CN107750411A - 大功率cw中红外激光器 - Google Patents

大功率cw中红外激光器 Download PDF

Info

Publication number
CN107750411A
CN107750411A CN201680017876.4A CN201680017876A CN107750411A CN 107750411 A CN107750411 A CN 107750411A CN 201680017876 A CN201680017876 A CN 201680017876A CN 107750411 A CN107750411 A CN 107750411A
Authority
CN
China
Prior art keywords
gain media
lasers according
lasers
ring
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680017876.4A
Other languages
English (en)
Other versions
CN107750411B (zh
Inventor
伊戈尔·莫斯卡廖夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IPG Photonics Corp
Original Assignee
IPG Photonics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IPG Photonics Corp filed Critical IPG Photonics Corp
Publication of CN107750411A publication Critical patent/CN107750411A/zh
Application granted granted Critical
Publication of CN107750411B publication Critical patent/CN107750411B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/347Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIBVI compounds, e.g. ZnCdSe- laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0408Radiative cooling, e.g. by anti-Stokes scattering in the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08072Thermal lensing or thermally induced birefringence; Compensation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094042Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a fibre laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1026Controlling the active medium by translation or rotation, e.g. to remove heat from that part of the active medium that is situated on the resonator axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/162Solid materials characterised by an active (lasing) ion transition metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/162Solid materials characterised by an active (lasing) ion transition metal
    • H01S3/1623Solid materials characterised by an active (lasing) ion transition metal chromium, e.g. Alexandrite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1628Solid materials characterised by a semiconducting matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0608Laser crystal with a hole, e.g. a hole or bore for housing a flashlamp or a mirror

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

本发明提供一种旋转硫化物增益介质环,以用最小的热透镜效应提供前所未有的功率生成,用于在中红外光谱内进行CW激射。

Description

大功率CW中红外激光器
技术领域
本公开涉及连续波(CW)中红外固态激光器。具体地,本公开提供了一种旋转盘,更优选地提供了一种由硫化物增益介质构成的环,以便以最小热透镜效应提供前所未有的功率产生,其中所述硫化物增益介质选自掺杂有过渡金属离子的II-VI族多晶材料。
背景技术
在2-10m光谱范围内运行的中红外(mid-IR)激光源对于各种防御相关应用而言需求极大,所述防御相关应用包括:自由空间通信、对抗措施、遥感以及工业过程控制和医疗应用。目前在基于掺杂Cr和Fe的II-VI宽带半导体的光泵浦激光器中的进展支持在1.9-5μm光谱范围内获取大输出功率。在一些综述i,ii,iii,iv,v中,报道了掺杂过渡金属(TM)的II-VI材料的光谱特性以及它们对中IR固态激光器的应用。在本专利申请中,公开了一种完全新颖的光学原理图,所述光学原理图对源自Cr:ZnSe的CW激光提供了前所未有的功率缩放。
Cr2+:ZnS/Se激光器的功率缩放对于工业、医疗、材料加工和防御应用中的各种应用而言是颇受关注的。为了成功应用这些中IR激光器,尤为重要的是在2940nm输出波长附近达到几十或几百瓦的输出功率,其中2940nm输出波长是大多数医疗应用所在的波长。在这些材料的增益最大值附近的输出波长(2.4μm)对于高产出尤其重要的材料加工应用(诸如,对聚合物的加工)也具有极大的吸引力。
我们目前已经报道了在基于传统平板几何条件的增益元件的中IR激光器系统下,在2.4μm处获得高达20W的输出功率以及在2940nm处获得高达3W的输出功率。不幸的是,由于Cr:ZnSe和Cr:ZnS增益介质的极高热光系数导致较强的热透镜效应,这些激光系统在较高的泵浦功率等级下的光束质量较差,并且在光损伤阈值附近运行,导致激光器故障的可能性较高。MOPA(主振荡器功率放大器)和多元件配置的增益介质有助于在一定程度上缓解这些问题,但是由于增加了系统的复杂性,而无法提供一个可靠且明确的解决方案。
我们对于这些激光器的经验示出:我们最新阐述的结果代表了对基于传统谐振器设置的Cr:ZnS和Cr:ZnSe激光器系统的输出功率的实际限制。
需要允许更大功率以满足医疗应用和材料加工在中IR光谱内需求的新型光学原理图。
发明内容
由于避免了热透镜效应,所公开的配置有旋转硫化物增益介质(诸如,掺杂TM的II-VI材料)的CW中IR激光器满足上述需求。我们的核心思想在于通过环状的旋转增益元件来扫描相匹配的共轴泵浦光束和激光模式。
意料之外的功率输出可以提供了具有许多用途的光学体系,其中该功率输出几乎是现有技术的2400nm中心波长的七(7)倍,是2940nm中心波长的十(10)倍。
更具体地,本发明提供了一种连续波(“CW”)中红外IR激光器,包括:谐振腔;增益介质,选自多晶的掺杂过渡金属的II-VI材料(“TM:II-VI”),所述增益介质形成为盘状,更优选地形成为由内外周缘以及上游面和下游面限定的环,其中所述上游面和所述下游面的一部分位于所述谐振腔内;泵浦源;以及电机,所述环安装在所述电机上。由此可见,所述环的位于所述谐振腔内的部分接收泵浦光,所述泵浦光足以在中IR光谱内的波长发射CW激光束。
在优选实施例中,TM:II-VI增益介质是Cr:ZnS或Cr:ZnSe。
在其他实施例中,本发明的CW激光器的增益介质的一个或多个面具有固定在所述增益介质上的反射涂层。
在其他实施例中,反射涂层不是必要的。
在其他实施例中,增益介质相对于泵浦光处于法向,而在其他实施例中,它的入射角将为布鲁斯特角。
在上述段落的优选实施例中,本发明的环还将包括位于其内周缘中的热沉或位于其外周缘上的热沉,或二者。
在上述段落的优选实施例中,具体地,第13段的优选实施例中,将箔片夹在定位于周缘上的任意热沉之间。
附图说明
根据以下附图,将更清楚本公开的上述和其他方面、特征和优点,附图中:
图1是本发明的CW型中IR激光器的一个示例光学原理图;
图2提供了由图1的激光器产生的输入-输出曲线和光束轮廓。
图3提供了本发明的硫化物增益介质的各种视图;
图3a是示出了本发明的硫化物增益介质的内径和外径之间的关系的平面图;
图3b是图3a的环的侧视图;以及
图3c是图3a的环的三维呈现。
图4是包括热沉和中间层在内的环的优选实施例的侧视图。
图5提供了包括本发明的环在内的组件的分解三维视图。
具体实施方式
现在详细参考本发明的实施例。在有可能的情况下,附图和说明书中使用相同或相似的附图标记来表示相同或相似的部件或步骤。附图为简化形式,且不是按精确比例绘制的。除非明确说明,否则对于二极管激光器和光纤激光器领域的技术人员而言,说明书和权利要求中的词语和短语具有普遍和惯用的含义。词语“耦合”和类似术语并非必须表示直接的、紧邻的连接,还可以包括经由自由空间或中间元件进行的机械和光学的连接。
在本项工作中,我们报道了在获得CW型Cr2+:ZnSe激光系统的创纪录的输出功率的首次结果,其中所述CW型Cr2+:ZnSe激光系统是基于针对增益元件配置的全新方法。这种新型方法的关键构思是基于以下事实的:由发生泵浦和激射的少量增益元件内的增益介质吸收的平均泵浦功率引起的热透镜效应。与纯CW系统相反,具有较低泵浦占空周期的Cr2+:ZnS/Se QCW激光器和增益开关激光器系统不受热透镜效应的影响,并且可以承受极大峰值功率的泵浦辐射,同时展示出非常高的激射效率并传送较好的输出光束质量。
因此,如果我们找到一种对多个大峰值功率QCW激光系统进行相干光束组合的方法,则我们可以获得较大的CW输出功率,并避免热透镜效应。实现该构思的直接方法是以足够高的速度将增益连续地移动横穿泵浦光束。在这种情况下,位于泵浦光斑的路径上的增益元件的每个区域将受到与QCW激光系统相似的泵浦条件,但是由于泵浦区域之间不存在间隙,该系统整体上将展示出纯CW输出。我们所提出的用于实现无限运动的方法是使用较大的旋转环增益元件。
与美国专利No.7,593,447的旋转盘不同,我们提出与之不同的结构,不同之处在于环的形式,所述环的不同之处在于包括TM:II-VI增益介质。此外,与美国专利No.7,593,447的旋转盘不同,基本上在整个增益元件的每个表面处散热,从而减少并最小化注入到增益介质的有源区域中的热能,同时增加所注入的光学能量。
图1示出了我们“概念验证”激光系统的通用实验设置。图1提供了大功率Cr:ZnSe可调激光器系统10的通用光学方案。泵浦源12是50W的Tm光纤激光器系统。泵浦激光器还可以是在1550-1940nm内运行的任意CW光纤激光器。根据所需规格,它们可以是用于对Cr:ZnS增益介质进行泵浦的铒光纤激光器(可由IPG Photonics公司提供的ELM/ELR系统)或针对Cr:ZnS和Cr:ZnSe介质二者的铥光纤激光器(可由IPG Photonics公司提供的TLM/TLR激光器)。我们具有TLR-100-1908-WC激光器和TLM-100-1908-WC系统。用利特罗(littrow)配置的高效衍射光栅18执行波长调谐。图1还提供了位于Cr:ZnSe旋转环增益元件10的任一侧上的透镜14与16以及输出耦合器20。图2示出了在最大泵浦功率为50W下,该激光器针对两个关键输出波长(2.45μm和2.94μm)的输入输出特性,以及在距离输出耦合器20为0.5m处测量的光束轮廓图像。
图2的插图中还示出了2940nm处的输出光谱以及13.9W的最大输出功率。输出线宽的估计上限小于0.25nm。该激光器展示出纯粹的CW输出,其在2450nm的最大输出功率为27.5W且在2940nm的最大输出功率为13.9W,平均斜率效率分别为63.7%和37.4%。
图3提供了针对本发明配置的硫化物介质的示例。
图3a提供了上游面或下游面视图。针对实验性实施例,环19分别具有20mm的内周缘30和50mm的外周缘32。优选地,外径周缘32的范围为25到50mm,或更优选地小于25mm。内周缘30将根据工程要求(诸如,电机安装需求)而改变。环19还提供接地面34。
图3b阐述了本发明的侧视图,展示出在其上设置有抗反射涂层36。对于实验性版本,宽度40为0.5mm,且考虑了0.25至1.0mm的宽度范围。所述环19还提供斜面(bevel)38。图3c提供了所述环19的等距视图。
考虑到RPM范围:总体而言,应选择尽可能小的RPM(出于机械稳定性原因),但是RPM必须足够高以避免热透镜效应。RPM范围将必定基于泵浦功率改变。目前我们在50W泵浦功率下以5000RPM旋转50-mm环。根据总的泵浦功率,针对所述环的RPM的预期范围是500-10000RPM。
实验性实施例使用其中泵浦光束法向入射的涂覆AR的Cr:ZnS/Se环和激光模式。然而,由于使用这种方法有效消除了热透镜效应,我们能够以布鲁斯特角为入射角使用未镀膜的环状增益元件。这样将有可能允许显著增加成本效率。
相对对增益介质进行泵浦,Cr:ZnSe增益介质更适合用于用1908-1940nm的Tm光纤激光器进行泵浦,并在较长的波长(例如,2.2-3.2μm)处具有较高增益,尤其对于2.94μm医疗波长的产生至关重要。Cr:ZnS材料最适于用1550-1567nm的Er光纤激光器进行泵浦,并在较短波长(例如,1.9-2.9μm)处具有较高增益,此外还更适合在2.4μm附近运行的大功率激光器。
图4提供了本发明的另一实施例。环19定位于内箔片48和外箔片49之间,在该情况下箔片为铟。优选地,铟箔片的深度为150μm。还可以通过外部热沉44和内部热沉46将上述箔片夹住。优选地,所有层具有彼此过盈配合(interference fit),使得不存在间隙。
图5提供了图4中的实施例的分解三维视图,该实施例还包括附加结构以向增益介质的所有表面提供足够的散热。从左到右,散热器50由外部热沉44包裹同时被固定到内部热沉46。外部热沉44包裹外部铟箔片49,其中所述外部铟箔片49与内部铟箔片48和内部热沉46一同将环19夹在中间。有利于散去内部热沉的热量的散热器52和用于旋转增益介质的CD/AC电机54使所述结构完整。
可以在不脱离本发明的精神和实质特征的情况下,对所公开的结构进行各种改变。因此,应将以上描述中所包括的所有事物理解为仅是示意性的,且在限制意义上,本公开的范围由所附权利要求所限定。

Claims (9)

1.一种连续波(“CW”)中红外IR激光器,包括:
谐振腔;
增益介质,选自多晶掺杂过渡金属的II-VI材料(“TM:II-VI”),所述增益介质形成为由内周缘和外周缘以及上游面和下游面限定的环,其中所述上游面和所述下游面的一部分定位于所述谐振腔内;
泵浦源;以及
电机,其中所述环安装在所述电机上;以及其中所述环的位于所述谐振腔内的部分接收泵浦光,所述泵浦光足以发射在中IR光谱内的波长上的CW激光束。
2.根据权利要求1所述的CW激光器,其中所述增益介质的面还包括固定在所述增益介质的面上的反射涂层。
3.根据权利要求1所述的CW激光器,其中所述增益介质特征化为Cr:ZnSe。
4.根据权利要求1所述的CW激光器,其中所述增益介质特征化为Cr:ZnS。
5.根据权利要求1所述的CW激光器,还包括定位在周缘上的箔片。
6.根据权利要求5所述的CW激光器,其中所述箔片包括铟。
7.根据权利要求1所述的CW激光器,还包括定位在周缘上的热沉。
8.根据权利要求1所述的CW激光器,还包括并置在所述增益介质的内周缘和外周缘上的箔片和热沉。
9.根据权利要求7所述的CW激光器,还包括相对热沉定位的散热器,以促进从热沉散热。
CN201680017876.4A 2015-03-23 2016-03-23 大功率cw中红外激光器 Active CN107750411B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562137070P 2015-03-23 2015-03-23
US62/137,070 2015-03-23
PCT/US2016/023778 WO2016154309A1 (en) 2015-03-23 2016-03-23 High power cw mid-ir laser

Publications (2)

Publication Number Publication Date
CN107750411A true CN107750411A (zh) 2018-03-02
CN107750411B CN107750411B (zh) 2020-10-16

Family

ID=56979002

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680017876.4A Active CN107750411B (zh) 2015-03-23 2016-03-23 大功率cw中红外激光器

Country Status (6)

Country Link
US (1) US10211600B2 (zh)
EP (1) EP3275058B1 (zh)
JP (1) JP6845151B2 (zh)
KR (1) KR102469618B1 (zh)
CN (1) CN107750411B (zh)
WO (1) WO2016154309A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356713A (zh) * 2016-10-20 2017-01-25 武汉市凯瑞迪激光技术有限公司 一种半导体激光器端面泵浦旋转增益介质的锁模激光器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1589513A (zh) * 2001-09-20 2005-03-02 阿拉巴玛州立大学伯明翰研究基金会 中红外微芯片激光器:带有可饱和吸收材料的ZnS:Cr2+激光器
US20080130702A1 (en) * 2005-01-12 2008-06-05 Raytheon Company High energy solid-state laser with offset pump and extraction geometry
US7593447B2 (en) * 2004-07-12 2009-09-22 Santanu Basu Rotary disk laser module
CN108780977A (zh) * 2016-02-12 2018-11-09 Ipg光子公司 大功率cw型中红外激光器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380079A (en) * 1980-09-12 1983-04-12 Northrop Corp. Gas laser preionization device
US4567597A (en) * 1982-10-15 1986-01-28 Mandella Michael J High power laser system
DE3546280A1 (de) * 1985-12-28 1987-07-30 Schott Glaswerke Festkoerperlaserstaebe fuer hohe leistungen
US5172388A (en) * 1991-07-23 1992-12-15 International Business Machines Corporation Method and apparatus for an increased pulse repetition rate for a CW pumped laser
JP3052473B2 (ja) * 1991-09-18 2000-06-12 日本電気株式会社 レーザダイオード励起固体レーザ装置
US5757839A (en) * 1996-10-08 1998-05-26 The Regents Of The University Of Michigan Optical pumping method and apparatus
US5818628A (en) * 1996-12-20 1998-10-06 Clark-Mxr, Inc. Ultrashort optical pulse amplifiers incorporating a gain medium preferentially cooled along a crystalline axis
US5867324A (en) * 1997-01-28 1999-02-02 Lightwave Electronics Corp. Side-pumped laser with shaped laser beam
JPH11261137A (ja) * 1998-03-12 1999-09-24 Seitai Hikarijoho Kenkyusho:Kk レーザ装置
JP2003078192A (ja) * 2001-09-05 2003-03-14 Toyoda Mach Works Ltd 光励起レーザ発振方法及びレーザ発振器
US20050224212A1 (en) * 2004-04-02 2005-10-13 Par Technologies, Llc Diffusion bonded wire mesh heat sink
US7535936B2 (en) * 2005-08-05 2009-05-19 Daylight Solutions, Inc. External cavity tunable compact Mid-IR laser
WO2009018491A1 (en) * 2007-08-01 2009-02-05 Deep Photonics Corporation Method and apparatus for pulsed harmonic ultraviolet lasers
US7848382B2 (en) * 2008-01-17 2010-12-07 Daylight Solutions, Inc. Laser source that generates a plurality of alternative wavelength output beams
CN102110948A (zh) * 2009-12-24 2011-06-29 西安信唯信息科技有限公司 一种高能二极管泵浦固体激光器晶体过渡热散热方法
US8885676B2 (en) * 2011-11-14 2014-11-11 The United States Of America, As Represented By The Secretary Of The Navy Infrared laser
US8976825B1 (en) * 2014-01-13 2015-03-10 Richard Redpath Heat sink mount for laser diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1589513A (zh) * 2001-09-20 2005-03-02 阿拉巴玛州立大学伯明翰研究基金会 中红外微芯片激光器:带有可饱和吸收材料的ZnS:Cr2+激光器
US7593447B2 (en) * 2004-07-12 2009-09-22 Santanu Basu Rotary disk laser module
US20080130702A1 (en) * 2005-01-12 2008-06-05 Raytheon Company High energy solid-state laser with offset pump and extraction geometry
CN108780977A (zh) * 2016-02-12 2018-11-09 Ipg光子公司 大功率cw型中红外激光器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.MIROV, ET AL.: "Mid-IR lasers based on transition metal and rare-earth ion doped crystals", 《PROC.SPIE》 *

Also Published As

Publication number Publication date
US20180054042A1 (en) 2018-02-22
JP2018513555A (ja) 2018-05-24
KR102469618B1 (ko) 2022-11-21
JP6845151B2 (ja) 2021-03-17
CN107750411B (zh) 2020-10-16
WO2016154309A1 (en) 2016-09-29
EP3275058A4 (en) 2018-12-05
EP3275058B1 (en) 2020-01-15
EP3275058A1 (en) 2018-01-31
KR20170129759A (ko) 2017-11-27
US10211600B2 (en) 2019-02-19

Similar Documents

Publication Publication Date Title
Wang et al. A resonantly-pumped tunable Q-switched Ho: YAG ceramic laser with diffraction-limit beam quality
CN105591267B (zh) 一种多波长泵浦免温控固体激光器及多波长选择方法
Zhu et al. High efficiency 165 W near-diffraction-limited Nd: YVO 4 slab oscillator pumped at 880 nm
Berrou et al. High-energy resonantly diode-pumped Q-switched Ho^ 3+ Ho 3+: YAG laser
Ye et al. Enhanced high-slope-efficiency and high-power LD side-pumped Er: YSGG laser
US20150194780A1 (en) Optical parametric oscillator with embedded resonator
Cho et al. High-repetition-rate quasi-CW side-pumped mJ eye-safe laser with a monolithic KTP crystal for intracavity optical parametric oscillator
Lin et al. Wavelength extension and power improvement of red Pr 3+: YLF lasers
US11316317B2 (en) High power and multiple wavelength Raman laser of visible light
CN107750411A (zh) 大功率cw中红外激光器
KR102587800B1 (ko) 고파워 cw 중간-ir 레이저
Song et al. Control of the thermal lensing effect with different pump light distributions
CN103794293A (zh) 一种基于磷酸钛氧钾晶体的太赫兹参量源及其应用
CN104409957B (zh) 一种窄线宽2μm激光器装置
Xu et al. Relaxation oscillation suppressed, narrow linewidth, high beam quality, 1319 nm long-pulsed duration laser
Yang et al. Continuous-wave operation of a room-temperature Ho: YAP laser pumped by a Tm: YAP laser
Basu et al. Disk motion—a new control element in high-brightness solid state laser design
Creeden et al. Multi-watt mid-IR fiber-pumped OPO
US20220294178A1 (en) Efficient raman visible laser with minimizing the cavity losses for the stokes wave
Heinzig et al. High power 1st and 2nd Stokes diamond Raman frequency conversion
Jingliang et al. Investigation of a High-Beam-Quality Dual-End-Pumped Stable Tm: YLF Laser in Single Rod Geometry
Forster et al. 12.2 W ZGP OPO pumped by a Q-Switched Tm3+: Ho3+-codoped fiber laser
Chang et al. LED-pumped eye-safe pulse laser with an extracavity optical parametric oscillator
Poirier et al. Discretely tunable multiwavelength diode-pumped Nd: YALO laser
Chen et al. Repetition operation of a 447.3 nm blue–violet laser by intracavity frequency doubling of an LD-pumped cesium vapor laser

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant