CN107746049B - 三聚氰胺蒸汽路线合成富氮有序介孔碳材料 - Google Patents

三聚氰胺蒸汽路线合成富氮有序介孔碳材料 Download PDF

Info

Publication number
CN107746049B
CN107746049B CN201710949654.2A CN201710949654A CN107746049B CN 107746049 B CN107746049 B CN 107746049B CN 201710949654 A CN201710949654 A CN 201710949654A CN 107746049 B CN107746049 B CN 107746049B
Authority
CN
China
Prior art keywords
nitrogen
mesoporous carbon
carbon material
rich
ordered mesoporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710949654.2A
Other languages
English (en)
Other versions
CN107746049A (zh
Inventor
宋伟明
左春玲
冯健
邓启刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qiqihar University
Original Assignee
Qiqihar University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qiqihar University filed Critical Qiqihar University
Priority to CN201710949654.2A priority Critical patent/CN107746049B/zh
Publication of CN107746049A publication Critical patent/CN107746049A/zh
Application granted granted Critical
Publication of CN107746049B publication Critical patent/CN107746049B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

三聚氰胺蒸汽路线合成富氮有序介孔碳材料,本发明涉及一种通过三聚氰胺蒸汽路线合成富氮掺杂的有序介孔碳材料的制备方法。它解决了现有含氮介孔碳材料中的氮掺杂量和有序度下降以及比电容较低的问题。制备方法:一、以多元共组装的策略自组装得到F127‑PF‑SiO2纳米复合物;二、将该复合物在三聚氰胺蒸汽中热解得到氮掺杂二氧化硅支撑介孔碳材料;三、用氢氟酸去除二氧化硅得到富氮介孔碳材料(NOMC)。本发明得到的富氮有序介孔碳材料NOMC具有高的氮含量(10.10%),大的比表面积(1206 m2/g),合适的孔径(5.3 nm)以及均一的介孔结构。这些优点导致该电极材料在6 M KOH电解液中的比电容达到218 F/g(电流密度为1 A/g),并且具有优异的循环稳定性(1000个循环后保持93%)。

