CN107764792B - 用于水样中双氧水检测的荧光探针、制备方法及其应用 - Google Patents

用于水样中双氧水检测的荧光探针、制备方法及其应用 Download PDF

Info

Publication number
CN107764792B
CN107764792B CN201710960593.XA CN201710960593A CN107764792B CN 107764792 B CN107764792 B CN 107764792B CN 201710960593 A CN201710960593 A CN 201710960593A CN 107764792 B CN107764792 B CN 107764792B
Authority
CN
China
Prior art keywords
hydrogen peroxide
solution
water sample
fluorescence
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710960593.XA
Other languages
English (en)
Other versions
CN107764792A (zh
Inventor
王晓梅
徐虎
王宇红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN201710960593.XA priority Critical patent/CN107764792B/zh
Publication of CN107764792A publication Critical patent/CN107764792A/zh
Application granted granted Critical
Publication of CN107764792B publication Critical patent/CN107764792B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种用于水样中双氧水检测的荧光探针、制备方法及其应用。本发明首先制备油胺包裹的油溶性的CdSe/ZnS量子点;然后将CdSe/ZnS量子点和对巯基苯酚甲醇溶液混合反应,得到p‑HTP‑QDs探针,即用于水样中双氧水检测的荧光探针。本发明得到的荧光探针可快速检测双氧水,且在不同水样中该探针对双氧水具有很好的选择性,其他活性氧、活性氮类物质对该检测干扰极小,其选择性好,操作简便、灵敏度高、重现性好。

