CN107760991B - 一种含钴高速列车制动盘用钢 - Google Patents
一种含钴高速列车制动盘用钢 Download PDFInfo
- Publication number
- CN107760991B CN107760991B CN201711032854.8A CN201711032854A CN107760991B CN 107760991 B CN107760991 B CN 107760991B CN 201711032854 A CN201711032854 A CN 201711032854A CN 107760991 B CN107760991 B CN 107760991B
- Authority
- CN
- China
- Prior art keywords
- steel
- brake disc
- containing cobalt
- speed train
- train containing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
- C21D1/28—Normalising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/02—Braking members; Mounting thereof
- F16D65/12—Discs; Drums for disc brakes
- F16D65/125—Discs; Drums for disc brakes characterised by the material used for the disc body
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2200/00—Materials; Production methods therefor
- F16D2200/0004—Materials; Production methods therefor metallic
- F16D2200/0008—Ferro
- F16D2200/0021—Steel
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Articles (AREA)
- Braking Arrangements (AREA)
Abstract
本发明公开了一种含钴高速列车制动盘用钢,包括如下化学成分及质量百分比:C:0.20~0.30%,Si:0.20~0.40%0,Mn:0.20~0.40%,Cr:0.90~1.50%,Mo:0.40~0.90%,Al:≤0.025%,V:0.70~1.00%,Co:0.50~0.80%,Ni:≤0.20%,Cu:≤0.20%,N:≤0.0050%,P≤0.010%,S≤0.005%,余量为Fe及不可避免的杂质。其具有优异的高温性能,20℃~700℃导热系数为35~40W/(m·K),500℃抗拉强度≥1000MPa,600℃抗拉强度≥900MPa。
Description
技术领域
本发明属于高速轨道交通零部件用钢技术领域,具体涉及一种含钴高速列车制动盘用钢。
背景技术
随着高速列车速度的提高,对列车制动的及时性、安全性和稳定性提出了更高的要求,这也意味着对列车制动装置和制动材料的质量和性能需要满足更高的要求。高速列车基础制动均采用盘形制动装置,对于200km/h以上高速列车,国际上一般是采用锻钢制动盘与粉末冶金闸片配对的制动装置。制动盘其最基本的功能是吸收制动动能并将之转化为热能散发到空气中。
提高高速列车制动盘材料的高温性能是提升制动装置可靠性最为关键的技术问题之一。在高速列车速度高和运行条件恶劣的制动工况下,巨大的制动热负荷及热冲击会带来很高的热应力和温度梯度。因此制动盘材料必须具有良好的高温力学性能和导热性能,以及低弹性模量和低热膨胀系数,使得制动热量能迅速逸散。具体地讲,高速列车制动盘应当具有如下的性能:一是稳定而均匀的摩擦性能,摩擦系数不随压力、温度和速度的变化而变化;二是良好的耐疲劳性能和极好的抗热裂纹扩展能力,以减少制动盘摩擦表面急冷急热所形成的高热应力对制动盘的损伤;三是较高的耐磨性能,以减少盘面摩擦而产生的磨损;制动盘材料还应具有良好的抗摩擦热变形性能和热导率。
目前的研究大部分集中在创新制动盘结构,提高制动盘散热性方面,对材质的创新性研究相对较少。而在列车制动时,特别是紧急制动时,制动盘瞬时热能量很难快速释放出去,因此,提高制动盘材料的高温性能对提高制动盘寿命具有重要意义。
发明内容
基于上述背景,本发明提供了一种含钴高速列车制动盘用钢,其具有优异的高温性能。
本发明采取的技术方案为:
一种含钴高速列车制动盘用钢,包括如下化学成分及质量百分比:C:0.20~0.30%,Si:0.20~0.40%0,Mn:0.20~0.40%,Cr:0.90~1.50%,Mo:0.40~0.90%,Al:≤0.025%,V:0.70~1.00%,Co:0.50~0.80%,Ni:≤0.20%,Cu:≤0.20%,N:≤0.0050%,P≤0.010%,S≤0.005%,余量为Fe及不可避免的杂质。
优选为,C:0.25~0.28%,Si:0.25~0.35%,Mn:0.30~0.35%,Cr:1.10~1.40%,Mo:0.65~0.80%,Al:≤0.022%,V:0.70~1.00%,Co:0.55~0.60%,Ni:≤0.10%,Cu:≤0.10%,N:≤0.0050%,P≤0.01%,S≤0.002%,余量为Fe及不可避免的杂质。
所述含钴高速列车制动盘用钢的晶粒尺寸为20~25μm,碳化物平均粒径在0.020μm~0.040μm之间,组织为回火索氏体,20℃~700℃导热系数为35~40W/(m·K),500℃抗拉强度≥1000MPa,600℃抗拉强度≥900MPa。
所述含钴高速列车制动盘用钢的制备方法包括以下工艺:电弧炉或转炉冶炼→LF炉精炼→RH或VD真空脱气→连铸→铸坯加热炉加热→制动盘用圆钢轧制→制动盘毛坯锻造→正火+调质热处理→机加工→探伤。
所述正火+调质热处理工艺包括正火工艺、淬火工艺和回火工艺。
所述正火工艺中,正火温度为1000~1100℃,保温时间5~8小时。
所述淬火工艺中,淬火温度为980~1020℃,保温时间4~6小时,淬火介质为5%~12%质量浓度的PAG淬火液。
所述回火工艺中,回火温度为600~650℃,保温时间为2~3小时。
正火工艺后还包括空冷,空冷至300℃以下,确保组织充分转变,并确保细化晶粒的第二相在冷却过程中充分析出并保持较小尺寸。
回火工艺后还包括水冷,尽量减少钢在高温回火脆性区的停留时间,确保钢的韧性,水冷至100℃以下。
本发明公开的含钴高速列车制动盘用钢中的所述“高速列车”指的是时速在200km/h以上高速列车,本发明通过对钢所含的化学元素含量及热处理工艺的控制,得到了具有回火索氏体组织的含钴高速列车制动盘用钢,其具有优异的高温性能,且经20℃~700℃冷热循环1000次无裂纹产生。
在钢的化学成分设计上,尽量降低扩大γ相区元素(C、N、Mn、Ni、Cu)含量,提高缩小γ相区元素(Mo、Cr、V)的含量,尤其是提高钢中的V含量,保证热处理后碳化物的稳定性,并适当添加一定含量Co,增加钢在回火过程中的二次硬化效果。各化学元素的作用及设计如下:
C:C元素是获得高的强度、硬度所必需的。高的C含量虽然对钢的强度、硬度等有利,但对钢的塑性和韧性极为不利,且使屈强比降低、脱碳敏感性增大,恶化钢的抗疲劳性能、加工性能和高温塑性。因此适当降低钢中的C含量,将其控制在0.30%以下。然而,淬火和高温回火后为了获得所需的高强度,C含量须在0.20%以上,因而C含量宜控制为0.20~0.30%。
Si:Si是钢中主要的脱氧元素,具有很强的固溶强化作用,但Si含量过高将使钢的塑性和韧性下降,C的活性增加,促进钢在轧制和热处理过程中的脱碳和石墨化倾向,并且使冶炼困难和易形成夹杂物,恶化钢的抗疲劳性能。因此控制Si含量为0.20~0.40%。
Mn:Mn是脱氧和脱硫的有效元素,还可以提高钢的淬透性和强度。但淬火钢回火时,Mn和P有强烈的晶界共偏聚倾向,促进回火脆性,恶化钢的韧性,过高Mn含量易导致反复加热冷却过程中产生奥氏体-马氏体转变,导致热膨胀系数、导热系数激变,降低制动盘冷热疲劳性能,因而控制Mn含量在0.20%~0.40%。
V:V是强碳化物元素,也是强的缩小γ相区元素,具有强的二次硬化效果,提高钢的高温性能,同时还可以提高反复加热冷却过程中组织的稳定性,因此,控制V含量为0.70~1.00%。
Cr:Cr能够有效地提高钢的淬透性和回火抗力,以获得所需的高强度;同时Cr还可降低C的活度,可降低加热、轧制和热处理过程中的钢材表面脱碳倾向,有利用获得高的抗疲劳性能和良好的高温性能。但含量过高会恶化钢的韧性,因而控制Cr含量为0.90~1.50%。
Mo:Mo在钢中的作用主要为提高淬透性、提高回火抗力及防止回火脆性。此外,Mo元素与Cr元素的合理配合可使淬透性和回火抗力得到明显提高,Mo含量过低则上述作用有限,Mo含量过高,则上述作用饱和,且提高钢的成本。因此,控制Mo含量为0.40~0.90%。
Co:Co虽然是扩大γ相区元素,但适当的Co可有效促进合金碳化物的析出,增加其弥散度,提高二次硬化效果,因此,Co含量应控制在0.50~0.80%。
Al:Al是钢中主要的脱氧元素,与钢中N元素形成AlN析出相具有抑制晶粒长大,但过细晶粒导致高温性能降低,因此,Al含量应控制在≤0.025%。
Ni:Ni可提高钢的淬透性、耐蚀性和保证钢在低温下的韧性。但过高Ni含量易导致反复加热冷却过程中产生奥氏体-马氏体转变,导致热膨胀系数激变,降低制动盘冷热疲劳性能,因此Ni含量为≤0.20%。
Cu:通过析出ε-Cu实现析出强化,提高钢的强度,此外,加入适量的Cu元素,还能够增加钢的耐大气腐蚀性能,但Cu是扩大γ相区元素,含量偏高易导致制动盘反复加热冷却过程中产生奥氏体-马氏体转变,导致热膨胀系数激变,降低制动盘冷热疲劳性能,因此,Cu含量应控制在≤0.20%。
P:在钢液凝固时形成微观偏析,随后在奥氏体后温度加热时偏聚到晶界,使钢的脆性显著增大,从而使钢的高温回火脆性倾向增加。因此,P含量应控制在0.010%以下。
S:不可避免的不纯物,形成MnS夹杂物和在晶界偏析会恶化钢的韧性,从而降低钢的韧塑性。由于钢中Mn含量较低,因此,S含量应控制在0.005%以下。
N:含V、Al钢中过高N含量促进了碳VN、AlN在奥氏体的析出,细化奥氏体晶粒并降低了钢的回火抗力,因此,N含量应控制在≤60ppm。
在热处理过程中,将正火及淬火过程中的温度分别控制在1000~1100℃和980-1020℃,保温时间分别控制在5~8小时和4~6小时,一方面保证所有元素充分均匀的溶解于高温奥氏体中,为淬火后组织及成分的均匀性做好准备;另一方面,保证适当尺寸的奥氏体晶粒度,如果晶粒度偏大,则组织过粗,钢的高温性能降低,而如果晶粒度过细,组织中大角度晶界提高,降低钢的导热性。回火过程中选择二次硬化效果最佳的温度区间600-650℃进行回火,回火时间为5~8小时,使钢中的碳化物充分析出,并保证碳化物尺寸适中,既能保证钢的高温性能,还能够提高钢在急冷急热过程中组织稳定性,提高钢在高温条件下的导热系数。
与现有技术相比,本发明公开的含钴高速列车制动盘用钢和普通锻造制动盘用钢相比,具有优异高温强度的同时,还具有优异的导热系数,从而显著提高制动盘的服役性能。
具体实施方式
实施例1~4
一种含钴高速列车制动盘用钢,其化学成分及重量百分比如表1所示:
表1实施例1~4中含钴高速列车制动盘用钢的化学成分及重量百分比
所述含钴高速列车制动盘用钢的制备方法包括以下工艺:电弧炉或转炉冶炼→LF炉精炼→RH或VD真空脱气→连铸→铸坯加热炉加热→制动盘用圆钢轧制→制动盘毛坯锻造→正火+调质热处理→机加工→探伤。经加热轧制成圆钢,再经加热锻造成制动盘毛坯,厚度为65mm,经表2热处理、精加工成高温拉伸和导热系数试样后进行高温力学性能和导热系数分析,其高温力学性能的分析结果见表2,导热系数分析结果见表3。
表2实施例1~4含钴高速列车制动盘用钢的热处理工艺及高温力学性能
表3实施例1~4含钴高速列车制动盘用钢在不同温度下导热系数
各实施例得到的含钴高速列车制动盘用钢的晶粒尺寸均为20~25μm,碳化物平均粒径在0.020μm~0.040μm之间,组织均为回火索氏体,经20℃~700℃冷热循环1000次无裂纹产生。
从表2、3中可以看出,各实施例得到的含钴高速列车制动盘用钢在20℃~700℃内的导热系数为35~40W/(m·K),500℃抗拉强度≥1000MPa、600℃抗拉强度≥900MPa。
比较例1~4
一种含钴高速列车制动盘用钢,其化学成分及重量百分比如表4所示:
表4比较例1~4中含钴高速列车制动盘用钢的化学成分及重量百分比
所述含钴高速列车制动盘用钢的制备方法包括以下工艺:电弧炉或转炉冶炼→LF炉精炼→RH或VD真空脱气→连铸→铸坯加热炉加热→制动盘用圆钢轧制→制动盘毛坯锻造→正火+调质热处理→机加工→探伤。经加热轧制成圆钢,再经加热锻造成制动盘毛坯,最大厚度为80mm,经表5热处理、精加工成高温拉伸和导热系数试样后进行高温力学性能和导热系数分析,其高温力学性能的分析结果见表5,导热系数分析结果见表6。
表5比较例1~4含钴高速列车制动盘用钢的热处理工艺及高温力学性能
表6比较例1~4含钴高速列车制动盘用钢在不同温度下导热系数
各比较例得到的含钴高速列车制动盘用钢的晶粒尺寸均在16μm左右,碳化物平均粒径在0.060μm~0.08μm之间,组织均为回火索氏体,经20℃~700℃冷热循环1000次有裂纹产生。可见,如果将含钴高速列车制动盘用钢的化学成分或者热处理工艺中的参数设置在本发明公开的范围之外,得到的含钴高速列车制动盘用钢的高温性能较本发明差。
上述参照实施例对一种含钴高速列车制动盘用钢进行的详细描述,是说明性的而不是限定性的,可按照所限定范围列举出若干个实施例,因此在不脱离本发明总体构思下的变化和修改,应属本发明的保护范围之内。
Claims (7)
1.一种含钴高速列车制动盘用钢,其特征在于,包括如下化学成分及质量百分比: C:0.25~0.28%,Si:0.25~0.35%,Mn:0.30~0.35%,Cr:1.10~1.40%, Mo:0.65~0.80%,Al:≤0.022%,V:0.70~1.00%,Co:0.55~0.60%,Ni:≤0.10%,Cu:≤0.10%,N:≤0.0050%,P≤0.01%,S≤0.002%,余量为Fe及不可避免的杂质;
所述含钴高速列车制动盘用钢的制备方法包括以下工艺:电弧炉或转炉冶炼→LF炉精炼→RH或VD真空脱气→连铸→铸坯加热炉加热→制动盘用圆钢轧制→制动盘毛坯锻造→正火+调质热处理→机加工→探伤;
所述含钴高速列车制动盘用钢的晶粒尺寸为20~25μm,碳化物平均粒径在0.020μm~0.040μm之间,组织为回火索氏体,20℃~700℃导热系数为35~40 W/(m·K),500℃抗拉强度≥1000MPa,600℃抗拉强度≥900MPa。
2.根据权利要求1所述的含钴高速列车制动盘用钢,其特征在于,所述正火+调质热处理工艺包括正火工艺、淬火工艺和回火工艺。
3.根据权利要求2所述的含钴高速列车制动盘用钢,其特征在于,所述正火工艺中,正火温度1000~1100℃,保温时间5~8小时。
4.根据权利要求2或3所述的含钴高速列车制动盘用钢,其特征在于,所述淬火工艺中,淬火温度为980~1020℃,保温时间4~6小时,淬火介质为5%~12%质量浓度的PAG淬火液。
5.根据权利要求2或3所述的含钴高速列车制动盘用钢,其特征在于,所述回火工艺中,回火温度为600~650℃,保温时间为5~8小时。
6.根据权利要求2所述的含钴高速列车制动盘用钢,其特征在于,正火工艺后还包括空冷。
7.根据权利要求2所述的含钴高速列车制动盘用钢,其特征在于,回火工艺后还包括水冷。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711032854.8A CN107760991B (zh) | 2017-10-30 | 2017-10-30 | 一种含钴高速列车制动盘用钢 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711032854.8A CN107760991B (zh) | 2017-10-30 | 2017-10-30 | 一种含钴高速列车制动盘用钢 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107760991A CN107760991A (zh) | 2018-03-06 |
CN107760991B true CN107760991B (zh) | 2019-07-05 |
Family
ID=61271881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711032854.8A Active CN107760991B (zh) | 2017-10-30 | 2017-10-30 | 一种含钴高速列车制动盘用钢 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107760991B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113564488B (zh) * | 2021-08-02 | 2022-09-13 | 深圳市国科华屹轴承有限公司 | 一种低膨胀系数芯轴用渗碳钢及其制备工艺 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001234281A (ja) * | 2000-02-21 | 2001-08-28 | Nippon Steel Corp | 亜鉛メッキ密着性および成形性の優れた高強度薄鋼板とその製造方法 |
EP1275745A1 (en) * | 1999-10-04 | 2003-01-15 | Mitsubishi Heavy Industries, Ltd. | Low-alloy heat-resistant steel, process for producing the same, and turbine rotor |
CN106794850A (zh) * | 2014-10-17 | 2017-05-31 | 李太荣 | 铁路车辆制动盘的制造方法 |
-
2017
- 2017-10-30 CN CN201711032854.8A patent/CN107760991B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1275745A1 (en) * | 1999-10-04 | 2003-01-15 | Mitsubishi Heavy Industries, Ltd. | Low-alloy heat-resistant steel, process for producing the same, and turbine rotor |
JP2001234281A (ja) * | 2000-02-21 | 2001-08-28 | Nippon Steel Corp | 亜鉛メッキ密着性および成形性の優れた高強度薄鋼板とその製造方法 |
CN106794850A (zh) * | 2014-10-17 | 2017-05-31 | 李太荣 | 铁路车辆制动盘的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107760991A (zh) | 2018-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107746915B (zh) | 一种高速列车制动盘用钢 | |
CN107760838B (zh) | 一种高速列车制动盘用钢的热处理方法 | |
CN106967929B (zh) | 一种动车组制动盘锻造用低碳钢及其热处理方法 | |
CN108220807B (zh) | 一种低密度高铝超高碳轴承钢及其制备方法 | |
CN105886904B (zh) | 一种含钒动车组车轴用钢,其生产方法以及热处理工艺 | |
CN104004968B (zh) | 车轮钢以及车轮热处理方法 | |
US20240254577A1 (en) | Spheroidizing-annealed steel for ball screw having high strength and resistance to low temperatures and manufacturing method thereof | |
CN107267864B (zh) | 一种高强度弹簧钢 | |
CN107760992A (zh) | 一种含钨高速列车制动盘用钢 | |
CN108998725A (zh) | 履带链轨节用35MnBM钢及其制备方法 | |
JP2004315890A (ja) | 転動疲労寿命の優れた鋼材及びその製造方法 | |
CN106756509B (zh) | 一种耐高温合金结构钢及其热处理工艺 | |
CN107641696A (zh) | 一种含钴高速列车制动盘用钢的热处理方法 | |
CN106435367B (zh) | 一种贝氏体钢轨及其制备方法 | |
CN103352170A (zh) | 合金锻钢及其生产方法和应用 | |
CN111850393B (zh) | 一种贝氏体模具钢及其制备方法 | |
CN113373371A (zh) | 一种添加稀土和镍元素的超高耐磨性过共析型珠光体钢轨材料 | |
CN107760833B (zh) | 一种含钨高速列车制动盘用钢的热处理方法 | |
CN109182920A (zh) | 一种抗湿热与腐蚀环境的轨道交通用贝氏体钢车轮及其制造方法 | |
CN110964973A (zh) | 一种高锰cadi及其热处理方法 | |
CN107760991B (zh) | 一种含钴高速列车制动盘用钢 | |
CN106906412B (zh) | 一种高强度高韧性锻造钩舌用钢及其热处理方法 | |
CN110819901B (zh) | 一种高强度制动盘螺栓用钢及其热处理工艺 | |
CN115558870B (zh) | 一种经济性高寿命大功率风电偏航轴承圈用钢、轴承圈及生产工艺 | |
JP4212132B2 (ja) | マルテンサイト組織を有するフェライト系耐熱鋼とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |