CN107755926A - One kind automates the machine that is welded - Google Patents
One kind automates the machine that is welded Download PDFInfo
- Publication number
- CN107755926A CN107755926A CN201710967459.2A CN201710967459A CN107755926A CN 107755926 A CN107755926 A CN 107755926A CN 201710967459 A CN201710967459 A CN 201710967459A CN 107755926 A CN107755926 A CN 107755926A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- mfrac
- msup
- tau
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 claims abstract description 56
- 238000004891 communication Methods 0.000 claims abstract description 20
- 230000000391 smoking effect Effects 0.000 claims abstract description 14
- 238000004140 cleaning Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 21
- 230000005540 biological transmission Effects 0.000 claims description 13
- 102100026758 Serine/threonine-protein kinase 16 Human genes 0.000 claims description 12
- 101710184778 Serine/threonine-protein kinase 16 Proteins 0.000 claims description 12
- 230000003287 optical effect Effects 0.000 claims description 9
- 239000000779 smoke Substances 0.000 claims description 9
- 230000007547 defect Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 239000000969 carrier Substances 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 238000013468 resource allocation Methods 0.000 claims description 3
- 238000012163 sequencing technique Methods 0.000 claims description 3
- 238000003306 harvesting Methods 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 abstract description 4
- 230000000007 visual effect Effects 0.000 abstract description 4
- 230000002045 lasting effect Effects 0.000 abstract description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract 1
- 239000003546 flue gas Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Secondary Cells (AREA)
Abstract
The invention belongs to industrial machinery technical field, discloses one kind and automates the machine that is welded, the automation machine of being welded includes:Automation mechanized operation input module, direction controlling module, self-clamping module, control module, wireless communication module, welding module, smoking module, solar powered module;Control module connects automation mechanized operation input module, direction controlling module, self-clamping module, wireless communication module, welding module, smoking module, solar powered module by circuit line respectively.The present invention can enter cleaning by smoking module to caused flue gas during being welded, and ensure the clear environment of monitoring visual field;Endlessly solar energy can be obtained by solar powered module simultaneously, ensure the lasting work for the machine that is welded, save the energy, it is economic and environment-friendly.
Description
Technical Field
The invention belongs to the technical field of industrial machinery, and particularly relates to an automatic welding and assembling machine.
Background
Welding, known as mechanical sewing, is widely used in manufacturing to weld stamped workpieces together. Four steps in the automobile manufacturing process: stamping, welding, coating and final assembly, wherein the automation and flexibility of welding determine the development prospect and future of welding. The welding workshop in automobile manufacturing comprises a welding tongs-a welder-a conveying line and the like. However, the existing welding machine is easy to generate smoke in the welding process, so that the visual observation is influenced, and the monitoring of the welding process is not facilitated; meanwhile, the welding machine consumes electric energy, and welding operation cannot be continued if power failure occurs.
In summary, the problems of the prior art are as follows: the existing welding machine is easy to generate smoke in the welding process, influences visual observation and is not beneficial to monitoring of the welding process; meanwhile, the welding machine consumes electric energy, and welding operation cannot be continued if power failure occurs.
Disclosure of Invention
Aiming at the problems in the prior art, the invention provides an automatic welding machine.
The invention is thus realized, an automated welding machine comprising:
the automatic operation input module is connected with the control module and is used for inputting an automatic operation program to the control module;
the direction control module is connected with the control module and used for controlling the welding direction through the direction controller;
the clamping module is connected with the control module and used for clamping the mechanical structure to be welded through the clamp;
the control module is connected with the automatic operation input module, the direction control module, the clamping module, the wireless communication module, the welding module, the smoking module and the solar power supply module and is used for controlling operation and processing of each electrical appliance element, realizing automatic welding and completing welding operation on a mechanical structure;
the method for adding the Gaussian white noise to the time domain reflection signal by the control module comprises the following steps:
firstly, generating three different frequency bands of white gaussian noise, wherein the three different frequency bands of white gaussian noise are as follows: low-frequency Gaussian white noise without dimension frequency of 0-pi, high-frequency Gaussian white noise without dimension frequency of pi-2 pi; full-band white Gaussian noise with dimensionless frequency of 0-2 pi;
then adding different noises into the original time domain signal to obtain a signal containing noisesWith the fourier transform equation:
ω is the circular frequency, t is the time,
converting three noise-containing signals, namely low-frequency-band white Gaussian noise, high-frequency-band white Gaussian noise and full-frequency-band white Gaussian noise, into frequency-domain noise-containing signals; wherein,is a frequency domain noisy signal;
passing 0 order modal wavenumber ξ0And frequency ω relationship:
wherein c isT=1;
Directly obtaining noise-containing signals in wavenumber domainThe subsequent generations are represented by a reconstruction integral equation:
b is half plate thickness, n is 0, and three reconstructed defect images under noise are respectively drawn according to the solved reconstructed defect shape d (x);
the wireless communication module is connected with the control module and is used for being connected with the control module in a wireless signal mode to realize remote operation control;
the expression of the MPSK signals with overlapping time and frequency of the wireless communication module is as follows:
where y (t) is a noise-containing hybrid MPSK signal,is the amplitude of the ith MPSK signal, cikIs the k symbol of the i component signal, TsiIs the symbol period of the ith signal, h (t) is a raised cosine filter function,is white gaussian noise with variance N;
the time-varying moment of the time-frequency overlapped MPSK signals at the time delay of tau is represented as:
m2y(t;τ)=E{y(t)y*(t+τ)};
when τ is 0, the power of the time-frequency overlapping signal is:
where α is the roll-off coefficient of the signal:
when τ ≠ 0:
wherein wi=2πfciCarrier frequency information representing an ith component signal, and:
g (tau) to α only and delay to symbol rate ratio(ii) related;
the second-order time-varying moment equation set is constructed as follows:
if p component signals exist, p equations are constructed and connected to obtain Sii is 1,2, … P, and the power P of the component signal can be determinedi=Si(1- α/4) and total noise power
A node h of the wireless communication module sends a data packet to a destination node, h + i is a neighbor node of the node h, and if the node h is close to the farthest neighbor node and has more residual energy, the neighbor node h + i can be used as a candidate forwarding node; and sequencing the candidate nodes according to the distance from the energy equivalent nodes and the residual energy of each node:
dh+i-dhthe distance between the node h and the neighbor node h + i is defined; eh+iRepresenting the remaining energy of the node h + i; n (h) is a candidate forwarding node of the selected node h; the larger the value of P (h + i), the higher the node priority; the candidate forwarding node with the highest priority is used as the next forwarding node;
the welding module is connected with the control module and used for welding the mechanical structure through the welder;
the smoking module is connected with the control module and used for cleaning and purifying smoke generated in the welding process through smoking equipment;
and the solar power supply module is connected with the control module and used for converting solar energy into electric energy through the solar cell panel to supply power to the control module for a long time.
Further, the solar power module includes:
the solar cell panel is used for converting solar energy into input electric energy;
the optical sensor is used for detecting the light intensity of the solar energy;
a pulse width modulation unit coupled to the optical sensor, the pulse width modulation unit outputting a pulse width modulation signal according to a detection result of the optical sensor; and a DC-DC converter coupled to the PWM unit and receiving the input power, the DC-DC converter generating an output power according to the PWM signal.
Further, the method for obtaining electric energy by the solar panel comprises the following steps:
firstly, directly detecting the light intensity of the solar energy;
then, outputting a pulse width modulation signal according to the light intensity of the solar energy;
finally, output electric energy is generated according to the input electric energy and the pulse width modulation signal.
Further, the resource optimization allocation method of the wireless communication module comprises the following steps: based on the goal of maximizing throughput, a carrier resource allocation model of the multicast system is provided; the method specifically comprises the following steps:
taking the total throughput in the cell as the benefit U of the system:
where D and F denote the multicast group and the carrier set respectively,represents the total data transmission rate obtained by users in user group k on carrier n, and is represented by:
calculation of where B0Is the bandwidth of the carrier, pkFor the transmission power of the beam assigned to the user group k, σ2Power of Gaussian white noise, αn,kUsing an indicator for the carrier, the condition being satisfied:
αn,k={0,1},Dk∈D,n∈F (1)
if condition (1) indicates that the carrier n is allocated to the user group k, αn,k1, otherwise αn,kCondition (2) indicates that all carriers are used and one carrier is multiplexed by a plurality of user groups;
the carrier allocation algorithm based on the maximized throughput specifically comprises the following steps:
step one, according to a formula:
calculating the total transmission rate of the users in each cluster on the carrier n;
step two, in order to maximize the throughput of the system, find out the carrier and user cluster which obtain the maximum rate, distribute the carrier to the user cluster at first, according to the formula:
allocating carrier n to user cluster ΦhThe maximum transmission rate is obtained, and carrier n is allocated to cluster phihSo that carrier n is allocated to user cluster phih;
Step three, removing the carrier n from the carrier set F, and at the same time,cluster users ΦhRemoving from the set Φ;
and step four, repeatedly executing the step two and the step three until the carrier set or the user cluster set is an empty set.
According to the invention, smoke generated in the welding process can be cleaned through the smoke suction module, so that a clear environment of a monitoring visual field is ensured; meanwhile, continuous solar energy can be obtained through the solar power supply module, the lasting work of the welding machine is guaranteed, energy is saved, and the solar welding machine is economical and environment-friendly. By using the novel interference processing technology SIC, the transmission capacity of the wireless network is greatly improved along with the number of network nodes, so that the wireless network has the extensible capability, and a foundation is laid for large-scale and intensive application and deployment of the wireless network.
Drawings
FIG. 1 is a schematic structural diagram of an automated welding machine according to an embodiment of the present invention;
in the figure: 1. an automated operation input module; 2. a direction control module; 3. a clamping module; 4. a control module; 5. a wireless communication module; 6. welding the module; 7. a smoking module; 8. and a solar power supply module.
Detailed Description
In order to further understand the contents, features and effects of the present invention, the following embodiments are illustrated and described in detail with reference to the accompanying drawings.
The structure of the present invention will be described in detail below with reference to the accompanying drawings.
As shown in fig. 1, an automated welding machine according to an embodiment of the present invention includes: the device comprises an automatic operation input module 1, a direction control module 2, a clamping module 3, a control module 4, a wireless communication module 5, a welding module 6, a smoking module 7 and a solar power supply module 8.
And the automatic operation input module 1 is connected with the control module 4 and is used for inputting an automatic operation program into the control module 4.
And the direction control module 2 is connected with the control module 4 and used for controlling the welding direction through a direction controller.
And the clamping module 3 is connected with the control module 4 and is used for clamping the mechanical structure to be welded through a clamp.
And the control module 4 is connected with the automatic operation input module 1, the direction control module 2, the clamping module 3, the wireless communication module 5, the welding module 6, the smoking module 7 and the solar power supply module 8 and is used for controlling operation and processing of each electrical element, realizing automatic welding and completing welding operation on a mechanical structure.
And the wireless communication module 5 is connected with the control module 4 and is used for being connected with the control module 4 in a wireless signal mode to realize remote operation control.
And the welding module 6 is connected with the control module 4 and is used for welding the mechanical structure through a welder.
And the smoking module 7 is connected with the control module 4 and is used for cleaning and purifying smoke generated in the welding process through smoking equipment.
And the solar power supply module 8 is connected with the control module 4 and used for converting solar energy into electric energy through the solar cell panel to supply power to the control module 4 for a long time.
Further, the solar power supply module 8 includes: the solar cell panel, the optical sensor, the pulse width modulation unit.
The solar cell panel is used for converting solar energy into input electric energy.
The light sensor is used for detecting the light intensity of the solar energy.
A pulse width modulation unit coupled to the optical sensor, the pulse width modulation unit outputting a pulse width modulation signal according to a detection result of the optical sensor; and a DC-DC converter coupled to the PWM unit and receiving the input power, the DC-DC converter generating an output power according to the PWM signal.
The method for obtaining electric energy by the solar panel comprises the following steps:
first, the intensity of the solar light is directly detected.
Then, a pulse width modulation signal is output according to the light intensity of the solar energy.
Finally, output electric energy is generated according to the input electric energy and the pulse width modulation signal.
The method for adding the Gaussian white noise to the time domain reflection signal by the control module comprises the following steps:
firstly, generating three different frequency bands of white gaussian noise, wherein the three different frequency bands of white gaussian noise are as follows: low-frequency Gaussian white noise without dimension frequency of 0-pi, high-frequency Gaussian white noise without dimension frequency of pi-2 pi; full-band white Gaussian noise with dimensionless frequency of 0-2 pi;
then adding different noises into the original time domain signal to obtain a signal containing noisesWith the fourier transform equation:
ω is the circular frequency, t is the time,
converting three noise-containing signals, namely low-frequency-band white Gaussian noise, high-frequency-band white Gaussian noise and full-frequency-band white Gaussian noise, into frequency-domain noise-containing signals; wherein,is a frequency domain noisy signal;
passing 0 order modal wavenumber ξ0And frequency ω relationship:
wherein c isT=1;
Directly obtaining noise-containing signals in wavenumber domainThe subsequent generations are represented by a reconstruction integral equation:
and b is the half plate thickness, n is 0, and three reconstructed defect images under noise are drawn according to the solved reconstructed defect shape d (x).
The expression of the MPSK signals with overlapping time and frequency of the wireless communication module is as follows:
where y (t) is a noise-containing hybrid MPSK signal,is the amplitude of the ith MPSK signal, cikIs the k symbol of the i component signal, TsiIs the symbol period of the ith signal, h (t) is a raised cosine filter function,is white gaussian noise with variance N;
the time-varying moment of the time-frequency overlapped MPSK signals at the time delay of tau is represented as:
m2y(t;τ)=E{y(t)y*(t+τ)};
when τ is 0, the power of the time-frequency overlapping signal is:
where α is the roll-off coefficient of the signal:
when τ ≠ 0:
wherein wi=2πfciCarrier frequency information representing an ith component signal, and:
g (tau) to α only and delay to symbol rate ratio(ii) related;
the second-order time-varying moment equation set is constructed as follows:
if p component signals exist, p equations are constructed and connected to obtain Sii is 1,2, … P, and the power P of the component signal can be determinedi=Si(1- α/4) and total noise power
A node h of the wireless communication module sends a data packet to a destination node, h + i is a neighbor node of the node h, and if the node h is close to the farthest neighbor node and has more residual energy, the neighbor node h + i can be used as a candidate forwarding node; and sequencing the candidate nodes according to the distance from the energy equivalent nodes and the residual energy of each node:
dh+i-dhthe distance between the node h and the neighbor node h + i is defined; eh+iRepresenting the remaining energy of the node h + i; n (h) is a candidate forwarding node of the selected node h; the larger the value of P (h + i), the higher the node priority; the candidate forwarding node with the highest priority is used as the next forwarding node.
The resource optimization allocation method of the wireless communication module comprises the following steps: based on the goal of maximizing throughput, a carrier resource allocation model of the multicast system is provided; the method specifically comprises the following steps:
taking the total throughput in the cell as the benefit U of the system:
where D and F denote the multicast group and the carrier set respectively,represents the total data transmission rate obtained by users in user group k on carrier n, and is represented by:
calculation of where B0Is the bandwidth of the carrier, pkFor the transmission power of the beam assigned to the user group k, σ2Power of Gaussian white noise, αn,kUsing an indicator for the carrier, the condition being satisfied:
αn,k={0,1},Dk∈D,n∈F (1)
if condition (1) indicates that the carrier n is allocated to the user group k, αn,k1, otherwise αn,kCondition (2) indicates that all carriers are used and one carrier is multiplexed by a plurality of user groups;
the carrier allocation algorithm based on the maximized throughput specifically comprises the following steps:
step one, according to a formula:
calculating the total transmission rate of the users in each cluster on the carrier n;
step two, in order to maximize the throughput of the system, find out the carrier and user cluster which obtain the maximum rate, distribute the carrier to the user cluster at first, according to the formula:
allocating carrier n to user cluster ΦhThe maximum transmission rate is obtained, and carrier n is allocated to cluster phihSo that carrier n is allocated to user cluster phih;
Step three, removing the carrier n from the carrier set F, and simultaneously, clustering the users to form a cluster phihRemoving from the set Φ;
and step four, repeatedly executing the step two and the step three until the carrier set or the user cluster set is an empty set.
According to the invention, a solar power supply module 8 converts acquired solar energy into electric energy to supply power to a control module 4, an automatic operation input module 1 inputs an automatic program into the control module 4 to realize automatic operation, the control module 4 calls a direction control module 2 to determine the welding direction of a welding module 6, a clamping module 3 is called to clamp and fix a mechanical structure, and if smoke is generated in the welding process, the control module 4 starts an attraction module 7 to clean and purify the smoke; meanwhile, the control module 4 wirelessly transmits the operation control information through the wireless communication module 5.
The above description is only for the preferred embodiment of the present invention, and is not intended to limit the present invention in any way, and all simple modifications, equivalent variations and modifications made to the above embodiment according to the technical spirit of the present invention are within the scope of the technical solution of the present invention.
Claims (4)
1. The automatic welding machine is characterized by comprising:
the automatic operation input module is connected with the control module and is used for inputting an automatic operation program to the control module;
the direction control module is connected with the control module and used for controlling the welding direction through the direction controller;
the clamping module is connected with the control module and used for clamping the mechanical structure to be welded through the clamp;
the control module is connected with the automatic operation input module, the direction control module, the clamping module, the wireless communication module, the welding module, the smoking module and the solar power supply module and is used for controlling operation and processing of each electrical appliance element, realizing automatic welding and completing welding operation on a mechanical structure;
the method for adding the Gaussian white noise to the time domain reflection signal by the control module comprises the following steps:
firstly, generating three different frequency bands of white gaussian noise, wherein the three different frequency bands of white gaussian noise are as follows: low-frequency Gaussian white noise without dimension frequency of 0-pi, high-frequency Gaussian white noise without dimension frequency of pi-2 pi; full-band white Gaussian noise with dimensionless frequency of 0-2 pi;
then adding different noises into the original time domain signal to obtain a signal containing noisesWith the fourier transform equation:
ω is the circular frequency, t is the time,
converting three noise-containing signals, namely low-frequency-band white Gaussian noise, high-frequency-band white Gaussian noise and full-frequency-band white Gaussian noise, into frequency-domain noise-containing signals; wherein,is a frequency domain noisy signal;
passing 0 order modal wavenumber ξ0And frequency ω relationship:
wherein c isT=1;
Directly obtaining noise-containing signals in wavenumber domainThe subsequent generations are represented by a reconstruction integral equation:
<mrow> <mi>d</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <msubsup> <mo>&Integral;</mo> <mrow> <mo>-</mo> <mi>&infin;</mi> </mrow> <mrow> <mo>+</mo> <mi>&infin;</mi> </mrow> </msubsup> <mfrac> <mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>ib&zeta;</mi> <mi>n</mi> </msub> </mrow> <mrow> <msubsup> <mi>&zeta;</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>k</mi> <mi>T</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> <msub> <mover> <mi>C</mi> <mo>^</mo> </mover> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&zeta;</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>i&zeta;</mi> <mi>n</mi> </msub> <mi>x</mi> </mrow> </msup> <mi>d</mi> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&zeta;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
b is half plate thickness, n is 0, and three reconstructed defect images under noise are respectively drawn according to the solved reconstructed defect shape d (x);
the wireless communication module is connected with the control module and is used for being connected with the control module in a wireless signal mode to realize remote operation control;
the expression of the MPSK signals with overlapping time and frequency of the wireless communication module is as follows:
<mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mi>i</mi> <mi>p</mi> </munderover> <msqrt> <msub> <mi>S</mi> <mi>i</mi> </msub> </msqrt> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>i</mi> </msub> <mi>t</mi> </mrow> </msup> <munder> <mo>&Sigma;</mo> <mi>k</mi> </munder> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>kT</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msqrt> <mi>N</mi> </msqrt> <mi>w</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
where y (t) is a noise-containing hybrid MPSK signal,is the amplitude of the ith MPSK signal, cikIs the k symbol of the i component signal, TsiIs the symbol period of the ith signal, h (t) is a raised cosine filter function,is white gaussian noise with variance N;
the time-varying moment of the time-frequency overlapped MPSK signals at the time delay of tau is represented as:
m2y(t;τ)=E{y(t)y*(t+τ)};
when τ is 0, the power of the time-frequency overlapping signal is:
<mrow> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>;</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>E</mi> <mo>&lsqb;</mo> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>y</mi> <mo>*</mo> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&rsqb;</mo> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mi>&alpha;</mi> <mn>4</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>N</mi> <mo>;</mo> </mrow>
where α is the roll-off coefficient of the signal:
when τ ≠ 0:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>;</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mi>E</mi> <mo>&lsqb;</mo> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>y</mi> <mo>*</mo> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mi>&tau;</mi> </mrow> </msup> <mi>E</mi> <mo>&lsqb;</mo> <munder> <mo>&Sigma;</mo> <mi>k</mi> </munder> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>kT</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <msup> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>*</mo> </msup> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>&tau;</mi> <mo>-</mo> <msub> <mi>kT</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>i</mi> </msub> <mi>&tau;</mi> </mrow> </msup> <mi>E</mi> <mo>&lsqb;</mo> <mrow> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <msup> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>k</mi> </mrow> </msub> <mo>*</mo> </msup> </mrow> <mo>&rsqb;</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </mfrac> <msubsup> <mo>&Integral;</mo> <mrow> <mo>-</mo> <mi>T</mi> <mi>s</mi> <mo>/</mo> <mn>2</mn> </mrow> <mrow> <mi>T</mi> <mi>s</mi> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>kT</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>&tau;</mi> <mo>-</mo> <msub> <mi>kT</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>i</mi> </msub> <mi>&tau;</mi> </mrow> </msup> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> </mfrac> <msubsup> <mo>&Integral;</mo> <mrow> <mo>-</mo> <mi>&infin;</mi> </mrow> <mi>&infin;</mi> </msubsup> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>i</mi> </msub> <mi>&tau;</mi> </mrow> </msup> <mi>G</mi> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
wherein wi=2πfciCarrier frequency information representing an ith component signal, and:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <munderover> <mo>&Integral;</mo> <mrow> <mo>-</mo> <mi>&infin;</mi> </mrow> <mi>&infin;</mi> </munderover> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> </mfrac> <mfrac> <mn>1</mn> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <munderover> <mo>&Integral;</mo> <mrow> <mo>-</mo> <mi>&pi;</mi> </mrow> <mi>&pi;</mi> </munderover> <msup> <mi>H</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>w</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>w</mi> <mi>&tau;</mi> </mrow> </msup> <mi>d</mi> <mi>w</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> <mi>j</mi> <mi>&tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mfrac> <mrow> <mi>&pi;</mi> <mi>j</mi> <mi>&tau;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&alpha;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msup> <mo>-</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>2</mn> <mi>&pi;</mi> <mi>j</mi> <mi>k</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mfrac> <mrow> <mo>-</mo> <mi>&pi;</mi> <mi>j</mi> <mi>&tau;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&alpha;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msup> <mo>+</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>4</mn> <mi>&pi;</mi> <mi>j</mi> <mi>&tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mfrac> <mrow> <mi>&pi;</mi> <mi>j</mi> <mi>&tau;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&alpha;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msup> <mo>-</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>4</mn> <mi>&pi;</mi> <mi>j</mi> <mi>&tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mfrac> <mrow> <mi>&pi;</mi> <mi>j</mi> <mi>&tau;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&alpha;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mo>{</mo> <mrow> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mi>j</mi> <mn>2</mn> <mi>&pi;</mi> <mi>&tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>w</mi> <mi>&tau;</mi> </mrow> </msup> <mi>sin</mi> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>2</mn> <mi>&alpha;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>&pi;</mi> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mo>-</mo> <mi>w</mi> </mrow> <mo>)</mo> </mrow> <msubsup> <mo>|</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&alpha;</mi> <mo>)</mo> <mi>&pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&alpha;</mi> <mo>)</mo> <mi>&pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msubsup> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mi>j</mi> <mi>&tau;</mi> </mrow> </mfrac> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mi>j</mi> <mn>2</mn> <mi>&pi;</mi> <mi>&tau;</mi> </mrow> </mfrac> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>2</mn> <mi>&alpha;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>w</mi> <mi>&tau;</mi> </mrow> </msup> <mi>cos</mi> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>2</mn> <mi>&alpha;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>&pi;</mi> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mo>-</mo> <mi>w</mi> </mrow> <mo>)</mo> </mrow> <msubsup> <mo>|</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&alpha;</mi> <mo>)</mo> <mi>&pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&alpha;</mi> <mo>)</mo> <mi>&pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msubsup> </mrow> <mo>}</mo> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <msup> <mi>Ts</mi> <mn>2</mn> </msup> </mrow> <mrow> <mn>4</mn> <msup> <mi>&alpha;</mi> <mn>2</mn> </msup> <msup> <mi>&tau;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>8</mn> <mi>&pi;</mi> <mi>j</mi> <mi>&tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>&tau;</mi> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&alpha;</mi> <mo>)</mo> <mi>&pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </mrow> </msup> <mo>-</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>8</mn> <mi>&pi;</mi> <mi>j</mi> <mi>&tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>&tau;</mi> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&alpha;</mi> <mo>)</mo> <mi>&pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </mrow> </msup> <mo>-</mo> <mo>{</mo> <mrow> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>8</mn> <mi>&pi;</mi> <mi>j</mi> <mi>&tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>w</mi> <mi>&tau;</mi> </mrow> </msup> <mi>cos</mi> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mi>&alpha;</mi> </mfrac> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>&pi;</mi> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mo>-</mo> <mi>w</mi> </mrow> <mo>)</mo> </mrow> <msubsup> <mo>|</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&alpha;</mi> <mo>)</mo> <mi>&pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&alpha;</mi> <mo>)</mo> <mi>&pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msubsup> <mo>+</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <mn>8</mn> <mi>&pi;</mi> <mi>j</mi> <mi>&tau;</mi> </mrow> </mfrac> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mi>&alpha;</mi> </mfrac> <mfrac> <mn>1</mn> <mrow> <mi>j</mi> <mi>&tau;</mi> </mrow> </mfrac> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mi>w</mi> <mi>&tau;</mi> </mrow> </msup> <mi>sin</mi> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mi>&alpha;</mi> </mfrac> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>&pi;</mi> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mo>-</mo> <mi>w</mi> </mrow> <mo>)</mo> </mrow> <msubsup> <mo>|</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&alpha;</mi> <mo>)</mo> <mi>&pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&alpha;</mi> <mo>)</mo> <mi>&pi;</mi> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </msubsup> </mrow> <mo>}</mo> <mo>/</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <msup> <mi>Ts</mi> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mi>&alpha;</mi> <mn>2</mn> </msup> <msup> <mi>&tau;</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
g (tau) to α only and delay to symbol rate ratio(ii) related;
the second-order time-varying moment equation set is constructed as follows:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>;</mo> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>i</mi> </msub> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> </mrow> </msup> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>&tau;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>;</mo> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>i</mi> </msub> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> </mrow> </msup> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>&tau;</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>;</mo> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <msub> <mi>S</mi> <mi>i</mi> </msub> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>i</mi> </msub> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> </mrow> </msup> <mi>G</mi> <mrow> <mo>(</mo> <msub> <mi>&tau;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
if p component signals exist, p equations are constructed and connected to obtain Sii is 1,2, … P, and the power P of the component signal can be determinedi=Si(1- α/4) and total noise power
A node h of the wireless communication module sends a data packet to a destination node, h + i is a neighbor node of the node h, and if the node h is close to the farthest neighbor node and has more residual energy, the neighbor node h + i can be used as a candidate forwarding node; and sequencing the candidate nodes according to the distance from the energy equivalent nodes and the residual energy of each node:
<mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>h</mi> <mo>+</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mfrac> <msub> <mi>E</mi> <mrow> <mi>h</mi> <mo>+</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>|</mo> <msub> <mi>d</mi> <mrow> <mi>h</mi> <mo>+</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mi>R</mi> <mo>+</mo> <mn>1</mn> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>d</mi> <mrow> <mi>h</mi> <mo>+</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>d</mi> <mi>h</mi> </msub> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mtd> </mtr> <mtr> <mtd> <mo>(</mo> <mi>h</mi> <mo>+</mo> <mi>i</mi> <mo>)</mo> <mo>&Element;</mo> <mi>N</mi> <mo>(</mo> <mi>h</mi> <mo>)</mo> <mo>,</mo> <mo>-</mo> <mi>R</mi> <mo>&le;</mo> <mi>i</mi> <mo>&le;</mo> <mi>R</mi> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
dh+i-dhthe distance between the node h and the neighbor node h + i is defined; eh+iRepresenting the remaining energy of the node h + i; n (h) is a candidate forwarding node of the selected node h; the larger the value of P (h + i), the higher the node priority; the candidate forwarding node with the highest priority is used as the next forwarding node;
the welding module is connected with the control module and used for welding the mechanical structure through the welder;
the smoking module is connected with the control module and used for cleaning and purifying smoke generated in the welding process through smoking equipment;
and the solar power supply module is connected with the control module and used for converting solar energy into electric energy through the solar cell panel to supply power to the control module for a long time.
2. The automated welding machine of claim 1, wherein the solar power module comprises:
the solar cell panel is used for converting solar energy into input electric energy;
the optical sensor is used for detecting the light intensity of the solar energy;
a pulse width modulation unit coupled to the optical sensor, the pulse width modulation unit outputting a pulse width modulation signal according to a detection result of the optical sensor; and a DC-DC converter coupled to the PWM unit and receiving the input power, the DC-DC converter generating an output power according to the PWM signal.
3. The automated welding machine of claim 2, wherein the method of solar panel harvesting power comprises:
firstly, directly detecting the light intensity of the solar energy;
then, outputting a pulse width modulation signal according to the light intensity of the solar energy;
finally, output electric energy is generated according to the input electric energy and the pulse width modulation signal.
4. The automated welding machine of claim 1, wherein the method for resource-optimized allocation of the wireless communication modules comprises: based on the goal of maximizing throughput, a carrier resource allocation model of the multicast system is provided; the method specifically comprises the following steps:
taking the total throughput in the cell as the benefit U of the system:
<mrow> <mi>U</mi> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <msub> <mi>D</mi> <mi>k</mi> </msub> <mo>&Element;</mo> <mi>D</mi> </mrow> </munder> <munder> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>&Element;</mo> <mi>F</mi> </mrow> </munder> <msub> <mi>&alpha;</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msubsup> <mi>R</mi> <mi>n</mi> <mi>k</mi> </msubsup> <mo>;</mo> </mrow>
where D and F denote the multicast group and the carrier set respectively,represents the total data transmission rate obtained by users in user group k on carrier n, and is represented by:
<mrow> <msubsup> <mi>R</mi> <mi>n</mi> <mi>k</mi> </msubsup> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>&Element;</mo> <msub> <mi>D</mi> <mi>k</mi> </msub> </mrow> </munder> <msub> <mi>B</mi> <mn>0</mn> </msub> <mi>l</mi> <mi>o</mi> <mi>g</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>G</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>n</mi> </mrow> <mi>k</mi> </msubsup> <msup> <mi>p</mi> <mi>k</mi> </msup> </mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
calculation of where B0Is the bandwidth of the carrier, pkFor the transmission power of the beam assigned to the user group k, σ2Power of Gaussian white noise, αn,kUsing an indicator for the carrier, the condition being satisfied:
αn,k={0,1},Dk∈D,n∈F (1)
<mrow> <munder> <mo>&Sigma;</mo> <mrow> <msub> <mi>D</mi> <mi>k</mi> </msub> <mo>&Element;</mo> <mi>D</mi> </mrow> </munder> <msub> <mi>&alpha;</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <mn>1</mn> <mo>,</mo> <mi>n</mi> <mo>&Element;</mo> <mi>F</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
if condition (1) indicates that the carrier n is allocated to the user group k, αn,k1, otherwise αn,kCondition (2) indicates that all carriers are used and one carrier is multiplexed by a plurality of user groups;
the carrier allocation algorithm based on the maximized throughput specifically comprises the following steps:
step one, according to a formula:
<mrow> <msubsup> <mi>R</mi> <mi>n</mi> <msub> <mi>&Phi;</mi> <mi>h</mi> </msub> </msubsup> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <msub> <mi>D</mi> <mi>k</mi> </msub> <mo>&Element;</mo> <msub> <mi>&Phi;</mi> <mi>h</mi> </msub> </mrow> </munder> <msubsup> <mi>R</mi> <mi>n</mi> <mi>k</mi> </msubsup> <mo>,</mo> <mi>n</mi> <mo>&Element;</mo> <mi>F</mi> <mo>,</mo> <msub> <mi>&Phi;</mi> <mi>h</mi> </msub> <mo>&Element;</mo> <mi>&Phi;</mi> <mo>;</mo> </mrow>
calculating the total transmission rate of the users in each cluster on the carrier n;
step two, in order to maximize the throughput of the system, find out the carrier and user cluster which obtain the maximum rate, distribute the carrier to the user cluster at first, according to the formula:
<mrow> <mo>(</mo> <mi>n</mi> <mo>,</mo> <msub> <mi>&Phi;</mi> <mi>h</mi> </msub> <mo>)</mo> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mrow> <mi>n</mi> <mo>&Element;</mo> <mi>F</mi> <mo>,</mo> <msub> <mi>&Phi;</mi> <mi>h</mi> </msub> <mo>&Element;</mo> <mi>&Phi;</mi> </mrow> </munder> <msubsup> <mi>R</mi> <mi>n</mi> <msub> <mi>&Phi;</mi> <mi>h</mi> </msub> </msubsup> <mo>;</mo> </mrow>
allocating carrier n to user cluster ΦhThe maximum transmission rate is obtained, and carrier n is allocated to cluster phihSo that carrier n is allocated to user cluster phih;
Step three, removing the carrier n from the carrier set F, and simultaneously, clustering the users to form a cluster phihRemoving from the set Φ;
and step four, repeatedly executing the step two and the step three until the carrier set or the user cluster set is an empty set.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710967459.2A CN107755926A (en) | 2017-10-17 | 2017-10-17 | One kind automates the machine that is welded |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710967459.2A CN107755926A (en) | 2017-10-17 | 2017-10-17 | One kind automates the machine that is welded |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107755926A true CN107755926A (en) | 2018-03-06 |
Family
ID=61269691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710967459.2A Pending CN107755926A (en) | 2017-10-17 | 2017-10-17 | One kind automates the machine that is welded |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107755926A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108549427A (en) * | 2018-04-16 | 2018-09-18 | 北京京大律业知识产权代理有限公司 | A kind of blast furnace top gearbox temperature scaling factor method based on Internet of Things |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102463426A (en) * | 2010-11-09 | 2012-05-23 | 西安众智惠泽光电科技有限公司 | Electric welding machine with automatic tracking function |
CN102938623A (en) * | 2012-10-15 | 2013-02-20 | 苏州佳世达电通有限公司 | Solar power supply unit |
CN103220015A (en) * | 2013-04-18 | 2013-07-24 | 电子科技大学 | Fast frequency hopping transmitter, fast frequency hopping receiver, fast frequency hopping system and fast frequency hopping method based on pilot frequency superposition |
CN105929029A (en) * | 2016-04-18 | 2016-09-07 | 南京航空航天大学 | Noise processing method for SH guided wave nondestructive test technology |
CN106034306A (en) * | 2016-01-18 | 2016-10-19 | 张天宇 | Mobile communication network wireless network voice optimizing method |
CN205834581U (en) * | 2016-07-13 | 2016-12-28 | 中山鑫辉精密技术股份有限公司 | Welding robot workstation based on controlled in wireless |
CN106385291A (en) * | 2016-12-06 | 2017-02-08 | 西安电子科技大学 | Method for estimating signal-to-noise ratios of component signals of time-frequency overlap signal in cognitive radio |
CN107049452A (en) * | 2017-06-07 | 2017-08-18 | 任小宝 | A kind of screw fixator of hipbone front pillar |
CN206445395U (en) * | 2017-02-17 | 2017-08-29 | 宿迁市宿城区翔威焊割设备有限公司 | Improved automatic welding-cutting machine body |
-
2017
- 2017-10-17 CN CN201710967459.2A patent/CN107755926A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102463426A (en) * | 2010-11-09 | 2012-05-23 | 西安众智惠泽光电科技有限公司 | Electric welding machine with automatic tracking function |
CN102938623A (en) * | 2012-10-15 | 2013-02-20 | 苏州佳世达电通有限公司 | Solar power supply unit |
CN103220015A (en) * | 2013-04-18 | 2013-07-24 | 电子科技大学 | Fast frequency hopping transmitter, fast frequency hopping receiver, fast frequency hopping system and fast frequency hopping method based on pilot frequency superposition |
CN106034306A (en) * | 2016-01-18 | 2016-10-19 | 张天宇 | Mobile communication network wireless network voice optimizing method |
CN105929029A (en) * | 2016-04-18 | 2016-09-07 | 南京航空航天大学 | Noise processing method for SH guided wave nondestructive test technology |
CN205834581U (en) * | 2016-07-13 | 2016-12-28 | 中山鑫辉精密技术股份有限公司 | Welding robot workstation based on controlled in wireless |
CN106385291A (en) * | 2016-12-06 | 2017-02-08 | 西安电子科技大学 | Method for estimating signal-to-noise ratios of component signals of time-frequency overlap signal in cognitive radio |
CN206445395U (en) * | 2017-02-17 | 2017-08-29 | 宿迁市宿城区翔威焊割设备有限公司 | Improved automatic welding-cutting machine body |
CN107049452A (en) * | 2017-06-07 | 2017-08-18 | 任小宝 | A kind of screw fixator of hipbone front pillar |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108549427A (en) * | 2018-04-16 | 2018-09-18 | 北京京大律业知识产权代理有限公司 | A kind of blast furnace top gearbox temperature scaling factor method based on Internet of Things |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112019241B (en) | Method and system for identifying equipment association relation in power system | |
CN106357305A (en) | Self-networking method, device and system of tree structure network | |
WO2014079363A1 (en) | Automatic work system | |
KR20170081881A (en) | Energy management system for micro-grid | |
CN105067958B (en) | A kind of low current grounding localization method based on line feed terminals information exchange | |
CN109506331A (en) | A kind of method and air purifier of air cleaning | |
CN107755926A (en) | One kind automates the machine that is welded | |
CN109346066B (en) | Voice noise reduction method and device | |
JP3894487B2 (en) | Elevator car monitoring device and method, and elevator car monitoring device mounting method | |
CN105627509A (en) | Control method, device and system for air purifiers | |
CN102264101B (en) | Data transmission method used for underwater acoustic sensor network system | |
CN104579424A (en) | Power carrier communication method | |
CN205191838U (en) | Zero live wire communication monitoring device and air conditioning system of inside and outside machine of inverter air conditioner | |
CN204965184U (en) | Intelligence indoor system of cleaning of house robot and device | |
US20180323745A1 (en) | Household photovoltaic system and smart micro-grid system | |
JP2007001774A (en) | Elevator car monitoring device | |
JP2018098902A (en) | Monitoring system and monitoring device | |
Wang et al. | A General Dataset Generator for Industrial Internet of Things Using Multi-sensor Information Fusion | |
CN111615203B (en) | Task-driven joint channel time slot allocation method facing data center | |
CN203599688U (en) | Underwater welding wireless monitoring system | |
CN103617493B (en) | A kind of task processing method and device | |
CN112713857A (en) | Automatic string attribution identification method for photovoltaic module array | |
US10551445B2 (en) | Pulse width modulated binary frequency shift keying | |
CN108418543B (en) | Energy optimization system and data communication method thereof | |
CN106817162B (en) | A kind of signal processing method and source equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180306 |
|
RJ01 | Rejection of invention patent application after publication |