Description

用于水样中双氧水检测的荧光探针、制备方法及其应用
技术领域
本发明涉及一种黄色荧光量子点材料,属于纳米材料制备以及应用技术领域。
背景技术
作为一种重要的活性氧物质,双氧水在环境和生物活动中扮演者重要的角色。在环境中,双氧水可以用于自来水的净化,在生命活动中,双氧水在细胞中起着免疫标志的功能,同时,过量的双氧水会导致癌症,阿尔察默病等疾病。
目前对双氧水的检测的方法有比色法、滴定法、电化学法、色谱法等,这些方法虽然能够对双氧水实现灵敏的且选择性的检测,但是这些方法大部分比较复杂、耗时、耗力且干扰因素多。量子点荧光探针具有以下优点:尺寸控制发光性能;较高荧光量子产率(单个粒子的发光强度约10~100倍于单个有机染料分子);高的光稳定性;连续吸收光谱(从紫外到可见光);发射峰窄且对称,同时具有高选择性和灵敏度,非破坏性的分析和检测系统易操作性等优点,在环境、化学、生物和医学等领域有广泛的应用。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种用于水样中双氧水检测的荧光探针,同时提供了其制备方法及应用。该荧光探针可快速检测双氧水,且在不同水样中该探针对双氧水具有很好的选择性,其他活性氧、活性氮类物质对该检测干扰极小。
本发明的技术方案具体介绍如下。
本发明提供一种用于水样中双氧水检测的荧光探针的制备方法,具体步骤如下:
(1)制备油胺包裹的油溶性的CdSe/ZnS量子点;
先将体积比为4:1~5:1的油胺OAm和Se的饱和TOP溶液混合,混合后,在惰性气氛下,将温度升高到295~305℃,加入CdO溶液,加完后,在275~285℃的温度下保温,使得晶体完全生长,最后冷却,加入甲醇析出固体,离心、洗涤,甲苯溶解,得到CdSe核量子点溶液;其中:CdO溶液为CdO在油胺和十八烯中形成的溶液,CdO和油胺、十八烯的投料比为(2~4)mmol:(4~6)mL:(4~6)mL;CdO溶液和Se的饱和TOP溶液的体积比在10:1~8:1之间;
CdSe核量子点表面的壳层ZnS通过CdSe核量子点与S2-和Zn2+交替的吸附混合反应而得到;核壳型CdSe/ZnS量子点具体制备过程如下:以S和Zn的量计算,真空条件下将提前配好的相同浓度的S-ODE溶液和ZnO-ODE溶液进行五级混合吸附反应,两种溶液取用相同体积,依次按量交替进行混合,溶液的加入速度不超过5mL/s;
(2)制备水样中双氧水检测的荧光探针
将上述油溶性的CdSe/ZnS量子点用己烷稀释后,和对巯基苯酚甲醇溶液混合,混合后搅拌,静置后移去上层己烷溶液,对下层甲醇溶液进行离心,得到的固体洗涤,再分散于甲醇中,得到p-HTP-QDs探针,即用于水样中双氧水检测的荧光探针。
本发明中,步骤(1)中,保温时间为8~15min。
本发明中,步骤(1)中,S-ODE溶液和ZnO-ODE溶液的浓度在0.1-0.2mol/L之间。S-ODE溶液和ZnO-ODE溶液和CdSe核量子点的投料比为常规用量。
本发明中,步骤(2)中,CdSe/ZnS量子点和对巯基苯酚的投料比为1:8000~1:5000。
本发明中,步骤(2)中,对巯基苯酚甲醇溶液的浓度为3~5mol/L。
本发明中,步骤(2)中,混合后搅拌8~12min。
本发明还提供一种上述的制备方法得到的用于水样中双氧水检测的荧光探针。
本发明进一步提供一种上述的用于水样中双氧水检测的荧光探针于水样中双氧水检测方面的应用。优选的,应用方法的具体步骤如下:
(1)首先将缓冲溶液和用于水样中双氧水检测的荧光探针混合,混合后加入不同浓度的双氧水,搅拌后记录荧光光谱,再经线性拟合获得荧光强度和双氧水浓度的关系图;
(2)将缓冲溶液和用于水样中双氧水检测的荧光探针混合,混合后加入待测样品,搅拌反应后,测定荧光强度,根据其荧光强度,获得待测样品中双氧水浓度。
与现有方法相比,本发明具有以下有益效果:
1.本发明的荧光探针本身为黄色荧光的CdSe/ZnS量子点(λem=570nm),4-羟基苯硫酚对量子点进行修饰后得到水溶性且发射弱荧光的量子点,加入双氧水之后,量子点荧光恢复。
2.本发明的荧光探针仅与双氧水发生反应,其他活性氧、活性氮对其几乎没有影响,具有很好的选择性和特异性。
3.本发明的荧光探针易溶于水,便于各种水体中双氧水的检测,制备工艺简单易行,反应时间短,信号响应强,重现性好。
附图说明
图1为本发明的荧光探针的工作原理图示。
图2为实施例1得到的荧光探针的透射电镜图(a)、归一化的p-HTP和H2O2-p-HTP紫外吸收图(b)、归一化的p-HTP紫外吸收p-HTP-QDs荧光图谱(c)。
图3为实施例2条件下,本发明信号响应时间图(a)、荧光恢复图(b)、工作曲线图(c)。
图4为实施例3条件下,本发明对其他活性氧活性氮的选择性图。
具体实施方式
下面结合实例对本发明的技术方案作进一步的说明。
图1为本发明的荧光探针的工作原理图示。其中:L1所示为油溶性油胺包裹的CdSe/ZnS量子点,激发后发射黄色荧光,L2所示为水溶性4-羟基苯硫酚包裹的CdSe/ZnS量子点,即检测双氧水的荧光探针,激发后量子点发射弱荧光,L3所示为加入双氧水后的CdSe/ZnS量子点,此时量子点荧光恢复,L4所示为L3在水中稳定存在的结构。
实施例1
1.制备油胺包裹的油溶性的CdSe/ZnS量子点(λem=570nm)。将Se粉溶解在三辛基膦TOP中得到浓度为2.1M的饱和Se的TOP溶液。在250℃温度下,将CdO(1.1556g,9mmol)溶解在OAm(15mL)和ODE(15mL)中得到Cd澄清的无色溶液,在60℃温度下储存备用。在50mL的三口圆底烧瓶中加入5mL的OAm和0.115mL的Se的储备溶液,加热到90℃并抽真空20min,通入氩气,温度升高到300℃。1mL的Cd的储备液迅速的加入到反应烧瓶中,并迅速的保温到280℃进行纳米晶体的生长。通过记录光谱来监测晶体的生长情况。等到完全生长(10min),混合液冷却到60℃,加入甲醇CdSe核量子点沉淀出来,通过多次离心进一步纯化。CdSe核量子点的浓度通过朗伯比尔定律估算为0.044M,CdSe核量子点表面的壳层ZnS则通过交替的S2-和Zn2+的吸附反应得到,最终制备的核壳CdSe/ZnS量子点低温冷藏待用。
2.合成p-HTP-QDs探针。由于制备的是高质量的CdSe/ZnS核壳量子点是油溶的,所以通过配体交换的方法,快速的合成出水溶性p-HTP-QDs探针。合成过程如下:在3mL的离心管中,准确移入1mL预先制备好的油溶性CdSe/ZnS量子点的己烷稀释液和0.16mL的对巯基苯酚甲醇溶液(4M),迅速产生乳浊液,下层甲醇相颜色变深。混合液在磁力搅拌器上搅拌10min,静置1min后移去上层澄清的己烷溶液。对下层的甲醇相进行离心,得到橙黄色固体。加入少量的甲醇溶液重新分散、离心,如此反复洗涤两次。纯化后的p-HTP-QDs分散到甲醇溶液中,冷藏待用。对其表征得到图2。(a)透射电镜图、(b)归一化的p-HTP和H2O2-p-HTP紫外吸收图、(c)归一化的p-HTP紫外吸收p-HTP-QDs荧光图谱。如图2(a)所示,从图中可以观察到量子点的平均粒径为5.3±0.4nm,纳米粒子呈现出较好的单分散的状态,表明在配体交换后量子点没有发生聚集,具有较好的稳定性。如图2(b)所示,p-HTP甲醇溶液在双氧水加入前后,其紫外吸收峰位置发生移动,同时由图2(c)可以观察到p-HTP水溶液的紫外吸收峰的范围在400nm和500nm之间,而p-HTP-QDs水溶液的发射波长在570nm处,在水溶液中p-HTP的吸收光谱与CdSe/ZnS量子点发射光谱之间没有重叠部分,这就直接排除荧光共振能能量转移(FRET)的作用使量子点荧光淬灭的可能性,为本专利电子转移检测机理提供可能。
实施例2
在比色皿中加入2mL预先用去离子水配置的pH=6的PBS缓冲溶液。准确移取10L预先配置好的实施例1所得到的p-HTP-QDs水溶液(9.2M)分散到比色皿中的缓冲溶液中,快速搅拌10s,放入荧光仪中记录荧光强度,然后再快速搅拌一段时间并记录荧光强度,如此反复测量荧光强度至稳定,得到图3(a)。预先用去离子水配制pH6.0的PBS缓冲溶液待用。在10mm的石英比色皿中加入2.0mL的缓冲溶液(10mM)。准确移取5L实施例1所得到的p-HTP-QDs甲醇悬浮液(7.2M)加入到比色皿中,充分混合后加入不同浓度的双氧水,搅拌反应15分钟记录荧光光谱,得到图3(b)。在双氧水浓度0.309mM到4.9mM范围,p-HTP-QDs探针的荧光强度随着双氧水浓度的增加而增加。相对荧光强度F/F0(作为Y轴)与双氧水浓度(作为X轴),经线性拟合在双氧水浓度0.309mM到4.9mM范围得出一条很好的线性关系(R2=0.99507),得到图3(c)。
实施例3
在实施例1条件下分别配制1mM的·OH、ONOO、O2-、t-BuOOH、ClO-、NO·的pH=6的PBS缓冲溶液,各自取2mL加入10L的p-HTP-QDs悬浮液中,搅拌15min并记录荧光光谱。空白试验在不加任何活性氮活性氧的情况下,按照同样的操作进行,得到图4;收集的河水事先通过0.22m的膜滤器进行过滤,直至澄清待用,用PBS缓冲溶液按体积比为1:3的比例去稀释细胞培养基(DMEM)待用,取一定的自来水待用。按照实施例2中的操作,移取2mL的实样于比色皿中,加入5L p-HTP-QDs甲醇溶液,搅拌15min,用荧光仪记录其荧光强度,测量的精准度用国家标准中双氧水的检测方法来对照评估。本发明在不同水样中的实样分析的具体结果如表1所示,从表中可知p-HTP-QDs探针检测结果和国家标准中双氧水的检测方法的结果相差不大,且不同的水样对探针的干扰也很小,证明了探针具有在水介质中检测双氧水的实用性。
表1

Claims (9)

1.一种用于水样中双氧水检测的荧光探针的制备方法,其特征在于,具体步骤如下:
(1)制备油胺包裹的油溶性的CdSe/ZnS量子点;
先将体积比为4:1~5:1的油胺OAm和Se的饱和TOP溶液混合,TOP为三辛基膦,混合后,在惰性气氛下,将温度升高到295~305℃,加入CdO溶液,加完后,在275~285℃的温度下保温,使得晶体完全生长,最后冷却,加入甲醇析出固体,离心、洗涤,甲苯溶解,得到CdSe核量子点溶液;其中:CdO溶液为CdO在油胺和十八烯中形成的溶液,CdO和油胺、十八烯的投料比为(2~4)mmol:(4~6)mL:(4~6)mL;CdO溶液和Se的饱和TOP溶液的体积比在10:1~8:1之间;
CdSe核量子点表面的壳层ZnS通过CdSe核量子点与S2-和Zn2+交替的吸附混合反应而得到;核壳型CdSe/ZnS量子点具体制备过程如下:以S和Zn的量计算,真空条件下将提前配好的相同浓度的S-ODE溶液和ZnO-ODE溶液进行五级混合吸附反应,两种溶液取用相同体积,依次按量交替进行混合,溶液的加入速度不超过5mL/s;
(2)制备水样中双氧水检测的荧光探针
将上述油溶性的CdSe/ZnS量子点用己烷稀释后,和对巯基苯酚甲醇溶液混合,混合后搅拌,静置后移去上层己烷溶液,对下层甲醇溶液进行离心,得到的固体洗涤,再分散于甲醇中,得到p-HTP-QDs探针,即用于水样中双氧水检测的荧光探针。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,保温时间为8~15min。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,S-ODE溶液和ZnO-ODE溶液的浓度在0.1-0.2mol/L之间。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,CdSe/ZnS量子点和对巯基苯酚的投料比为1:8000~1:5000。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,对巯基苯酚甲醇溶液的浓度为3~5mol/L。
6.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,混合后搅拌8~12min。
7.一种根据权利要求1~6之一所述的制备方法得到的用于水样中双氧水检测的荧光探针。
8.一种根据权利要求7所述的用于水样中双氧水检测的荧光探针用于水样中双氧水检测方面的应用。
9.根据权利要求8所述的应用,其检测水样中双氧水的具体步骤如下:
(1)首先将缓冲溶液和用于水样中双氧水检测的荧光探针混合,混合后加入不同浓度的双氧水,搅拌后记录荧光光谱,再经线性拟合获得荧光强度和双氧水浓度的关系图;
(2)将缓冲溶液和用于水样中双氧水检测的荧光探针混合,混合后加入待测样品,搅拌反应后,测定荧光强度,根据其荧光强度,获得待测样品中双氧水浓度。
CN201710960593.XA 2017-10-16 2017-10-16 用于水样中双氧水检测的荧光探针、制备方法及其应用 Expired - Fee Related CN107764792B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710960593.XA CN107764792B (zh) 2017-10-16 2017-10-16 用于水样中双氧水检测的荧光探针、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710960593.XA CN107764792B (zh) 2017-10-16 2017-10-16 用于水样中双氧水检测的荧光探针、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN107764792A CN107764792A (zh) 2018-03-06
CN107764792B true CN107764792B (zh) 2019-12-03

Family

ID=61268760

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710960593.XA Expired - Fee Related CN107764792B (zh) 2017-10-16 2017-10-16 用于水样中双氧水检测的荧光探针、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN107764792B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128818A4 (en) * 1998-11-10 2002-04-10 Biocrystal Ltd FUNCTIONAL GROUPS IN NANOCRISTALS AND THEIR USE IN ANALYSIS SYSTEMS
WO2006037226A1 (en) * 2004-10-05 2006-04-13 Mcgill University Use of quantum dots for biological labels and sensors
CN103558194A (zh) * 2013-10-21 2014-02-05 山东交通学院 一种CdSe/ZnS核壳量子点的制备方法及应用
CN106092999A (zh) * 2016-08-26 2016-11-09 济南大学 基于荧光和比色方法检测癌细胞中h2o2纸芯片的制备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128818A4 (en) * 1998-11-10 2002-04-10 Biocrystal Ltd FUNCTIONAL GROUPS IN NANOCRISTALS AND THEIR USE IN ANALYSIS SYSTEMS
WO2006037226A1 (en) * 2004-10-05 2006-04-13 Mcgill University Use of quantum dots for biological labels and sensors
CN103558194A (zh) * 2013-10-21 2014-02-05 山东交通学院 一种CdSe/ZnS核壳量子点的制备方法及应用
CN106092999A (zh) * 2016-08-26 2016-11-09 济南大学 基于荧光和比色方法检测癌细胞中h2o2纸芯片的制备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H2O2‐and pH‐sensitive CdTe quantum dots as fluorescence probes for the detection of glucose;Li Yinping,et al;《Luminescence》;20131231;第667-672页 *
Optical detection of glucose and acetylcholine esterase inhibitors by H2O2‐sensitive CdSe/ZnS quantum dots;Ron Gill,et al;《Angewandte Chemie International Edition》;20081231;第1676-1679页 *
功能化量子点检测环境样品中汞离子及过氧化氢的研究;席丽丽;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20170215;第34-41页 *

Also Published As

Publication number Publication date
CN107764792A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
Li et al. Synthesis of molecularly imprinted carbon dot grafted YVO4: Eu3+ for the ratiometric fluorescent determination of paranitrophenol
Yu et al. The construction of a FRET assembly by using gold nanoclusters and carbon dots and their application as a ratiometric probe for cysteine detection
CN107271409B (zh) 一种使用基于钙钛矿纳米晶的金属离子传感器检测溶液中金属离子的方法
CN110194950B (zh) 一种单粒子双发射比率荧光探针的制备方法及其应用
Jalili et al. A ratiometric fluorescent probe based on carbon dots and gold nanocluster encapsulated metal–organic framework for detection of cephalexin residues in milk
Hofmann et al. Protein-templated gold nanoclusters sequestered within sol–gel thin films for the selective and ratiometric luminescence recognition of Hg 2+
Tian et al. Multi-talented applications for cell imaging, tumor cells recognition, patterning, staining and temperature sensing by using egg white-encapsulated gold nanoclusters
CN105928914B (zh) 硫化氢检测传感器及其制备方法、硫化氢的定量检测方法和细胞内硫化氢的定性检测方法
Yuan et al. Disassembly mediated fluorescence recovery of gold nanodots for selective sulfide sensing
Yan et al. Lanthanide-doped nanoparticles encountering porphyrin hydrate: Boosting a dual-mode optical nanokit for Cu2+ sensing
He et al. Mn-doped ZnS quantum dots/methyl violet nanohybrids for room temperature phosphorescence sensing of DNA
CN110508828A (zh) 基于l-甲硫氨酸的橙红色荧光铜纳米团簇的制备方法
CN110862820A (zh) 一种半胱氨酸-金纳米簇的制备方法及应用
CN105866083A (zh) 过氧亚硝酸根离子检测探针、其制备方法及应用
CN107384375B (zh) 一种稀土发光二氧化硅杂化材料及其制备方法和应用
Bi et al. Room-temperature phosphorescence sensor based on manganese doped zinc sulfide quantum dots for detection of urea
CN112375561B (zh) 上转换荧光纳米探针及其应用
CN108949171B (zh) 一种稀土碳纳米粒子及其制备方法和基于荧光色度测定pH值的应用
Fan et al. Molecularly imprinted polymer coated Mn-doped ZnS quantum dots embedded in a metal–organic framework as a probe for selective room temperature phosphorescence detection of chlorpyrifos
CN111504959A (zh) C肽稀土荧光微球试剂盒及其检测卡和制备方法
Huang et al. Aqueous synthesis of CdTe quantum dots by hydride generation for visual detection of silver on quantum dot immobilized paper
Li et al. A novel fluorescence and resonance Rayleigh scattering probe based on quantum dots for the detection of albendazole
Wang et al. Surface functionalized quantum dots as biosensor for highly selective and sensitive detection of ppb level of propafenone
CN105670630B (zh) 一种水溶性稀土掺杂纳米晶体及其制备方法和应用
CN107764792B (zh) 用于水样中双氧水检测的荧光探针、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191203

CF01 Termination of patent right due to non-payment of annual fee