CN107756788A - 石墨烯3d打印机用快速冷冻装置及其使用方法 - Google Patents

石墨烯3d打印机用快速冷冻装置及其使用方法 Download PDF

Info

Publication number
CN107756788A
CN107756788A CN201711088494.3A CN201711088494A CN107756788A CN 107756788 A CN107756788 A CN 107756788A CN 201711088494 A CN201711088494 A CN 201711088494A CN 107756788 A CN107756788 A CN 107756788A
Authority
CN
China
Prior art keywords
platform
graphene
fin
cooling piece
quick freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711088494.3A
Other languages
English (en)
Inventor
杨峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Vocational Institute of Light Industry
Original Assignee
Changzhou Vocational Institute of Light Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Vocational Institute of Light Industry filed Critical Changzhou Vocational Institute of Light Industry
Priority to CN201711088494.3A priority Critical patent/CN107756788A/zh
Publication of CN107756788A publication Critical patent/CN107756788A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

本发明涉及石墨烯3D打印技术领域,尤其是一种石墨烯3D打印机用快速冷冻装置及其使用方法,该快速冷冻装置包括制冷系统、散热系统及控制系统;制冷系统包括铝合金材质的平台及位于平台下方的制冷片,制冷片的冷端端面与平台的下表面之间设置有导热硅脂层;散热系统用于对制冷片的热端进行散热;控制系统包括依次信号连接的热电偶、A/D转换器、单片机、PWM控制器及直流电源,本发明通过在单片机中调整平台的预设温度,可实现平台在‑40℃至0℃的温度区间连续可调,且能够使平台在短时间内到达所需的温度,实现将打印至平台上的不同成分的石墨烯浆料瞬间冰冻成型,具有制冷速度快及控制精度高的优点。

Description

石墨烯3D打印机用快速冷冻装置及其使用方法
技术领域
本发明涉及石墨烯3D打印技术领域,尤其是一种石墨烯3D打印机用快速冷冻装置及其使用方法。
背景技术
3D打印机是基于快速成型技术的成型设备。随着科学技术的高速发展、关键技术的不断突破以及信息控制技术的不断深入,作为快速成型技术的主要设备,3D打印机近十年发展迅速,保持高速增长的势头,新的成型技术不断涌现。
3D打印的基本原理是根据“分层累积”方法收集到相关对象的三维结构表面信息,通过切片软件将对象切割成厚度、数量及层片信息为基础的模型信息,运用不同的算法,生产打印路径,最后通过三维打印机逐层制造出三维产品实体。
现有的3D打印技术是在室温下或加热打印材料,而低温打印的难度在于如何提供一种能持续提供冷量的平台,石墨烯在低温打印时,不同成分的石墨烯浆料其所需的成型温度也不同,正常在-40℃-0°之间。
针对与此,本发明旨在提供一种体积小巧,可在短时间内实现-40℃-0℃的低温平台,平台的温度可连续调节。
发明内容
本发明要解决的技术问题是:为了解决现有技术中平台温度无法连续调节的问题,现提供一种石墨烯3D打印机用快速冷冻装置及其使用方法,该快速冷冻装置可实现平台温度的连续调节,并可将平台的温度维持在石墨烯浆料3D打印时所需的温度,从而将打印至平台上的石墨烯浆料瞬间冰冻成型,经层层叠加,最终可以打印出复杂的三维产品。
本发明解决其技术问题所采用的技术方案是:一种石墨烯3D打印机用快速冷冻装置,用对石墨烯浆料冰冻成型,该快速冷冻装置包括制冷系统、散热系统及控制系统;
所述制冷系统包括铝合金材质的平台及位于平台下方的制冷片,所述制冷片的冷端端面与平台的下表面之间设置有导热硅脂层;
所述散热系统用于对制冷片的热端进行散热;
所述控制系统包括依次信号连接的用于检测制冷片温度的热电偶、用于将热电偶检测的温度信号转化为数字信号的A/D转换器、集成有模糊PID算法的单片机、PWM控制器及直流电源;
所述热电偶设置在平台上,直流电源与制冷片电连接,所述单片机通过执行内部模糊PID算法调节PWM控制器的脉宽占空比,进而实现调节直流电源的输送功率。
本方案中的平台在制冷系统、散热系统及控制系统的共同作用下可实现快速降温,并可实现平台在-40℃至0℃的温度区间连续可调,且整个装置结构紧凑,体积小巧;铝合金材质的平台及导热硅脂层可以二次均化制冷片的表面温度,消除平台表面的温度梯度,便于测量和控制平台的表面温度。
进一步地,所述散热系统包括散热片、散热槽及水槽,所述散热片设置在制冷片热端端面的下方,所述散热片的上表面与制冷片的热端端面之间也设置有导热硅脂层,所述散热片位于散热槽中,所述水槽中盛放有冷却液,所述水槽与散热槽之间设置有进液管和出液管,所述进液管上设有用于将水槽中的冷却液泵入散热槽内的循环泵,通过循环泵将冷却液从水槽中抽送至散热槽中,并利用冷却液流经散热片,从而带走散热片上的热量。
为了便于散热片温度的快速散发,进一步地,所述散热片远离制冷片的一端间隔分布有若干散热翅,所述散热翅位于散热槽中,通过散热翅为散热片提供较大的比表面积可快速将散热片的热量散发。
进一步地,所述冷却液由40wt%的酒精、15wt%的甘油和45wt%的去离子水混合而成,该成分配比的冷却液其冰点为-26℃,可确保为散热片提供制冷。
为了提高制冷效率及平面温度的均匀性,优选地,所述制冷片有四片,四片所述制冷片呈矩阵列分布在平台的下表面,。
进一步地,所述散热片的材质采用铝合金。
为了防止平台的表面产生结霜现象,进一步地,所述平台的上表面经超疏水处理形成超疏水表面,超疏水面可有效的抑制霜层的生长,保证石墨烯浆料的打印精度。
本发明还提供一种上述石墨烯3D打印机用快速冷冻装置的使用方法,包括以下步骤:
a)、预先在单片机中设定平台所需达到的预设温度值,预设温度值的范围在-40℃至0℃之间;当预设温度值≤-20℃时,省略步骤b);
b)、然后将水槽及其内的冷却液放置在冷冻设备中进行降温,直至水槽中的冷却液到达-10℃至0℃;
c)、然后接通直流电源使制冷片工作,循环泵将水槽中的冷却液泵入散热槽中对散热片进行降温;
d)、热电偶实时检测平台的温度并以信号的形式发送给A/D转换器,由A/D转换器将热电偶检测的温度信号转化为数字信号,然后A/D转换器将转换出的数字信号反馈给单片机,接着单片机将该数字信号与预设温度进行比较,并执行内部模糊PID算法调节PWM控制器的脉宽占空比,得出下一个时间单元内所需输出的PWM控制器的脉宽占空比,然后单片机将该脉宽占空比发送给PWM控制器,并由PWM控制器根据该脉宽占空比控制直流电源输出相应的输出电压,最终实现将平台的温度降低至预设温度。
本发明的有益效果是:本发明的石墨烯3D打印机用快速冷冻装置通过在单片机中调整平台的预设温度,可实现平台在-40℃至0℃的温度区间连续可调,且能够使平台在短时间内到达所需的温度,实现将打印至平台上的不同成分的石墨烯浆料瞬间冰冻成型,具有制冷速度快、控制精度高及制冷温度可无极调节的优点,整个冷冻装置结构紧凑,体积小巧、无噪音、重量轻、可靠性高及制备成本低。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明石墨烯3D打印机用快速冷冻装置的示意图;
图2是本发明石墨烯3D打印机用快速冷冻装置中制冷系统的爆炸示意图;
图3是本发明中平台目标温度分别为-30℃和-40℃时的制冷温度曲线示意图。
图中:1、平台,2、制冷片,3、导热硅脂层,4、热电偶,5、A/D转换器,6、单片机,8、PWM控制器,9、直流电源,10、循环泵,11、散热片,11-1、散热翅,12、散热槽,13、水槽,14、进液管,15、出液管。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成,方向和参照(例如,上、下、左、右、等等)可以仅用于帮助对附图中的特征的描述。因此,并非在限制性意义上采用以下具体实施方式,并且仅仅由所附权利要求及其等同形式来限定所请求保护的主题的范围。
实施例1
如图1和2所示,一种石墨烯3D打印机用快速冷冻装置,用对石墨烯浆料冰冻成型,该快速冷冻装置包括制冷系统、散热系统及控制系统;
制冷系统包括铝合金材质的平台1及位于平台1下方的制冷片2,所述制冷片2的冷端端面与平台1的下表面之间设置有导热硅脂层3;
散热系统用于对制冷片2的热端进行散热;
控制系统包括依次信号连接的用于检测制冷片2温度的热电偶4、用于将热电偶4检测的温度信号转化为数字信号的A/D转换器5、集成有模糊PID算法的单片机6、PWM控制器8及直流电源9;
热电偶4设置在平台1上,直流电源9与制冷片2电连接,单片机6通过执行内部模糊PID算法调节PWM控制器8的脉宽占空比,进而实现调节直流电源9的输送功率,热电偶4可采用T型热电偶,温度测量范围在-270℃至400℃之间,测量精度为0.1℃。
散热系统包括散热片11、散热槽12及水槽13,散热片11设置在制冷片2热端端面的下方,散热片11的上表面与制冷片2的热端端面之间也设置有导热硅脂层3,散热片11位于散热槽12中,水槽13中盛放有冷却液,水槽13与散热槽12之间设置有进液管14和出液管15,进液管14上设有用于将水槽13中的冷却液泵入散热槽12内的循环泵10。
散热片11远离制冷片2的一端间隔分布有若干散热翅11-1,散热翅11-1位于散热槽12中,通过散热翅11-1为散热片11提供较大的比表面积可快速将散热片11的热量散发,散热片11的材质采用铝合金8176,铝合金8176的热导率为230W/(m·K),具有较大热导率、热容量及价格低廉等有优点。
冷却液由40wt%的酒精、15wt%的甘油和45wt%的去离子水混合而成,该成分配比的冷却液其冰点为-26℃,可确保为散热片11提供制冷。
制冷片2有四片,四片制冷片2呈矩阵列分布在平台1的下表面。
平台1的上表面经超疏水处理形成超疏水表面,超疏水面可有效的抑制霜层的生长,保证石墨烯浆料的打印精度。
单片机可采用Atmel公司ATmega8,其具有A/D转换功能,PWM通道,有断电后保存数据的EEPROM,支持在线编程。
本实施例中,制冷片2工作时,制冷片2冷端通过导热硅脂层3迅速将冷量传递给平台1,制冷片2热端通过导热硅脂层3迅速将热量传递给散热片11,散热片11上的散热翅11-1提供了较大的比表面积,循环泵10将冷却液从水槽13中抽送至散热槽12内,冷却液流经散热翅11-1,带走散热片11上的热量,并从出液管15回流至水槽13中,可有效快速吸收制冷片2热端的热量,避免对制冷片2冷端的冷量造成影响。
一种上述石墨烯3D打印机用快速冷冻装置的使用方法,包括以下步骤:
a)、预先在单片机6中设定平台1所需达到的预设温度值,预设温度值的范围在-40℃至0℃之间;当预设温度值≤-20℃时,省略步骤b);
b)、然后将水槽13及其内的冷却液放置在冷冻设备中进行降温,直至水槽13中的冷却液到达-10℃至0℃;
c)、然后接通直流电源9使制冷片2工作,循环泵10将水槽13中的冷却液泵入散热槽12中对散热片11进行降温;
d)、热电偶4实时检测平台1的温度并以信号的形式发送给A/D转换器5,由A/D转换器5将热电偶4检测的温度信号转化为数字信号,然后A/D转换器5将转换出的数字信号反馈给单片机6,接着单片机6将该数字信号与预设温度进行比较,并执行内部模糊PID算法调节PWM控制器8的脉宽占空比,得出下一个时间单元内所需输出的PWM控制器8的脉宽占空比,然后单片机7将该脉宽占空比发送给PWM控制器8,并由PWM控制器8根据该脉宽占空比控制直流电源9输出相应的输出电压,最终实现将平台1的温度降低至预设温度。
以上述实施例1来阐述本发明的工作原理:
采用上述控制系统不仅温度调整响应速度快、精度高,且平台1的温度较为稳定,不易产生震荡,平稳性好。
通过实验在单片机6中设置平台1温度为-30℃和-40℃,平台1的温度变化如图3所示:-30℃的温度曲线在76秒处达到平衡状态,超调量约为2.2%,平衡温度精度达±0.5℃;-40℃的温度曲线在92秒处达到平衡状态,未出现超调;
铝合金材质的平台1及导热硅脂层3可以二次均化制冷片2的表面温度,消除平台1表面的温度梯度,在平台1到达不同目标温度时,通过测量平台1上表面不同区域的温度,测量结构表明平台1上表面各区域温度一致,无温度梯度存在。
该装置能使平台1温度在-40℃-0℃之间连续可调,超调量在4.8%以内,设定温度最长在124s内达到设定值,且在设定值附近几乎保持恒定,铝片表面无温度梯度存在,且平台1表面经过超疏水工艺处理,无结霜现象产生,可确保氧化石墨烯浆料在快速冷冻成型平台1上的成型精度。
上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (8)

1.一种石墨烯3D打印机用快速冷冻装置,用对石墨烯浆料冰冻成型,其特征在于:该快速冷冻装置包括制冷系统、散热系统及控制系统;
所述制冷系统包括铝合金材质的平台(1)及位于平台(1)下方的制冷片(2),所述制冷片(2)的冷端端面与平台(1)的下表面之间设置有导热硅脂层(3);
所述散热系统用于对制冷片(2)的热端进行散热;
所述控制系统包括依次信号连接的用于检测制冷片(2)温度的热电偶(4)、用于将热电偶(4)检测的温度信号转化为数字信号的A/D转换器(5)、集成有模糊PID算法的单片机(6)、PWM控制器(8)及直流电源(9);
所述热电偶(4)设置在平台(1)上,直流电源(9)与制冷片(2)电连接,所述单片机(6)通过执行内部模糊PID算法调节PWM控制器(8)的脉宽占空比,进而实现调节直流电源(9)的输送功率。
2.根据权利要求1所述的石墨烯3D打印机用快速冷冻装置,其特征在于:所述散热系统包括散热片(11)、散热槽(12)及水槽(13),所述散热片(11)设置在制冷片(2)热端端面的下方,所述散热片(11)的上表面与制冷片(2)的热端端面之间也设置有导热硅脂层(3),所述散热片(11)位于散热槽(12)中,所述水槽(13)中盛放有冷却液,所述水槽(13)与散热槽(12)之间设置有进液管(14)和出液管(15),所述进液管(14)上设有用于将水槽(13)中的冷却液泵入散热槽(12)内的循环泵(10)。
3.根据权利要求2所述的石墨烯3D打印机用快速冷冻装置,其特征在于:所述散热片(11)远离制冷片(2)的一端间隔分布有若干散热翅(11-1),所述散热翅(11-1)位于散热槽(12)中。
4.根据权利要求2或3所述的石墨烯3D打印机用快速冷冻装置,其特征在于:所述冷却液由40wt%的酒精、15wt%的甘油和45wt%的去离子水混合而成。
5.根据权利要求1所述的石墨烯3D打印机用快速冷冻装置,其特征在于:所述制冷片(2)有四片,四片所述制冷片(2)呈矩阵列分布在平台(1)的下表面。
6.根据权利要求1所述的石墨烯3D打印机用快速冷冻装置,其特征在于:所述散热片(11)的材质采用铝合金。
7.根据权利要求1所述的石墨烯3D打印机用快速冷冻装置,其特征在于:所述平台(1)的上表面经超疏水处理形成超疏水表面。
8.根据权利要求2-4中任一项所述的石墨烯3D打印机用快速冷冻装置的使用方法,其特征在于:包括以下步骤:
a)、预先在单片机(6)中设定平台(1)所需达到的预设温度值,预设温度值的范围在-40℃至0℃之间;当预设温度值≤-20℃时,省略步骤b);
b)、然后将水槽(13)及其内的冷却液放置在冷冻设备中进行降温,直至水槽(13)中的冷却液到达-10℃至0℃;
c)、然后接通直流电源(9)使制冷片(2)工作,循环泵(10)将水槽(13)中的冷却液泵入散热槽(12)中对散热片(11)进行降温;
d)、热电偶(4)实时检测平台(1)的温度并以信号的形式发送给A/D转换器(5),由A/D转换器(5)将热电偶(4)检测的温度信号转化为数字信号,然后A/D转换器(5)将转换出的数字信号反馈给单片机(6),接着单片机(6)将该数字信号与预设温度进行比较,并执行内部模糊PID算法调节PWM控制器(8)的脉宽占空比,得出下一个时间单元内所需输出的PWM控制器(8)的脉宽占空比,然后单片机(7)将该脉宽占空比发送给PWM控制器(8),并由PWM控制器(8)根据该脉宽占空比控制直流电源(9)输出相应的输出电压,最终实现将平台(1)的温度降低至预设温度。
CN201711088494.3A 2017-11-08 2017-11-08 石墨烯3d打印机用快速冷冻装置及其使用方法 Pending CN107756788A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711088494.3A CN107756788A (zh) 2017-11-08 2017-11-08 石墨烯3d打印机用快速冷冻装置及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711088494.3A CN107756788A (zh) 2017-11-08 2017-11-08 石墨烯3d打印机用快速冷冻装置及其使用方法

Publications (1)

Publication Number Publication Date
CN107756788A true CN107756788A (zh) 2018-03-06

Family

ID=61272750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711088494.3A Pending CN107756788A (zh) 2017-11-08 2017-11-08 石墨烯3d打印机用快速冷冻装置及其使用方法

Country Status (1)

Country Link
CN (1) CN107756788A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110147129A (zh) * 2019-05-16 2019-08-20 湖北问天软件系统有限公司 烤盘的自适应温度控制器及控制方法
CN110509554A (zh) * 2019-09-04 2019-11-29 衢州学院 基于信息技术的3d打印机冷却机构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104503508A (zh) * 2014-12-18 2015-04-08 上海市计量测试技术研究院 一种太阳电池测试台温控系统及温控方法
CN205058632U (zh) * 2015-10-20 2016-03-02 梁玲兵 一种半导体制冷恒温式桌面级3d打印机
CN105500711A (zh) * 2016-01-05 2016-04-20 杭州捷诺飞生物科技有限公司 低温打印平台及应用其的3d打印设备
CN106827497A (zh) * 2017-01-12 2017-06-13 四川阿泰因机器人智能装备有限公司 一种3d打印机热床
CN207403179U (zh) * 2017-11-08 2018-05-25 常州轻工职业技术学院 石墨烯3d打印机用快速冷冻装置
US20190009474A1 (en) * 2015-12-30 2019-01-10 Revotek Co., Ltd. Bioprinter temperature control system and bioprinter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104503508A (zh) * 2014-12-18 2015-04-08 上海市计量测试技术研究院 一种太阳电池测试台温控系统及温控方法
CN205058632U (zh) * 2015-10-20 2016-03-02 梁玲兵 一种半导体制冷恒温式桌面级3d打印机
US20190009474A1 (en) * 2015-12-30 2019-01-10 Revotek Co., Ltd. Bioprinter temperature control system and bioprinter
CN105500711A (zh) * 2016-01-05 2016-04-20 杭州捷诺飞生物科技有限公司 低温打印平台及应用其的3d打印设备
CN106827497A (zh) * 2017-01-12 2017-06-13 四川阿泰因机器人智能装备有限公司 一种3d打印机热床
CN207403179U (zh) * 2017-11-08 2018-05-25 常州轻工职业技术学院 石墨烯3d打印机用快速冷冻装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110147129A (zh) * 2019-05-16 2019-08-20 湖北问天软件系统有限公司 烤盘的自适应温度控制器及控制方法
CN110509554A (zh) * 2019-09-04 2019-11-29 衢州学院 基于信息技术的3d打印机冷却机构
CN110509554B (zh) * 2019-09-04 2021-05-11 衢州学院 基于信息技术的3d打印机冷却机构

Similar Documents

Publication Publication Date Title
CN206440031U (zh) 一种以半导体为致冷核心的冷暖循环机
CN107756788A (zh) 石墨烯3d打印机用快速冷冻装置及其使用方法
EP2331880B1 (de) Verfahren und vorrichtung zur bereitstellung nutzbarer wärmeenergie
DE112017004552T5 (de) Vorrichtungstemperaturregler
CN105004204B (zh) 平板式环路热管蒸发器实验系统
CN105611790B (zh) 封闭式喷雾冷却装置
CN105258423B (zh) 制冰装置
CN207403179U (zh) 石墨烯3d打印机用快速冷冻装置
Peppin et al. Steady-state mushy layers: experiments and theory
DE102009024713B4 (de) Klimaanlage für Fahrzeug
DE102011115004B4 (de) Portionskühler mit thermoelektrischem Element
CN203826758U (zh) 大功率激光器双温双控冷水机
CN200950769Y (zh) 液体冷热宠物垫
CN203875303U (zh) 一种连铸机结晶器水温恒定控制装置
CN215117292U (zh) 一种高通量晶体筛选仪温度控制装置
CN207546393U (zh) 加热制冷混匀一体机
CN110076341A (zh) 一种温度场均匀的增材制造铺粉装置
US20100006255A1 (en) Energy recuperation system
CN205561386U (zh) 一种低温冰箱
CN206369396U (zh) 一种双系统循环水冷却装置
CN104129015A (zh) 一种自循环风冷模温机
CN209326154U (zh) 宽温型高精度控温液冷源
CN114413459A (zh) 空调系统冷水机组群控方法、装置、电子设备及存储介质
CN201160359Y (zh) 直肋热扩展强化结构微细尺度复合相变取热装置
CN205784826U (zh) 双循环两段式高精度冰水控温系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination