转运方法的实现流程示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例通过采用包括无线通信模块、激光导航雷达模块及主控模块的机器人,通过无线通信模块接收控制终端发送的转运指令,通过主控模块控制机器人移动至预设转运区域,并在激光导航雷达模块检测到机器人前方的斜坡搭建好时,控制机器人沿搭建好的斜坡移动至转运平台,使得操控人员只需通过控制终端发送转运指令至机器人,便可控制机器人按照预设路线经斜坡移动至转运平台,操控简单,且减少了操控人员的工作量。
图1示出了本发明实施例提供的机器人的模块结构,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
一种机器人1,受控于控制终端2,机器人1包括:无线通信模块10、激光导航雷达模块11及主控模块12。
其中,主控模块12的第一通信端和第二通信端分别与无线通信模块10的通信端和激光导航雷达模块11的通信端连接。
无线通信模块10接收控制终端2发送的转运指令,并将转运指令输出至主控模块12;主控模块12根据转运指令,控制机器人移动至预设转运区域;当机器人1移动至转运区域之后,激光导航雷达模块11通过激光束扫射并获取机器人前方的道路的特征信息,并将道路的特征信息输出至主控模块12;主控模块12将道路的特征信息与预存斜坡特征信息进行对比,并在道路的特征信息与预存斜坡特征信息相同时,控制机器人沿前方已搭建好的斜坡移动至转运平台。
在本发明实施例中,控制终端可以为智能手机、平板电脑、无线遥控器等移动终端,也可以为服务器,此处不做限制。
预设转运区域指用户预先设置的机器人在经斜坡移动至转运平台之前停靠的位置。
图2示出了本发明实施例提供的机器人在转运过程中的移动路线,如图2所示,机器人1的起始位置可以为巡检地图上的任意位置,当主控模块12通过无线通信模块10接收到控制终端2发送的转运指令时,主控模块12控制机器人1在激光导航雷达模块11的导航下移动至预设转运区域,当机器人1移动至预设转运区域时,主控模块12控制激光导航雷达模块11向机器人1的正前方发射激光束,以获取机器人1前方的道路的特征信息,激光导航雷达模块11将获取到的道路的特征信息发送至主控模块12,主控模块12将道路的特征信息与预先存储的斜坡的特征信息进行对比,若前方道路的特征信息与预先存储的斜坡的特征信息相同,则表示机器人1前方的斜坡已经搭建完毕,此时,主控模块12控制机器人1沿斜坡移动至转运车上的转运平台;若前方道路的特征信息与预先存储的斜坡的特征信息不相同,则表示机器人1前方的斜坡未搭建完毕,此时,主控模块12控制机器人停靠在预设转运区域,并控制机器人1继续通过激光束扫射并获取前方道路的特征信息,直到获取到的前方道路的特征信息与预存斜坡特征信息相同,此时,主控模块12控制机器人1沿斜坡移动至转运车上的转运平台。
在本发明实施例中,转运平台用于在转运时固定机器人1,其事先被放置在转运车的车厢内。
在实际应用中,主控模块12具体可以采用单片机、CPU或工控机等,此处不做限制。例如,主控模块12可以采用型号为MIO-5251的工控机。
在实际应用中,无线通信模块10具体可采用WIFI模块或蓝牙通信模块等,此处不做限制。例如,无线通信模块10可以采用具有RJ45网络接口的WIFI模块,其通过RJ45网络接口与主控模块12的第一通信端(RJ45网络接口)连接。
在实际应用中,激光导航雷达模块11具体可以采用现有的以激光导航传感器为核心的激光导航雷达模块,其可以通过RJ45网络接口与主控模块12的第二通信端(RJ45网络接口),此处不做限制。
在本发明实施例中,为了减轻斜坡的重量,方便操控人员进行搭建,优选的,机器人1转运时的转运斜坡采用分体式斜坡,如图2所示,斜坡可以由两个相同的矩形板组成,两个矩形板之间采用横梁固定,两个矩形板之间的距离与机器人1的左侧车轮和右侧车轮之间的距离相等,且两个矩形板的宽度大于机器人1的车轮的宽度。斜坡的特征信息(包括两个矩形板的宽度、两个矩形板的长度及两个矩形板之间的距离等)预先存储在机器人1的存储模块中。
在转运斜坡采用分体式斜坡的情况下,必须保证机器人1在斜坡上移动时的姿态不能有偏差,即必须保证机器人1的移动方向始终与斜坡的长边(连接地面与转运平台的两个边)所在直线的方向一致,否则机器人1可能会掉下斜坡。
基于此,如图3所示,进一步的,机器人1还包括激光测距模块14和模拟量接收模块13,激光测距模块14的输出端与模拟量接收模块13的第一输入端连接,模拟量接收模块13的输出端与主控模块12的第一串行数据输入端连接。