Description

三聚氰胺蒸汽路线合成富氮有序介孔碳材料
技术领域
本发明涉及一种通过三聚氰胺蒸汽路线合成富氮掺杂的有序介孔碳材料的制备方法。
背景技术
超级电容器(Supercapacitors),又称作电化学电容器(electrochemicalcapacitors)是最近几十年才发展起来的一种性能介于电池与传统电容器之间的新型能量存储与转换装置。超级电容器作为一种新型的的能量存储与转换装置,兼具电池与传统电容器的特点。然而在储能机理和电极材料方面与传统电容器,二次电池和锂电池有着明显的差别。经对比可以发现,其具有如下特点:
(1) 功率密度高,约为1~10 KW/Kg,是电池的几十倍。
(2) 电容存储量大,约为0.1~6000 F,是同体积传统电容器电容量得两千多倍。
(3) 充放电速度快。若使用大电流充电,超级电容器可以在几十秒内完成充电过程;若使用小电流充电,也可以在几分钟内完成,这比电池快几个小时的充电时间。此外,其还能够在几十秒内持续输出上千安培的电流,这使他们十分适合短时高功率需求的情况。
(4) 循环寿命长。多孔碳基超电材料具有良好的电化学可逆性,因此其理论循环寿命为无穷,实际能够达到十万次,比电池高出百倍。
(5) 耐温特性强。超级电容器能够在较宽的温度区间(-40~70℃)内工作,而电池只为-20~60℃。
(6) 机理简单,电极材料主要为多孔碳,对环境无污染且安全性好,是一种新型的清洁能量存储装置。
多孔碳材料(Porous carbons简称PCs)是20世纪发展起来的新型多用途材料,因具有高比表面积、高孔隙率、大吸附容量和良好的导电性而成为目前备受关注的碳基材料。与其它多孔碳材料相比,有序介孔碳(OMC)材料具有合适的孔径、较大的比表面积、以及较高的水热稳定性,因此其在催化、能量存储等邻域拥有巨大的应用潜力。许多研究已经证明:多孔碳的孔径分布在电化学性能中起着重要作用。有序介孔碳因具有均一和合适的孔径(2~50 nm)以及可以缩短电子传输路径的有序通道,因此具备优异的电化学性能,被认为是非常有前景的超电材料。1999 年,Ryoo 等首次利用MCN-48 作为硬模板合成了有序介孔碳材料。2006年,复旦大学Zhao等以嵌段共聚物 F127 为模板, TEOS为无机前体,低分子量(﹤500) 的酚醛树脂为碳源,通过三元共组装的方法制备了高度有序的介孔碳材料。从其SEM图像中可以看出该材料具有高度的2D有序介孔结构,表征结果显示其比表面积高达2470 m2/g,孔径大约6.7 nm,孔容约为2.0 cm3/g。自此之后,介孔碳材料的合成走向成熟,目前主要的合成方法有:硬模板法和软模板法。许多研究已经证明,2D六边形有序介孔结构比孤立的3D立方和无序的蠕虫状孔结构更有利于电解质的传输。然而,由于单纯有序介孔碳具有较高的化学反应惰性和较差的表面润湿性等缺点,在作为超级电容器的电极材料时只有很少的活性位点可用于电荷存储,导致电化学电容性能不理想,这严重制约了它的实际应用。故而,对有序介孔碳材料进行物理化学改性成为有序介孔碳研究领域的热点内容。
最近,非金属杂原子掺杂介孔碳材料在能量存储方面已经引起了极大的关注。目前用于掺杂的非金属杂原子包括氮(N)、磷(P)、硫(S)和硼(B)等。这些杂原子与碳原子通过共价键相连在碳材料中引入官能团,通过给电子或吸电子效应改变碳材料的物理化学性质。这是因为这些元素的掺入能够:①通过法拉第氧化还原反应提高总的赝电容。②增加碳电极材料导电性,进而提高双层电容和伪电容的电容保持率。③改善碳电极材料对电解液的表面润湿性。其中,氮掺杂是增强比电容同时保持碳材料良好速率能力的最有效的方法。因为氮原子相对于碳原子具有供电子效应,因而能够改善材料的表面极性,导电性和润湿性。因此,氮掺杂可以确保对存储电荷暴露表面的充分利用。各种形态的碳材料已经用氮掺杂处理,并表现出优异的电化学电容性能。例如,Shi等采用纳米浇筑法,以2D SBA-15介孔硅为硬模板,低阶酚醛树脂为碳源,双氰胺为氮源合成了氮掺杂有序介孔碳电极材料,通过调节前体的配比合成了不同掺氮量的有序介孔碳材料(NOMC)。NOMC具有高度的有序介孔结构,表征结果显示其比表面积高达1741 m2/g,在6 M KOH电介质中比电容高达230 F/g(0.5A/g)。
发明内容
本发明的目的是要解决现有制备氮掺杂有序介孔碳材料中的氮掺杂量和有序度下降以及比电容较低的问题,而提供一种富氮掺杂有序介孔碳材料制备方法。
本发明三聚氰胺蒸汽路线合成富氮有序介孔碳材料的制备方法按下列步骤实现:
一、F127-PF-SiO2纳米复合材料的合成:按照山东大学赵东元课题组的方法,通过溶剂蒸发诱导三元共组装的方法合成F127-PF-SiO2纳米复合材料。
二、富氮有序介孔碳材料的合成:将一定量的 F127-PF-SiO2纳米复合物与一定量的三聚氰胺按照m(F127-PF-SiO2):m(三聚氰胺)=1.0:0.5~1.5混合,在研钵中研磨成细粉。将该混合物置于管式炉中通入氮气,N2流速为25~35 ml/min,在350~400℃下煅烧3~4 h,程序升温,600℃以下升温速率为2~3 ℃/min,在600℃以上升温速率为4~6 ℃/min,升温至900℃,于900℃煅烧3~4 h。自然冷却到室温后得到硅骨架支撑的富氮介孔碳材料(SiNOMC)。
三、把上述材料按照m(SiNOMC):m(氢氟酸)=1.0:200~250浸入到氢氟酸(HF,10wt%)水溶液中,在30℃下,搅拌24~30 h除去二氧化硅骨架。抽滤,用超纯水和乙醇洗涤至滤液pH=7,并在105℃下干燥20~24 h,得到富氮有序介孔碳材料NOMC。
本发明将三聚氰胺蒸汽路线合成的富氮有序介孔碳材料粉末与聚四氟乙烯(PTFE)溶液混合,搅拌成浆液,然后均匀涂抹在泡沫镍上,压制成片,得到富氮有序介孔碳材料超级电容器电极。
本发明采用三聚氰胺蒸汽路线合成富氮有序介孔碳材料。主要是基于三聚氰胺的特殊性质,作为富氮化合物,三聚氰胺在分解时产生大量的氮中间体蒸汽,一方面氮中间体具有良好的反应活性,与F127-PF-SiO2纳米复合材料共热时,与其发生反应,在F127-PF-SiO2碳化的同时,生成氮化物。同时,三聚氰胺蒸汽与F127-PF-SiO2纳米复合材料均相共混,更利于氮进入碳骨架,得到含氮量(at%)为10.10%的富氮掺杂有序介孔碳材料(NOMC)。且所制备的富氮介孔碳材料具有高度有序的2D六边形介孔结构。将其作为超级电容器的电极材料,在6M KOH电解质中NOMC的比电容达到了218 F/g(电流密度为1 A/g),并且具有优异的循环稳定性(1000个循环后保持93%)。
附图说明
图1为富氮有序介孔碳材料合成路线示意图;
图2为实施例一得到的富氮有序介孔碳材料的XRD图;
图3为实施例一得到的富氮有序介孔碳材料的N2吸附脱附图;
图4为实施例一得到的富氮有序介孔碳材料的TEM图;
图5为实施例一得到的富氮有序介孔碳材料的XPS全谱;
图6为实施例一得到的富氮有序介孔碳材料的XPS高分辨率N1s谱图;
图7为实施例一得到的富氮有序介孔碳材料的循环伏安曲线图;
图8为实施例一得到的富氮有序介孔碳材料的恒电流充放电曲线图。
具体实施方式
具体实施方式:本实施方式三聚氰胺蒸汽路线合成富氮有序介孔碳材料的制备方法按下列步骤实施:
一、采用溶剂蒸发诱导三元共组装的方法合成F127-PF-SiO2纳米复合材料;
二、将步骤一得到的F127-PF-SiO2纳米复合物与三聚氰胺按照m(F127-PF-SiO2):m(三聚氰胺)=1.0:0.5~1.5混合,在研钵中研磨成细粉。将该混合物置于管式炉中通入氮气,N2流速为25~35 ml/min,在350~400℃下煅烧3~4 h,程序升温,600℃以下升温速率为2~3℃/min,在600℃以上为4~6℃/min,于900℃煅烧3~4 h。自然冷却到室温后得到硅骨架支撑的富氮介孔碳材料。
三、把上述材料按照m(材料):m(氢氟酸)=1.0:200~250浸入到氢氟酸(HF,10 wt%)水溶液中,在30℃下,搅拌24~30 h除去二氧化硅骨架。抽滤,用超纯水和乙醇洗涤至滤液pH=7,并在105℃下干燥24 h,得到富氮有序介孔碳材料NOMC。
四、将5~6 mg富氮有序介孔碳材料粉末与5~6 wt%的聚四氟乙烯(PTFE)溶液混合,搅拌成浆液,然后均匀涂抹在1×10 cm的泡沫镍上,压制成片,得到富氮有序介孔碳材料超级电容器电极。
五、氧化汞电极为参比电极,铂电极为辅助电极, 6 mol/L KOH做电解液,电势范围为-1~0 V,扫描速率为2~200 mV/s,用CHI660E电化学工作站(上海辰华)对富氮有序介孔碳材料电极进行循环伏安特性曲线、恒电流充放电和交流阻抗等电性能测试。
本实施方式通过三聚氰胺蒸汽与F127-PF-SiO2纳米复合材料均相共混,更利于氮进入碳骨架,得到富氮掺杂有序介孔碳材料(NOMC)。且所制备的富氮介孔碳材料具有高度有序的2D六边形介孔结构。
实施例一:本实施例富氮有序介孔碳材料制备方法按下列步骤实施:
一、采用溶剂蒸发诱导三元共组装的方法合成F127-PF-SiO2纳米复合材料;
二、将步骤一得到的F127-PF-SiO2纳米复合物1.0 g与1.0 g三聚氰胺混合,在研钵中研磨成细粉,过200目分样筛备用。将该混合物置于管式炉中通入氮气,N2流速为30ml/min,在350℃下煅烧3 h,程序升温,600℃以下升温速率为2 ℃/min,在600℃以上为4℃/min,于900℃煅烧3 h。自然冷却到室温后得到硅骨架支撑的富氮介孔碳材料。
三、把上述材料按照m(材料):m(氢氟酸)=1.0: 250浸入到氢氟酸(HF,10 wt%)水溶液中,在30℃下,搅拌24 h除去二氧化硅骨架。抽滤,用超纯水和乙醇洗涤至滤液pH=7,并在105℃下干燥24 h,得到富氮有序介孔碳材料NOMC。
四、将5 mg富氮有序介孔碳材料粉末与5 wt%的聚四氟乙烯(PTFE)溶液混合,搅拌成浆液,然后均匀涂抹在1×10 cm的泡沫镍上,压制成片,得到富氮有序介孔碳材料超级电容器电极。
五、氧化汞电极为参比电极,铂电极为辅助电极, 6 mol/L KOH做电解液,电势范围为-1~0 V,扫描速率为2~200 mV/s,用CHI660E电化学工作站(上海辰华)对富氮有序介孔碳材料电极进行循环伏安特性曲线、恒电流充放电和交流阻抗等电性能测试。
本实施例步骤一采用溶剂蒸发诱导三元共组装的方法合成F127-PF-SiO2纳米复合材料的过程如下:
按照比例将1.5~1.6 g F127(嵌段聚醚)溶解在含有1.0 ml 0.2 M HCl 的8.0~8.5 ml乙醇中。在40~45 ℃下搅拌1h 得到澄清溶液。随后加入2.0~2.1 g 正硅酸乙酯和5.0~5.5克酚醛树脂(分子量≤500),搅拌2 h,转移到培养皿中,室温蒸发5~8 h。之后在105℃下,干燥20~24 h。得到淡黄色透明薄膜。在管式炉炉中经900℃煅烧2~3 h得到F127-PF-SiO2纳米复合物。
本实施例得到的富氮有序介孔碳材料的晶型及其表面性质分别由X射线衍射仪(RigakuD/max-Ⅱ,形貌与微观结构是采用透射电镜(H-7650日本日立)进行表征。
图2是实施例一得到的富氮有序介孔碳材料的XRD图,材料显示出一个强衍射峰和两个弱衍射峰,被标记为(100)、(110) 和 (200) 衍射峰,这与2D六边形p6m对称结构类似。虽然衍射峰稍微宽化,但也清楚地表明富氮材料其介孔结构仍保持良好。
图3是实施例一得到的富氮介孔材料的N2吸附脱附图,从图3可以看出,富氮有序介孔碳材料的氮气吸/脱附等温线具有典型的IV型曲线;明显的H1型迟滞回线,表明样品孔道以介孔为主。样品的比表面积为1206 m2.g-1,平均孔径为5.3 nm。图4为材料的TEM图,从中可以看出,富氮介孔材料具有沿[110]方向的中孔条纹结构,尽管有轻微的退化但仍清晰可见,这进一步证实了样品中存在2D六角形介孔结构。因此,该结果与小角XRD和氮气吸附/脱吸测量的结果完全一致。这种有序中孔结构可以为电解质离子扩散提供有效的途径,进而可以更好的提高电容保持率并且降低对电极动力学过程的阻力。
图5是实施例一得到的富氮介孔材料的XPS图,从中可以清楚的看到C1s、O1s和N1s峰。图6是实施例一得到的富氮有序介孔碳材料的XPS高分辨率N1s谱图,显示四种N-官能团:吡啶氮(398.3 eV)、吡咯氮(400.3 eV)、四元氮(401.2 eV)和含氧吡啶氮(403.3 eV),在限制半峰宽的条件下对其进行分峰后可以得出,样品具有相对较高百分比的吡啶氮,吡咯氮和四元氮,和相对较低含量的含氧吡啶氮构型。因为吡啶氮和吡咯氮通常位于碳骨架片层的边缘,因而可以通过法拉第氧化还原反应引入赝电容。由于四元氮的润湿性,亲水性以及导电性,因此其在EDLCs的贡献中具有重要的作用。
图 7为 实施例一得到的富氮介孔材料在不同扫描速率(2至200 mV/s)下的循环伏安(CV)曲线,从图中可以看出 材料的CV曲线随着扫描速率的增加呈现相似的形状(类矩形形状),表明在较大离子反应过程中仍保持高电容性能。此外还可观察到,近似矩形的形状可以一直保持到100 mV/s,而在200 mV/s时形状发生扭曲。
图8是实施例一得到的富氮介孔材料的恒电流充放电曲线。为材料在-1.0和0.0V之间的电位窗口中不同电流密度下(从0.2至16A/g)的GCD曲线。从该图可以看出即使在16A/g的高电流密度下,也可清晰地观察到对称三角形的充/放电特性。这种典型的理想电容器行为证明了该电极材料具有非常小的电阻降和快速的电荷传播途径。从图中可以看出恒电流充放电曲线的充电时间段和放电时间段基本接近,这说明复合后的电极材料具有良好的循环利用行。且恒电流充放电曲线具有一定的对称性,表明该电极材料的可逆性较好。从图中可以明显看到在电解液(NaOH电解液)浓度为6 mol/L时,富氮介孔材料的比电容达到了218 F/g(电流密度为1 A/g)。

Claims (1)

1.三聚氰胺蒸汽路线合成富氮有序介孔碳材料的制备方法,其特征在于是按下列步骤实现:
一、按照比例将1.5~1.6g F127溶解在含有1.0ml 0.2M HCl的8.0~8.5ml乙醇中,在40~45℃下搅拌1h得到澄清溶液,随后加入2.0~2.1g正硅酸乙酯和5.0~5.5克酚醛树脂,搅拌2h,转移到培养皿中,室温蒸发5~8h,之后在105℃干燥20~24h,得到淡黄色透明薄膜,在管式炉炉中经900℃煅烧2~3h得到F127-PF-SiO2纳米复合物;
二、按照质量比为(0.5~1.5):1.0将三聚氰胺与F127-PF-SiO2纳米复合物混合研磨,过200目分样筛,得到均一混合物,将混合物置于管式炉中通入氮气,N2流速为25~35ml/min,在350~400℃下煅烧3~4h,程序升温,600℃以下升温速率为2~3℃/min,600℃以上升温速率为4~6℃/min,升温至900℃,在此温度煅烧3~4h,自然冷却到室温后得到硅骨架支撑的富氮介孔碳材料SiNOMC;
三、按照m(SiNOMC):m(氢氟酸)=1.0:200~250浸入到氢氟酸水溶液中,在30℃下,搅拌24~30h除去二氧化硅骨架;抽滤,用超纯水和乙醇反复洗涤至滤液pH=7,并在105℃下干燥20~24h,得到富氮有序介孔碳材料NOMC。
CN201710949654.2A 2017-10-13 2017-10-13 三聚氰胺蒸汽路线合成富氮有序介孔碳材料 Active CN107746049B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710949654.2A CN107746049B (zh) 2017-10-13 2017-10-13 三聚氰胺蒸汽路线合成富氮有序介孔碳材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710949654.2A CN107746049B (zh) 2017-10-13 2017-10-13 三聚氰胺蒸汽路线合成富氮有序介孔碳材料

Publications (2)

Publication Number Publication Date
CN107746049A CN107746049A (zh) 2018-03-02
CN107746049B true CN107746049B (zh) 2023-05-02

Family

ID=61252550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710949654.2A Active CN107746049B (zh) 2017-10-13 2017-10-13 三聚氰胺蒸汽路线合成富氮有序介孔碳材料

Country Status (1)

