CN107746990B - 一种高强高塑性Ti-Al-Zr-Mo-V系β钛合金及其热处理工艺 - Google Patents

一种高强高塑性Ti-Al-Zr-Mo-V系β钛合金及其热处理工艺 Download PDF

Info

Publication number
CN107746990B
CN107746990B CN201710892027.XA CN201710892027A CN107746990B CN 107746990 B CN107746990 B CN 107746990B CN 201710892027 A CN201710892027 A CN 201710892027A CN 107746990 B CN107746990 B CN 107746990B
Authority
CN
China
Prior art keywords
alloy
titanium alloy
forging
beta
plasticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710892027.XA
Other languages
English (en)
Other versions
CN107746990A (zh
Inventor
孙巧艳
朱文光
肖林
唐可
孙军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201710892027.XA priority Critical patent/CN107746990B/zh
Publication of CN107746990A publication Critical patent/CN107746990A/zh
Application granted granted Critical
Publication of CN107746990B publication Critical patent/CN107746990B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Abstract

一种高强高塑性Ti‑Al‑Zr‑Mo‑V系β钛合金及其热处理工艺,将Ti‑Al‑Zr‑Mo‑V系β钛合金进行固溶处理,再进行时效处理;其中,Ti‑Al‑Zr‑Mo‑V系β钛合金按质量百分比计,包括4.5~5.5%的Al,3.5~4.5%的Zr,7.5%~8.5%的Mo,6.5~7.5%的V,余量为Ti。该合金经强韧化热处理后可获得优良的强塑性匹配。本发明合金既具有优良的室温力学性能,又具有流变抗力低、组织热敏感性小等加工优势。基于上述特性,使得本发明合金在生产盘类、轴类锻件以及紧固件中具有很大的竞争优势。

Description

一种高强高塑性Ti-Al-Zr-Mo-V系β钛合金及其热处理工艺
技术领域
本发明属于合金材料技术领域,具体涉及一种高强高塑性Ti-Al-Zr-Mo-V系β钛合金及其热处理工艺。
技术背景
β钛合金由于其具有很高强度、优异的塑性韧性以及疲劳性能,一直受到国内外的广泛关注。尤其是近十年来,随着熔炼、热加工工艺及装备的不断发展,其在航空航天领域的用量快速增长。新一代β钛合金的发展目标是在大截面尺寸下获得优异综合力学性能的同时尽可能的提高加工成型性能,并降低成本。
早期的β钛合金合金化程度较高,大都属于高Mo当量的亚稳β合金,通过固溶加时效处理可以获得很高的强度。典型的代表有β-C合金、Ti-15-3合金,以及我国自主研制的TB2、 TB3合金。此类合金在熔炼过程中易形成宏观偏析以及β斑等缺陷,时效温度较高且易形成连续晶界α相以及无析出区(PFZ)。因此,其应用受到很大限制。近些年以VT-22、Ti5553、TB10 和β-CEZ为代表的β合金有效的克服了上述问题。此类合金Mo当量较低,兼具两相合金与β合金的性能优势,其锻件已成功应用于飞机起落架、连杆等关键零部件。然而,以Ti-5553 合金为例,该合金在1200MPa级别具有优良的塑韧性匹配以及疲劳性能,随着合金强度的升高,塑性显著下降。国内北京有色院研发的TB10合金经过适当的热处理工艺Rm可达到 1300MPa级别,但是在更高强度的服役环境中,其应用也受到限制。
发明内容
为解决上述技术问题,本发明的目的在于提供一种高强高塑性Ti-Al-Zr-Mo-V系β钛合金及其热处理工艺。
为实现上述目的,本发明所采用的技术方案是:
一种高强高塑性Ti-Al-Zr-Mo-V系β钛合金,按质量百分比计,包括4.5~5.5%的Al, 3.5~4.5%的Zr,7.5%~8.5%的Mo,6.5~7.5%的V,余量为Ti和不可避免的杂质。
本发明进一步的改进在于,按质量百分比计,4.95~5.09%的Al,4~4.2%的Zr,7.85%~8.05%的Mo,6.82~7.01%的V,余量为Ti和不可避免的杂质。
本发明进一步的改进在于,将Ti-Al-Zr-Mo-V系β钛合金进行固溶处理,再进行时效处理。
本发明进一步的改进在于,进行固溶处理,再进行时效处理的具体过程为:首先在两相区760~780℃进行3h固溶处理,水冷至室温,随后在580~600℃进行8h时效,空冷。
本发明进一步的改进在于,其特征在于,进行固溶处理,再进行时效处理的具体过程为:首先进行单相区835~855℃进行40~45min固溶处理,随炉以2~5℃/min冷却至580~600℃,并进行6~8h时效后空冷。
本发明进一步的改进在于,Ti-Al-Zr-Mo-V系β钛合金通过以下方法制得:选择相应的原料,采用冷坩埚悬浮熔炼方法,将原料散装入炉并进行多次悬浮熔炼获得铸锭,铸锭经过扒皮并切冒口后进行自由锻造,再经过开坯锻造、高温锻造以及锻后热处理获得Ti-Al-Zr-Mo-V 系β钛合金。
本发明进一步的改进在于,将Ti-32Mo、Al-83V中间合金、纯Al、海绵钛以及海绵锆按配比混合均匀并散装入炉,随后进行CCLM熔炼,冷却,得到铸锭,再对铸锭进行以及高温锻造,得到Ti-Al-Zr-Mo-V系β钛合金;其中,熔炼电流为350~400A,电流频率为20~25KHz。
本发明进一步的改进在于,开坯锻造的开坯温度为1020~1050℃,保温时间为90min,变形量不小于60%。
本发明进一步的改进在于,高温锻造的温度为930~950℃,变形量不小于50%。
与现有技术相比,本发明具有的有益效果:
本发明利用d电子理论并结已有商用合金的合金化原则设计出一种β钛合金。该合金经过强韧化热处后可获得高强度与高塑性,提高了合金强塑性匹配,同时保证优良的热加工性能;通常情况下,β钛合金的变形始于等轴α相的优先滑移,随后在相界面处产生应力集中,最终在α/β相界面处产生微裂纹。因此,为获得高强度合金需对α相进行进一步强化,提高两相的协调变形能力。本发明通过Al、Zr元素复合强化α相,在加入常用α强化元素Al的同时,加入4wt%的中性元素Zr,对α相进行强化,增加α相内位错滑移临界分切应力,从而提高合金整体强度。本发明合金由于同时加入了Mo、V两种β同晶型元素,两者复合添加可以显著强化β相。另外,由于Mo的低扩散速率,可降低合金在两相区锻造时的温度敏感性,扩大合金加工窗口。另一方面,V的加入降低了α相的c/a值,促进α相滑移,从而降低合金流变抗力,提高合金热成型性能同时提高合金室温塑性。本发明合金既具有优良的室温力学性能,又具有流变抗力低、组织热敏感性小等加工优势。基于上述特性,使得本发明合金在生产盘类、轴类锻件以及紧固件中具有很大的竞争优势。
本发明为提高合金强塑性匹配,同时保证优良的热加工性能,利用d电子理论并结已有商用合金的合金化原则设计出一种β钛合金。该合金经过强韧化热处后可获得高强度与高塑性,同时,该合金在热加工过程具有中流变抗力低、组织热敏感性小等优点。
附图说明
图1为合金760℃/3h固溶,600℃/8h时效后的显微组织。
图2为合金760℃/3h固溶,600℃/8h时效的拉伸断口。
图3为合金BASCA工艺后的显微组织。
图4为合金845℃/1h固溶,680℃/6h时效后的显微组织。
具体实施方式
下面结合附图通过具体实施例进行详细说明。
本发明高强高塑性β钛合金由以下重量百分含量的成分组成:4.5~5.5%的Al,3.5~4.5%的Zr,7.5%~8.5%的Mo,6.5~7.5%的V,余量为Ti和不可避免的杂质。该合金熔炼所涉及的原料包括:Al-V、Ti-Mo中间合金、纯铝豆、0级海绵钛以及海绵锆。
优选的,由以下重量百分含量的成分组成:4.95~5.09%的Al,4~4.2%的Zr,7.85%~8.05%的Mo,6.82~7.01的V,余量为Ti和不可避免的杂质。
Ti-Al-Zr-Mo-V系β钛合金通过以下过程制备:首先按照设计成分进行合金配料并混合均匀,然后采用先进的冷坩埚悬浮熔炼方法(CCLM)熔炼合金。按照合金成分选择原料类型,计算原料配比并混合均匀。原料散装入炉并通过3次悬浮熔炼获得铸锭,铸锭切除冒口后进行锤上自由锻造,开坯温度为1050℃,变形量不低于60%,采用三墩三拔工艺。二火温度为 950℃,变形量大于50%,采用拔长工艺;铸锭经过开坯、高温锻造以及锻后热处理获得高强高塑性合金板材。
具体的,根据组分选择原料,将Ti-32Mo、Al-83V中间合金、纯Al、海绵钛以及海绵锆按配比混合均匀并散装入炉,随后进行CCLM熔炼,熔炼、冷却过程均在高纯氩气环境进行,熔炼电流为350~400A,电流频率为20~25KHz。为确保成分均匀,合金经3次熔炼,每次熔炼前铸锭头尾颠倒装炉。铸锭切去冒口后,分别在1000kg、500kg空气锤上进行开坯锻造以及高温锻造。开坯锻造温度为1020~1050℃,保温时间为90min,开坯采用三墩三拔,变形量不小于60%。高温锻造温度为930~950℃,变形量不小于50%。
首先按照设计成分进行合金配料并混合均匀;随后利用冷坩埚真空悬浮熔炼(CCLM) 技术进行合金熔炼。铸锭切除冒口后进行锤上自由锻造,开坯温度1020~1050℃,变形量不低于60%,采用三墩三拔工艺。二火温度930~950℃,变形量大于50%,采用拔长工艺。
实施例1
Ti-Al-Zr-Mo-V系β钛合金由以下重量百分含量的成分组成:4.95~5.09%的Al,4~4.2%的 Zr,7.85%~8.05%的Mo,6.82~7.01%的V,余量为Ti和不可避免的杂质。
根据上述组分,采用冷坩埚悬浮熔炼和锤上自由锻制备合金。具体的,将Ti-32Mo、Al-83V 中间合金、纯Al、海绵钛以及海绵锆按配比混合均匀并散装入炉,随后进行CCLM熔炼,熔炼、冷却过程均在高纯氩气环境进行,熔炼电流为350~400A,电流频率为20~25KHz。为确保成分均匀,合金经3次熔炼,每次熔炼前铸锭头尾颠倒装炉。利用ICP-AES以及元素分析仪测量合金成分及杂质含量,如表1所示。铸锭切去冒口后,分别在1000kg、500kg空气锤上进行开坯锻造以及高温锻造,得到Ti-Al-Zr-Mo-V系β钛合金。其中,开坯锻造温度为1050℃,保温时间为90min,开坯采用三墩三拔,变形量不小于60%。高温锻造温度为950℃,变形量不小于50%。
表1实验合金成分(wt%)
对Ti-Al-Zr-Mo-V系β钛合金在两相区760℃进行3h固溶处理,水淬至室温。随后在600℃进行8小时时效。
获得的组织如图1所示,由于合金终锻温度、固溶温度均位于相变点以下,组织中出现典型的等轴α相,尺寸大约为3μm,同时亦有厚度约0.3~0.5μm的片状α相生成,片层α之间分布有细小弥散透镜状α相。此种复合结构使得合金既具有高的强度又具有优异的塑性。依照 GB/T228.1-2010标准要求,测得合金力学性能如下:抗拉强度Rm为1460.7,屈服强度Rp0.2 为1401.3MPa,断后伸长率A为10.2%。
图2为合金拉伸断口,断口形貌呈现典型的塑性断裂特征,分布着由微孔聚集而形成的等轴状韧窝。
实施例2
Ti-Al-Zr-Mo-V系β钛合金由以下重量百分含量的成分组成:4.95~5.09%的Al,4~4.2%的 Zr,7.85%~8.05%的Mo,6.82~7.01%的V,余量为Ti和不可避免的杂质。
根据上述组分,采用冷坩埚悬浮熔炼和锤上自由锻制备合金。具体的,将Ti-32Mo、Al-83V 中间合金、纯Al、海绵钛以及海绵锆按配比混合均匀并散装入炉,随后进行CCLM熔炼,熔炼、冷却过程均在高纯氩气环境进行,熔炼电流为350~400A,电流频率为20~25KHz。为确保成分均匀,合金经3次熔炼,每次熔炼前铸锭头尾颠倒装炉。利用ICP-AES以及元素分析仪测量合金成分及杂质含量,如表1所示。铸锭切去冒口后,分别在1000kg、500kg空气锤上进行开坯锻造以及高温锻造,得到Ti-Al-Zr-Mo-V系β钛合金。其中,开坯锻造温度为1050℃,保温时间为90min,开坯采用三墩三拔,变形量不小于60%。高温锻造温度为950℃,变形量不小于50%。
对上述制备的Ti-Al-Zr-Mo-V系β钛合金进行BASCA热处理,首先在单相区845℃进行 40min固溶处理,随后以3℃/min冷速缓慢冷却至580℃,并保温6h。
由于冷速较慢,形核驱动力小,α相优先在β晶界形核,形成连续晶界α相。晶内形成大量α层片,粗大α片层之间弥散分布着细小的二次α相,如图3所示。此种组织一般具有较高的断裂韧性,由于弥散二次α相的存在,亦具有高强度。依照GB/T228.1-2010标准要求,测得合金力学性能如下:抗拉强度Rm为1418.3,屈服强度Rp0.2为1345.8MPa,断后伸长率A 为9.6%。
对比例1
对实施例1中的方法制得的Ti-Al-Zr-Mo-V系β钛合金进在单相区845℃进行1h固溶处理,水淬至室温。随后在680℃进行8小时时效。
由于合金时效温度较高,过冷度减小,使得形核驱动力减低,α相优先在晶界处形核。同时,较高的时效温度促进合金元素的扩散,改变合金动力学状态,使得晶界α相、晶内α相均发生粗化,如图4所示。粗化的α相导致合金强度降低、塑性升高。依照GB/T228.1-2010标准要求,测得合金力学性能如下:抗拉强度Rm为1305.2,断后伸长率A为8.2%。可见,经过单相区固溶加高温时效的传统热处理工艺后的合金力学性能较差。
实施例3
Ti-Al-Zr-Mo-V系β钛合金由以下重量百分含量的成分组成:4.5~4.7%的Al,3.5~3.6%的 Zr,8.4%~8.5%的Mo,6.9~7%的V,余量为Ti和不可避免的杂质。
根据上述组分,采用冷坩埚悬浮熔炼和锤上自由锻制备合金。具体的,将Ti-32Mo、Al-83V 中间合金、纯Al、海绵钛以及海绵锆按配比混合均匀并散装入炉,随后进行CCLM熔炼,熔炼、冷却过程均在高纯氩气环境进行,熔炼电流为350A,电流频率为20KHz。为确保成分均匀,合金经3次熔炼,每次熔炼前铸锭头尾颠倒装炉。铸锭切去冒口后,分别在1000kg、500kg 空气锤上进行开坯锻造以及高温锻造,得到Ti-Al-Zr-Mo-V系β钛合金。其中,开坯锻造温度为1020℃,保温时间为90min,开坯采用三墩三拔,变形量不小于60%。高温锻造温度为945℃,变形量不小于50%。
对Ti-Al-Zr-Mo-V系β钛合金在两相区770℃进行3h固溶处理,水淬至室温。随后在580℃进行8小时时效。
实施例4
Ti-Al-Zr-Mo-V系β钛合金由以下重量百分含量的成分组成:5.1~5.3%的Al,3.8~4%的Zr, 7.5%~7.6%的Mo,6.5~6.7%的V,余量为Ti和不可避免的杂质。
根据上述组分,采用冷坩埚悬浮熔炼和锤上自由锻制备合金。具体的,将Ti-32Mo、Al-83V 中间合金、纯Al、海绵钛以及海绵锆按配比混合均匀并散装入炉,随后进行CCLM熔炼,熔炼、冷却过程均在高纯氩气环境进行,熔炼电流为400A,电流频率为22KHz。为确保成分均匀,合金经3次熔炼,每次熔炼前铸锭头尾颠倒装炉。铸锭切去冒口后,分别在1000kg、500kg 空气锤上进行开坯锻造以及高温锻造,得到Ti-Al-Zr-Mo-V系β钛合金。其中,开坯锻造温度为1030℃,保温时间为90min,开坯采用三墩三拔,变形量不小于60%。高温锻造温度为950℃,变形量不小于50%。
对Ti-Al-Zr-Mo-V系β钛合金在两相区780℃进行3h固溶处理,水淬至室温。随后在590℃进行8小时时效。
实施例5
Ti-Al-Zr-Mo-V系β钛合金由以下重量百分含量的成分组成:5.3~5.5%的Al,4.1~4.3%的 Zr,7.8%~7.9%的Mo,7~7.1%的V,余量为Ti和不可避免的杂质。
根据上述组分,采用冷坩埚悬浮熔炼和锤上自由锻制备合金。具体的,将Ti-32Mo、Al-83V 中间合金、纯Al、海绵钛以及海绵锆按配比混合均匀并散装入炉,随后进行CCLM熔炼,熔炼、冷却过程均在高纯氩气环境进行,熔炼电流为360A,电流频率为24KHz。为确保成分均匀,合金经3次熔炼,每次熔炼前铸锭头尾颠倒装炉。铸锭切去冒口后,分别在1000kg、500kg 空气锤上进行开坯锻造以及高温锻造,得到Ti-Al-Zr-Mo-V系β钛合金。其中,开坯锻造温度为1040℃,保温时间为90min,开坯采用三墩三拔,变形量不小于60%。高温锻造温度为940℃,变形量不小于50%。
对上述制备的Ti-Al-Zr-Mo-V系β钛合金进行BASCA热处理,首先在单相区835℃进行 45min固溶处理,随后以2℃/min冷速缓慢冷却至600℃,并保温6h。
实施例6
Ti-Al-Zr-Mo-V系β钛合金由以下重量百分含量的成分组成:4.9~5%的Al,4.3~4.5%的Zr, 8.1%~8.2%的Mo,7.4~7.5%的V,余量为Ti和不可避免的杂质。
根据上述组分,采用冷坩埚悬浮熔炼和锤上自由锻制备合金。具体的,将Ti-32Mo、Al-83V 中间合金、纯Al、海绵钛以及海绵锆按配比混合均匀并散装入炉,随后进行CCLM熔炼,熔炼、冷却过程均在高纯氩气环境进行,熔炼电流为380A,电流频率为25KHz。为确保成分均匀,合金经3次熔炼,每次熔炼前铸锭头尾颠倒装炉。铸锭切去冒口后,分别在1000kg、500kg 空气锤上进行开坯锻造以及高温锻造,得到Ti-Al-Zr-Mo-V系β钛合金。其中,开坯锻造温度为1050℃,保温时间为90min,开坯采用三墩三拔,变形量不小于60%。高温锻造温度为930℃,变形量不小于50%。
对上述制备的Ti-Al-Zr-Mo-V系β钛合金进行BASCA热处理,首先在单相区855℃进行 42min固溶处理,随后以5℃/min冷速缓慢冷却至590℃,并保温8h。
本发明中Ti-Al-Zr-Mo-V系β钛合金经过熔炼、锻造以及强韧化热处理后可获得优良的强塑性匹配。该合金β单相区固溶加高温时效处理后室温抗拉强度Rm为1368.2,断后伸长率A为 8.2%;两相区固溶加时效工艺后合金抗拉强度Rm为1460.7,断后伸长率A为10.2%;BASCA 工艺后合金抗拉强度Rm为1418.3,断后伸长率A为9.6%。该合金还具有优良的热加工性能,适用于生产各种盘状、棒状零件。本发明合金同时加入了Mo、V两种β同晶型元素。一方面,由于Mo的低扩散速率,可降低合金在两相区锻造时的温度敏感性,扩大合金加工窗口。另一方面,V的加入降低了α相的c/a值,促进α相滑移,从而降低合金流变抗力,提高合金热成型性能与塑性。

Claims (5)

1.一种高强高塑性Ti-Al-Zr-Mo-V系β钛合金的热处理工艺,其特征在于,该Ti-Al-Zr-Mo-V系β钛合金按质量百分比计,包括4.5~5.5%的Al,3.5~4.5%的Zr,7.5%~8.5%的Mo,6.5~7.5%的V,余量为Ti和不可避免的杂质;
将Ti-Al-Zr-Mo-V系β钛合金进行固溶处理,再进行时效处理;
进行固溶处理,再进行时效处理的具体过程为:首先在两相区760~780℃进行3h固溶处理,水冷至室温,随后在580~600℃进行8h时效,空冷;
或者进行固溶处理,再进行时效处理的具体过程为:首先进行单相区835~855℃进行40~45min固溶处理,随炉以2~5℃/min冷却至580~600℃,并进行6~8h时效后空冷。
2.根据权利要求1所述的高强高塑性Ti-Al-Zr-Mo-V系β钛合金的热处理工艺,其特征在于,Ti-Al-Zr-Mo-V系β钛合金通过以下方法制得:选择相应的原料,采用冷坩埚悬浮熔炼方法,将原料散装入炉并进行多次悬浮熔炼获得铸锭,铸锭经过扒皮并切冒口后进行自由锻造,再经过开坯锻造、高温锻造以及锻后热处理获得Ti-Al-Zr-Mo-V系β钛合金。
3.根据权利要求2所述的高强高塑性Ti-Al-Zr-Mo-V系β钛合金的热处理工艺,其特征在于,将Ti-32Mo、Al-83V中间合金、纯Al、海绵钛以及海绵锆按配比混合均匀并散装入炉,随后进行CCLM熔炼,冷却,得到铸锭,再对铸锭进行开坯锻造以及高温锻造,得到Ti-Al-Zr-Mo-V系β钛合金;其中,熔炼电流为350~400A,电流频率为20~25KHz。
4.根据权利要求3所述的高强高塑性Ti-Al-Zr-Mo-V系β钛合金的热处理工艺,其特征在于,开坯锻造的开坯温度为1020~1050℃,保温时间为90min,变形量不小于60%。
5.根据权利要求4所述的高强高塑性Ti-Al-Zr-Mo-V系β钛合金的热处理工艺,其特征在于,高温锻造的温度为930~950℃,变形量不小于50%。
CN201710892027.XA 2017-09-27 2017-09-27 一种高强高塑性Ti-Al-Zr-Mo-V系β钛合金及其热处理工艺 Expired - Fee Related CN107746990B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710892027.XA CN107746990B (zh) 2017-09-27 2017-09-27 一种高强高塑性Ti-Al-Zr-Mo-V系β钛合金及其热处理工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710892027.XA CN107746990B (zh) 2017-09-27 2017-09-27 一种高强高塑性Ti-Al-Zr-Mo-V系β钛合金及其热处理工艺

Publications (2)

Publication Number Publication Date
CN107746990A CN107746990A (zh) 2018-03-02
CN107746990B true CN107746990B (zh) 2019-06-11

Family

ID=61255923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710892027.XA Expired - Fee Related CN107746990B (zh) 2017-09-27 2017-09-27 一种高强高塑性Ti-Al-Zr-Mo-V系β钛合金及其热处理工艺

Country Status (1)

Country Link
CN (1) CN107746990B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136642A (zh) * 2018-09-17 2019-01-04 洛阳顺易钛业有限公司 一种Ti-Mo中间合金及其制备方法和应用
CN111455215B (zh) * 2020-04-09 2021-06-22 清华大学 一种抗空蚀钛铝钼合金及其制备工艺
CN114752812B (zh) * 2022-04-22 2022-09-23 大连理工大学 高塑性高强Ti-Mo-Al-Nb-V系β钛合金、热处理工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312938A (ja) * 1987-06-15 1988-12-21 Kobe Steel Ltd 耐熱性Ti合金
CN1329177A (zh) * 2000-06-16 2002-01-02 李阁平 一种高强度高刚性高成型性钛合金振膜
CN1978681A (zh) * 2005-12-06 2007-06-13 北京有色金属研究总院 一种高强度高弹性模量的钛合金
CN104831122A (zh) * 2015-05-19 2015-08-12 南京工业大学 一种低成本高性能钛合金及其制备方法
CN105316524A (zh) * 2014-08-04 2016-02-10 中国科学院金属研究所 一种Ti-Al-Zr-Mo-V系中强高塑钛合金及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312938A (ja) * 1987-06-15 1988-12-21 Kobe Steel Ltd 耐熱性Ti合金
CN1329177A (zh) * 2000-06-16 2002-01-02 李阁平 一种高强度高刚性高成型性钛合金振膜
CN1978681A (zh) * 2005-12-06 2007-06-13 北京有色金属研究总院 一种高强度高弹性模量的钛合金
CN105316524A (zh) * 2014-08-04 2016-02-10 中国科学院金属研究所 一种Ti-Al-Zr-Mo-V系中强高塑钛合金及其制备方法
CN104831122A (zh) * 2015-05-19 2015-08-12 南京工业大学 一种低成本高性能钛合金及其制备方法

Also Published As

Publication number Publication date
CN107746990A (zh) 2018-03-02

Similar Documents

Publication Publication Date Title
CN107746989B (zh) 一种超高强度Ti-Al-Zr-Mo-Cr系β钛合金及其热处理工艺
CN110423927A (zh) 一种超高强铝锂合金及其制备方法
CN104004949B (zh) 一种高强度镁锂合金的制备方法
CN101935776B (zh) 一种β钛合金材料及其制备方法
CN107217173A (zh) 具有高强高塑和良好断裂韧性的钛合金及其制备工艺
CN104726746B (zh) 一种高强亚稳定β型钛合金棒材及其制备方法
CN102808105B (zh) 一种形状记忆铜合金的制备方法
CN107746990B (zh) 一种高强高塑性Ti-Al-Zr-Mo-V系β钛合金及其热处理工艺
CN104169449A (zh) 具有改良性能的钛合金
CN106591625A (zh) 一种具有高强度高韧性匹配的钛合金及其制备工艺
CN103769817B (zh) 一种大直径高强耐热镁合金厚壁筒形件的成形工艺
CN106119731B (zh) 一种燃气轮机压气机叶片钢材料及其制备方法
CN107858558B (zh) 一种超塑性钛合金板材及其制备方法
CN111020414A (zh) 一种用于700~750℃的短纤维增强高温钛合金棒材的制备方法
CN110229984A (zh) 一种高强度Mg-Gd-Er-Y镁合金及其制备方法
CN105543605A (zh) 一种高强度Mg-Y-Ni-Mn合金及其制备方法
CN112589024A (zh) 一种镁合金锻件及其制备方法
CN103243235B (zh) 一种高强度钛合金
CN110592503A (zh) 一种Al-6Si-3.5Cu型铸造铝合金的强韧化热处理工艺方法
CN114438369B (zh) 一种屈服强度1000MPa级高强高韧钛合金及其制备工艺
CN101921940B (zh) 镁合金及其制备方法
CN110184499B (zh) 一种提高tc4钛合金强度水平的微合金化方法
CN109943760B (zh) 一种高强高塑稀土镁合金及其制备方法
CN112391558A (zh) 一种强度与塑性匹配良好的近β型钛合金及其制备方法
CN109182858A (zh) 一种含Ho耐热镁合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190611

Termination date: 20210927

CF01 Termination of patent right due to non-payment of annual fee