如图4所示,激光测距模块14包括第一激光测距单元141和第二激光测距单元142,第一激光测距单元141的输出端和第二激光测距单元142的输出端构成激光测距模块14的输出端,第一激光测距单元141和第二激光测距单元142设置于同一水平面内,且第一激光测距单元141和第二激光测距单元142沿与机器人1移动方向垂直的方向设置。
在实际应用中,第一激光测距单元141和第二激光测距单元142分别设置于机器人1的前方两个车轮正上方的同一水平高度处,且第一激光测距单元141和第二激光测距单元142沿着与水平面成相同角度的方向斜向下发射激光。
如图5所示,机器人1在斜坡上移动时,第一激光测距单元141和第二激光测距单元142均沿与水平面成第一预设角度θ的方向向斜坡发射激光,并分别获取第一距离值S1和第二距离值S2,第一激光测距单元141和第二激光测距单元142分别将第一距离值S1和第二距离值S2发送至主控模块12;主控模块12判断第一距离值S1和第二距离值S2是否在第一预设距离范围内,当第一距离值S1和第二距离值S2中至少有一个距离值不在第一预设距离范围内时,主控模块12控制机器人调整移动方向。
在实际应用中,第一预设角度θ可根据实际需求进行设定,此处不做限制。当第一预设角度θ确定后,相应的,机器人1在斜坡上正常移动时,第一距离值S1和第二距离值S2理论上是固定且相等的,实际测量过程中测量到的第一距离值S1和第二距离值S2可能会存在偏差,因此设置第一预设距离范围,第一预设距离范围可以为第一距离值S1和第二距离值S2的理论值S±ΔS,ΔS为距离微差量,可根据实际需求进行设置,此处不做限制。
当主控模块12判断第一距离值S1和第二距离值S2中有一个距离值在第一预设距离范围内而另一个距离值不在第一预设距离范围内(例如有一个激光测距单元发射的激光已检测到地面)时,说明机器人1的移动方向与正常移动方向存在偏差,此时,主控模块12控制机器人1向距离值在第一预设距离范围内的一侧调整。例如,第一激光测距单元141设置于机器人1的前方右侧车轮正上方,第二激光测距单元142设置于机器人1的前方左侧车轮正上方,当第一激光测距单元141测得的第一距离值S1在第一预设距离范围内,而第二激光测距单元142测得的第二距离值S2不在第一预设距离范围内时,说明机器人1的运动方向向左偏移,此时,主控模块12控制机器人1向右调整移动方向。
当主控模块12判断第一距离值S1和第二距离值S2均不在第一预设范围内时,说明机器人1的移动方向与正常移动方向存在偏差,此时,主控模块12控制机器人1调整移动方向,以使机器人1的移动方向始终与斜坡的长边所在直线的方向一致。
作为本发明一实施例,激光测距模块14还包括第三激光测距单元143和第四激光测距单元144,第一激光测距单元141的输出端、第二激光测距单元142的输出端、第三激光测距单元143的输出端及第四激光测距单元144的输出端构成激光测距模块14的输出端。
在实际应用中,第三激光测距单元143和第四激光测距单元144分别设置于机器人1的后方两个车轮正上方的同一水平高度处,且第三激光测距单元143和第四激光测距单元144沿着与水平面成相同角度的方向斜向下发射激光。第三激光测距单元143和第四激光测距单元144主要应用于机器人1从转运平台移动至地面(即下车)过程中对机器人1的移动方向的调整,具体工作原理与第一激光测距单元141和第二激光测距单元142的工作原理相同,此处不再赘述。
在实际应用中,第一激光测距单元141、第二激光测距单元142、第三激光测距单元143及第四激光测距单元144均可以采用激光传感器。
在实际应用中,模拟量接收模块13通过RS-485总线与主控模块12连接,模拟量接收模块13用于将激光测距模块14和超声波测距模块15采集到的模拟量输出至主控模块12,具体的,模拟量接收模块13具体型号可以为ADAM-4117,也可以采用其他型号的模拟量接收模块,此处不做限制。
作为本发明一实施例,机器人1还包括超声波测距模块15,超声波测距模块15的输出端与模拟量接收模块13的第二输入端连接。
当机器人1沿斜坡移动至转运平台,并在转运平台上继续前移时,超声波测距模块15实时测量机器人1距离其前方障碍物的第三距离值,并将第三距离值通过模拟量接收模块13输出至主控模块12,主控模块12判断第三距离值是否在第二预设距离范围内,若第三距离值在第二预设距离范围内,则主控模块12控制机器人停止移动。
在本发明实施例中,当机器人1沿斜坡移动至转运平台后,会继续在转运平台上移动至预设停靠位置,机器人1在转运平台上移动时,超声波测距模块15通过向机器人1的正前方发射超声波来实时测量机器人1距离其前方障碍物的第三距离值,此时,机器人1前方的障碍物指的是转运车的车厢围栏,超声波测距模块15将测量得到的第三距离值通过模拟量接收模块13发送至主控模块12,主控模块12判断第三距离值是否在第二预设距离范围内,若第三距离值在第二预设距离范围内,则表示机器人1已移动至转运平台的预设停靠位置,此时,主控模块12控制机器人停止移动。其中,第二预设距离范围是指用户预先设置的机器人1在转运平台的预设停靠位置停靠时,距离转运车车厢围栏的距离范围,例如可以为50厘米~1米,具体可根据实际情况进行设置,此处不做限制。
在实际应用中,超声波测距模块15可以采用现有的超声波传感器,此处不做限制。
作为本发明一实施例,机器人1还包括前防撞模块16,前防撞模块16的输出端与主控模块12的第二串行数据输入端连接,前防撞模块16可以设置于机器人1的底盘前端。
前防撞模块16通过接触式检测方式实时检测机器人1前方的障碍物,并在检测到障碍物时生成防撞信号,主控模块12根据防撞信号控制机器人停止移动。
在实际应用中,如图6所示,转运平台上设置有挡板,当机器人1在转运平台上向前移动的过程中碰撞到障碍物时,前防撞模块16生成防撞信号,此处的障碍物指的是设置于转运平台上的挡板。
如图7所示,前防撞模块16包括:开关管Q1、第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第一电容C1、第二电容C2及防撞条160。
其中,开关管Q1的高电位端与第二电阻R2的第一端共接于电源3.3V,开关管Q2的控制端与第一电阻R1的第一端连接,第一电阻R1的第二端、第二电阻R2的第二端、第一电容C1的第一端及第二电容C2的第一端共接于防撞条160的输出端,开关管Q1的低电位端与第四电阻R4的第一端共接于第三电阻R3的第二端,第三电阻R3的第一端为前防撞模块16的输出端,第四电阻R4的第二端、第一电容C1的第二端及第二电容C2的第二端共接于地。
如图8所示,防撞条160包括第一触点铜1601和第二触点铜1602,第一触点铜1601和第二触点铜1602通过绝缘线连接,第一触点铜1601和第二触点铜1602引出一条导线,其中,第一触点铜1601引出的导线接地,第二触点铜1602引出的导线作为防撞条160的输出端。当防撞条160未碰撞到障碍物时,防撞条160的输出端为高电平,此时,开关管Q1导通,激光测距模块16的输出端输出高电平;当防撞条160碰撞到障碍物时,第一触点铜1601和第二触点铜1602相接触,此时,防撞条160的输出端为低电平,开关Q1关断,激光测距模块16的输出端输出低电平,当主控模块12接收到激光测距模块16输出的低电平时,主控模块12控制机器人1停止移动。
本发明实施例还提供了一种机器人的转运方法,该方法的执行主体为上述实施例提供的机器人,该方法具体应用于通过斜坡对机器人进行转运的过程中,具体请参阅图1至图6以及图1至图6对应的实施例中的相关描述。
图9示出了本发明实施例提供的机器人的转运方法的实现流程,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
如图9所示,在步骤S901中,接收控制终端发送的转运指令。
在本发明实施例中,机器人接收控制终端发送的转运指令,控制终端可以为智能手机、平板电脑、无线遥控器等移动终端,也可以为服务器,此处不做限制。
在实际应用中,步骤S901可以选用WIFI模块、蓝牙模块等来执行,具体根据实际需求设置,此处不做限制。
在步骤S902中,根据所述转运指令控制所述机器人移动至预设转运区域。
当接收到控制终端发送的转运指令时,根据转运指令控制机器人移动至预设转运区域,预设转运区域指用户预先设置的机器人在经斜坡移动至转运平台之前停靠的位置。
在实际应用中,步骤S902可以选用单片机、CPU或工控机来执行。
在步骤S903中,通过激光束扫射并获取所述机器人前方的道路的特征信息。
在本发明实施例中,当机器人移动至预设转运区域后,通过向机器人的正前方发射激光束来获取机器人前方的道路的特征信息。
在实际应用中,步骤S903可以选用激光导航传感器来执行。
在步骤S904中,若所述道路的特征信息与预存斜坡特征信息相同,则控制所述机器人沿前方的斜坡移动至转运平台。
在本发明实施例中,将通过激光束扫射并获取到的机器人前方的道路的特征信息与预存斜坡特征信息进行对比,若机器人前方的道路的特征信息与预存斜坡特征信息相同,则说明机器人前方的转运斜坡已搭建完成,此时,控制机器人沿前方搭建好的斜坡移动至转运平台;若机器人前方的道路的特征信息与预先存储的斜坡的特征信息不相同,则表示机器人前方的斜坡未搭建完毕,此时,控制机器人停靠在预设转运区域,并控制机器人继续通过激光束扫射并获取前方道路的特征信息,直到获取到的前方道路的特征信息与预存斜坡特征信息相同,此时,控制机器人沿斜坡移动至转运车上的转运平台。
在实际应用中,步骤S904可以选用单片机、CPU或工控机来执行。
为了保证机器人在斜坡上的移动方向始终与斜坡的长边(连接地面与转运平台的两个边)所在直线的方向一致,进一步的,机器人的转运方法还包括:
当所述机器人在所述斜坡上移动时,沿与水平面成第一预设角度的方向分别向所述斜坡发射第一激光和第二激光,并获取第一距离值和第二距离值。
在实际应用中,上述步骤可以通过激光测距模块来实现,例如,激光测距模块可以包括第一激光传感器和第二激光传感器,第一激光传感器和第二激光传感器分别设置于机器人的前方两个车轮正上方的同一水平高度处,且第一激光传感器和第二激光传感器沿着与水平面成相同角度的方向斜向下发射激光。
当机器人在斜坡上移动时,第一激光传感器和第二激光传感器沿与水平面成第一预设角度的方向向斜坡发射激光,并分别获取第一距离值和第二距离值,其中,第一预设角度可根据实际需求进行设置,此处不做限制。
判断所述第一距离值和所述第二距离值是否在第一预设距离范围内。
在实际应用中,当第一预设角度确定后,相应的,机器人在斜坡上正常移动时,第一距离值和第二距离值理论上是固定且相等的,实际测量过程中测量到的第一距离值和第二距离值可能会存在偏差,因此设置第一预设距离范围,第一预设距离范围可以为第一距离值和第二距离值的理论值±ΔS,ΔS为距离微差量,可根据实际需求进行设置,此处不做限制。
若所述第一距离值和所述第二距离值中至少有一个距离值不在第一预设距离范围内,则控制所述机器人调整移动方向。
在实际应用中,上述步骤可通过控制器来执行,控制器包括单片机、CPU或工控机等。
控制器判断第一距离值和第二距离值是否在第一预设距离范围内,若所述第一距离值和所述第二距离值中至少有一个距离值不在第一预设距离范围内,则控制所述机器人调整移动方向。当控制器判断第一距离值和第二距离值中有一个距离值在第一预设距离范围内而另一个距离值不在第一预设距离范围内(例如有一个激光测距单元发射的激光已检测到地面),则说明机器人的移动方向与正常移动方向存在偏差,此时,控制器控制机器人向距离值在第一预设距离范围内的一侧调整。例如,第一激光测距传感器设置于机器人的前方右侧车轮正上方,第二激光传感器设置于机器人的前方左侧车轮正上方,当第一激光传感器测得的第一距离值在第一预设距离范围内,而第二激光传感器测得的第二距离值不在第一预设距离范围内时,说明机器人的运动方向向左偏移,此时,控制器控制机器人向右调整移动方向。
当控制器判断第一距离值和第二距离值均不在第一预设范围内时,说明机器人的移动方向与正常移动方向存在偏差,此时,控制器控制机器人调整移动方向,以使机器人的移动方向始终与斜坡的长边所在直线的方向一致。
作为本发明一实施例,在步骤S904之后,所述方法还包括:
通过超声波实时测量所述机器人距离其前方障碍物的第三距离值。
在本实施例中,当机器人沿斜坡移动至转运平台,并在转运平台上继续前移时,通过超声波实时测量所述机器人距离其前方障碍物的第三距离值。此时,机器人前方的障碍物指的是转运车的车厢围栏。
在实际应用中,上述步骤可选用超声波传感器来执行。
若所述第三距离值在第二预设距离范围内,则控制所述机器人停止运动。
在实际应用中,上述步骤可通过控制器来执行,控制器包括单片机、CPU或工控机等。
控制器判断第三距离值是否在第二预设距离范围内,若第三距离值在第二预设距离范围内,则表示机器人已移动至转运平台的预设停靠位置,此时,控制器控制机器人停止移动。
其中,第二预设距离范围是指用户预先设置的机器人在转运平台的预设停靠位置停靠时,距离转运车车厢围栏的距离范围,例如可以为50厘米~1米,具体可根据实际情况进行设置,此处不做限制。
作为本发明一实施例,在步骤S904之后,所述方法还包括:
通过接触式检测方式实时检测所述机器人前方的障碍物,并在检测到障碍物时生成防撞信号。
在本发明实施例中,机器人在经斜坡移动至转运平台后会继续向前移动至预设停靠位置,在机器人继续前移的过程中,通过接触式检测方式实时检测所述机器人前方的障碍物,当检测到障碍物时,即说明机器人碰撞到障碍物,此时生成防撞信号。
根据所述防撞信号控制所述机器人停止移动。
在实际应用中,上述步骤可以选用控制器来执行,控制器可以为单片机、CPU或工控机等。
本发明实施例通过采用包括无线通信模块、激光导航雷达模块及主控模块的机器人,通过无线通信模块接收控制终端发送的转运指令,通过主控模块控制机器人移动至预设转运区域,并在激光导航雷达模块检测到机器人前方的斜坡搭建好时,控制机器人沿搭建好的斜坡移动至转运平台,使得操控人员只需通过控制终端发送转运指令至机器人,便可控制机器人按照预设路线经斜坡移动至转运平台,操控简单,且减少了操控人员的工作量。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种机器人,受控于控制终端,其特征在于,所述机器人包括:无线通信模块、激光导航雷达模块及主控模块;
所述主控模块的第一通信端和第二通信端分别与所述无线通信模块的通信端和所述激光导航雷达模块的通信端连接;
所述无线通信模块接收所述控制终端发送的转运指令,并将所述转运指令输出至所述主控模块;所述主控模块根据所述转运指令,控制所述机器人移动至预设转运区域;当所述机器人移动至转运区域之后,所述激光导航雷达模块通过激光束扫射并获取所述机器人前方的道路的特征信息,并将所述道路的特征信息输出至所述主控模块;所述主控模块将所述道路的特征信息与预存斜坡特征信息进行对比,并在所述道路的特征信息与所述预存斜坡特征信息相同时,控制所述机器人沿前方的斜坡移动至转运平台;
所述斜坡由两个相同的矩形板组成,两个所述矩形板之间采用横梁固定,两个所述矩形板之间的距离与所述机器人的左侧车轮和右侧车轮之间的距离相等,且两个所述矩形板的宽度大于所述机器人的车轮的宽度;
所述机器人还包括激光测距模块和模拟量接收模块,所述激光测距模块的输出端与所述模拟量接收模块的第一输入端连接,所述模拟量接收模块的输出端与所述主控模块的第一串行数据输入端连接;
所述激光测距模块包括第一激光测距单元和第二激光测距单元,所述第一激光测距单元的输出端和所述第二激光测距单元的输出端构成所述激光测距模块的输出端;所述第一激光测距单元和所述第二激光测距单元设置于同一水平面内,且所述第一激光测距单元和所述第二激光测距单元沿与所述机器人移动方向垂直的方向设置;
所述机器人在所述斜坡上移动时,所述第一激光测距单元和所述第二激光测距单元均沿与水平面成第一预设角度的方向向所述斜坡发射激光,并分别获取第一距离值和第二距离值,所述第一激光测距单元和所述第二激光测距单元分别将所述第一距离值和所述第二距离值发送至所述主控模块;所述主控模块判断所述第一距离值和所述第二距离值是否在第一预设距离范围内,当所述第一距离值和所述第二距离值中至少有一个距离值不在第一预设距离范围内时,所述主控模块控制所述机器人调整移动方向。
2.如权利要求1所述的机器人,其特征在于,所述机器人还包括超声波测距模块,所述超声波测距模块的输出端与所述模拟量接收模块的第二输入端连接;
当所述机器人沿所述斜坡移动至所述转运平台,并在所述转运平台上继续前移时,所述超声波测距模块实时测量所述机器人距离其前方障碍物的第三距离值,并将所述第三距离值通过所述模拟量接收模块输出至所述主控模块,所述主控模块判断所述第三距离值是否在第二预设距离范围内,若所述第三距离值在第二预设距离范围内,则所述主控模块控制所述机器人停止移动。
3.如权利要求1或2所述的机器人,其特征在于,所述机器人还包括前防撞模块,所述前防撞模块的输出端与所述主控模块的第二串行数据输入端连接;
当所述机器人经所述斜坡移动至所述转运平台并在所述转运平台继续前移时,所述前防撞模块通过接触式检测方式实时检测所述机器人前方的障碍物,并在检测到障碍物时生成防撞信号,所述主控模块根据所述防撞信号控制所述机器人停止移动。
4.如权利要求3所述的机器人,其特征在于,所述前防撞模块包括:开关管、第一电阻、第二电阻、第三电阻、第四电阻、第一电容、第二电容及防撞条;
所述开关管的高电位端与所述第二电阻的第一端共接于电源,所述开关管的控制端与所述第一电阻的第一端连接,所述第一电阻的第二端、所述第二电阻的第二端、所述第一电容的第一端及所述第二电容的第一端共接于所述防撞条的输出端,所述开关管的低电位端与所述第四电阻的第一端共接于所述第三电阻的第二端,所述第三电阻的第一端为所述前防撞模块的输出端,所述第四电阻的第二端、所述第一电容的第二端及所述第二电容的第二端共接于地。
5.一种机器人的转运方法,其特征在于,所述转运方法包括:
接收控制终端发送的转运指令;
根据所述转运指令控制所述机器人移动至预设转运区域;
通过激光束扫射并获取所述机器人前方的道路的特征信息;
若所述道路的特征信息与预存斜坡特征信息相同,则控制所述机器人沿前方的斜坡移动至转运平台;
所述斜坡由两个相同的矩形板组成,两个所述矩形板之间采用横梁固定,两个所述矩形板之间的距离与所述机器人的左侧车轮和右侧车轮之间的距离相等,且两个所述矩形板的宽度大于所述机器人的车轮的宽度;
所述转运方法还包括:
当所述机器人在所述斜坡上移动时,沿与水平面成第一预设角度的方向分别向所述斜坡发射第一激光和第二激光,并获取第一距离值和第二距离值;
判断所述第一距离值和所述第二距离值是否在第一预设距离范围内;
若所述第一距离值和所述第二距离值中至少有一个距离值不在第一预设距离范围内,则控制所述机器人调整移动方向。
6.如权利要求5所述的机器人的转运方法,其特征在于,在所述沿前方斜坡移动至转运平台之后,所述转运方法还包括:
通过超声波实时测量所述机器人距离其前方障碍物的第三距离值;
若所述第三距离值在第二预设距离范围内,则控制所述机器人停止运动。
7.如权利要求5所述的机器人的转运方法,其特征在于,在所述沿前方斜坡移动至转运平台之后,所述转运方法还包括:
通过接触式检测方式实时检测所述机器人前方的障碍物,并在检测到障碍物时生成防撞信号;
根据所述防撞信号控制所述机器人停止移动。
CN201610671275.7A 2016-08-15 2016-08-15 一种机器人及其转运方法 Active CN107765680B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610671275.7A CN107765680B (zh) 2016-08-15 2016-08-15 一种机器人及其转运方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610671275.7A CN107765680B (zh) 2016-08-15 2016-08-15 一种机器人及其转运方法

Publications (2)

Publication Number Publication Date
CN107765680A CN107765680A (zh) 2018-03-06
CN107765680B true CN107765680B (zh) 2021-01-05

Family

ID=61260042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610671275.7A Active CN107765680B (zh) 2016-08-15 2016-08-15 一种机器人及其转运方法

Country Status (1)

Country Link
CN (1) CN107765680B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873774A (zh) * 2018-06-14 2018-11-23 合肥工业大学 一种vex机器人教学辅助控制系统及控制方法
CN110850898A (zh) * 2019-11-28 2020-02-28 曾阔 一种智能医用护理跟随小车及跟随方法
CN111487964A (zh) * 2020-04-03 2020-08-04 北京理工大学 一种机器人小车及其自主避障方法、设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9043129B2 (en) * 2010-10-05 2015-05-26 Deere & Company Method for governing a speed of an autonomous vehicle
CN102990640B (zh) * 2012-11-29 2015-04-08 北京理工大学 电力库房智能搬运机器人
CN104881027B (zh) * 2015-05-04 2018-05-29 国家电网公司 轮履复合式变电站巡检机器人自主越障系统及控制方法
CN204945796U (zh) * 2015-09-01 2016-01-06 深圳力子机器人有限公司 一种激光磁带混合自动导航式叉车
CN205272074U (zh) * 2015-12-30 2016-06-01 深圳力子机器人有限公司 一种支撑机械臂的差速agv平台
CN105573326B (zh) * 2016-02-03 2018-04-20 南京聚立科技股份有限公司 移动巡检极地机器人自主充电系统及其方法
CN105686766A (zh) * 2016-04-14 2016-06-22 京东方科技集团股份有限公司 清洁机器人和清洁机器人工作方法
CN205983213U (zh) * 2016-08-15 2017-02-22 深圳市朗驰欣创科技股份有限公司 一种机器人

Also Published As

Publication number Publication date
CN107765680A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
US8862397B2 (en) Article transport facility
US10442465B2 (en) Parking assistance device and vehicle provided with such a device
CN107765680B (zh) 一种机器人及其转运方法
CN204632107U (zh) 一种基于扫描式激光测距仪的组合型车型识别系统
US11851310B2 (en) Autonomous forklift truck
CN104155979B (zh) 一种基于磁场对称性的磁导航智能车定位装置及方法
CN110763225A (zh) 一种小车路径导航方法及系统、运输车系统
CN111516777A (zh) 一种机器人小车及其障碍物识别方法
CN110806193A (zh) 地铁隧道形变检测系统
JP6513544B2 (ja) 荷役クレーンの衝突防止装置
CN111487964A (zh) 一种机器人小车及其自主避障方法、设备
JP2018036723A (ja) 物品搬送設備
CN103723161A (zh) 列车装载安全的实时自动检测设备
CN111052026A (zh) 移动体和移动体系统
US11623674B2 (en) Rail vehicle system, rail vehicle, and visual sensing device
US20210058588A1 (en) Train wheel detection and thermal imaging system
CN113703460A (zh) 导航车识别空位的方法、装置及系统
CN205983213U (zh) 一种机器人
CN110963445A (zh) 一种移动叉车
WO2020114638A1 (en) A system and method for alignment of a terminal truck relative to a crane
CN111243010A (zh) 智能天车图像识别钢卷车辆装载系统及方法
CN115303695A (zh) 一种穿梭车控制装置及其控制方法
KR20230073804A (ko) 스테레오 카메라와 초음파 센서를 이용한 무인 지게차 주행 제어 장치 및 주행 방법
CN204198279U (zh) 集装箱起重机行走纠偏及大路防撞系统
CN107515610A (zh) 一种防碰撞agv小车管理系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: B501, Building F2, TCL Science Park, No. 1001, Zhongshanyuan Road, Shuguang Community, Xili Street, Nanshan District, Shenzhen City, Guangdong Province, 518000

Patentee after: LAUNCH DIGITAL TECHNOLOGY Co.,Ltd.

Address before: 518000 Third Floor, Fengyun Building, Galaxy, No. 5 Xinxi Road, North District, Nanshan High-tech Park, Shenzhen City, Guangdong Province

Patentee before: LAUNCH DIGITAL TECHNOLOGY Co.,Ltd.