Country Link
CN (1) CN107746049B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176364A (zh) * 2019-05-21 2019-08-27 同济大学 一种利用壳聚糖制备高氮掺杂微孔-介孔碳材料的方法
CN110589818B (zh) * 2019-10-31 2022-11-15 湘潭大学 一种氮掺杂介孔碳材料的制备方法及其应用
CN111540618B (zh) * 2020-05-07 2021-10-22 安徽大学 一种氮氧共掺杂碳基超级电容器电极材料的无醛化制备方法
CN111892035B (zh) * 2020-07-28 2022-04-19 苏州丰哲纳米材料科技有限公司 一种长程有序高氮含量、超高比表面积介孔炭材料的量产方法
CN113321200B (zh) * 2021-05-12 2022-08-16 首都师范大学 一种氮掺杂或铁氮共掺杂多级孔碳球的制备方法及其在电催化氧还原反应中的应用
CN113336310B (zh) * 2021-06-10 2022-08-05 南开大学 一种以含钴的氮掺杂有序介孔碳为催化剂的催化臭氧水处理方法
CN113921292B (zh) * 2021-10-14 2022-11-29 湖南城市学院 一种超级电容器用虫状碳材料及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290512A (zh) * 2016-08-31 2017-01-04 西北师范大学 修饰电极及其制备方法和应用

Also Published As

Publication number Publication date
CN107746049A (zh) 2018-03-02

Similar Documents

Publication Publication Date Title
CN107746049B (zh) 三聚氰胺蒸汽路线合成富氮有序介孔碳材料
Chen et al. Formation of bimetallic metal–organic framework nanosheets and their derived porous nickel–cobalt sulfides for supercapacitors
Shao et al. In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials
Zhang et al. Highly stable supercapacitors with MOF-derived Co 9 S 8/carbon electrodes for high rate electrochemical energy storage
Wang et al. MOF-derived binary mixed metal/metal oxide@ carbon nanoporous materials and their novel supercapacitive performances
Wu et al. Ultrathin porous NiO nanoflake arrays on nickel foam as an advanced electrode for high performance asymmetric supercapacitors
Dong et al. Hierarchical flower-like Ni–Co layered double hydroxide nanostructures: synthesis and super performance
Salunkhe et al. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons
Tian et al. Hierarchical S-doped porous carbon derived from by-product lignin for high-performance supercapacitors
Liang et al. Expeditious fabrication of flower-like hierarchical mesoporous carbon superstructures as supercapacitor electrode materials
Hu et al. Ultrahigh energy density asymmetric electrochemical capacitors based on flower-like ZnO/Co 3 O 4 nanobundle arrays and stereotaxically constricted graphene
Liu et al. A facile preparation of NiO/Ni composites as high-performance pseudocapacitor materials
Hao et al. Hierarchical structure N, O-co-doped porous carbon/carbon nanotube composite derived from coal for supercapacitors and CO 2 capture
Zhang et al. Facile synthesis of mesoporous CuO nanoribbons for electrochemical capacitors applications
Zhang et al. Incorporation of MnO nanoparticles inside porous carbon nanotubes originated from conjugated microporous polymers for lithium storage
Li et al. Controllable synthesis of nitrogen-doped mesoporous carbons for supercapacitor applications
CN108288547B (zh) 氮磷硫三元共掺杂有序介孔碳材料的制备方法
Liang et al. Enhanced capacitance characteristic of microporous carbon spheres through surface modification by oxygen-containing groups
Yao et al. Design and synthesis of hierarchical NiCo 2 S 4@ NiMoO 4 core/shell nanospheres for high-performance supercapacitors
Jiang et al. Manganese oxides transformed from orthorhombic phase to birnessite with enhanced electrochemical performance as supercapacitor electrodes
Lin et al. Metallasilsesquioxane-derived ultrathin porous carbon nanosheet 3D architectures via an “in situ dual templating” strategy for ultrafast sodium storage
CN112830472A (zh) 一种多孔碳的制备方法及由其得到的多孔碳和应用
Xu et al. Facile hydrothermal synthesis of tubular kapok fiber/MnO 2 composites and application in supercapacitors
Wang et al. Fe nanopowder-assisted fabrication of FeO x/porous carbon for boosting potassium-ion storage performance
Li et al. Preparation and electrochemical properties of nanostructured porous spherical NiCo 2 O 4 materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant