CN107742006B - 平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法 - Google Patents

平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法 Download PDF

Info

Publication number
CN107742006B
CN107742006B CN201710839599.1A CN201710839599A CN107742006B CN 107742006 B CN107742006 B CN 107742006B CN 201710839599 A CN201710839599 A CN 201710839599A CN 107742006 B CN107742006 B CN 107742006B
Authority
CN
China
Prior art keywords
target plate
energy
projectile
speed
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710839599.1A
Other languages
English (en)
Other versions
CN107742006A (zh
Inventor
徐伟
陈长海
侯海量
李茂�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naval University of Engineering PLA
Original Assignee
Naval University of Engineering PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naval University of Engineering PLA filed Critical Naval University of Engineering PLA
Priority to CN201710839599.1A priority Critical patent/CN107742006B/zh
Publication of CN107742006A publication Critical patent/CN107742006A/zh
Application granted granted Critical
Publication of CN107742006B publication Critical patent/CN107742006B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及一种平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法,根据战斗部和防护结构的具体情况,确定平头空心弹体与靶板的几何尺寸和材料参数;确定弹道极限速度附近靶板的变形位移场;根据弹体和靶板的变形破坏特征,计算弹体和靶板的变形能:包括弹体的塑性变形能、剪切冲塞能、靶板的塑性变形能,弹体的塑性变形能包括墩粗变形和空心部分的内凹变形所消耗的能量;基于能量守恒原理确定平头空心弹正侵彻下薄钢板的弹道极限速度。本发明方法对靶板的弹道极限速度进行有效预测,以判断平头空心弹体能否穿透靶板或者靶板是否能够实现对弹体的有效阻拦,也能为弹道冲击实验或数值仿真方法提供有效参考以减少实验次数或仿真计算时间。

Description

平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法
技术领域
本发明涉及毁伤和防护技术领域,具体涉及一种基于能量法求解弹道极限速度的理论计算方法。
背景技术
穿甲侵彻过程是非常复杂的力学行为,弹靶相互作用的影响因素较多,例如弹体形状,弹靶材料强度比,弹径与板厚比,弹体速度等,不同条件下弹体的侵彻性能和靶板的失效模式存在较大差别。
弹道极限速度是判断弹体能否穿透靶板的依据,在毁伤及防护领域均具有重要意义。当弹体初始速度大于弹道极限速度时,弹体能够穿透靶板;当初始速度小于弹道极限速度时,弹体则不能穿透靶板,因此弹道极限速度对防护结构的设计起着关键作用。在防护领域,许多核心任务就是假定战斗部初始速度一定,设计有效的防护装甲结构以实现对战斗部的有效阻拦,其中的关键技术就是设计有效的阻拦结构使得弹道极限速度大于战斗部的初始速度,从而保证战斗部无法穿透靶板。因而对弹道极限速度进行有效评估至关重要。
目前针对平头空心弹正侵彻下靶板的弹道极限速度评估主要采用弹道冲击实验或者数值仿真方法。然而弹道冲击实验需要消耗巨大的人力和物力资源;而数值仿真方法则需耗费大量的计算资源和时间,且由于有限元仿真计算过程受网格大小的影响较大,其弹体和靶板材料模型的不确定性,因此其计算精确度和可靠性需要进一步验证。
发明内容
本发明要解决的技术问题在于针对上述现有技术存在的不足,提供一种平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法,它是一种基于能量守恒原理的理论计算方法,能较好地预测弹体正侵彻下靶板的弹道极限速度,以判断弹体能否穿透靶板或者靶板是否能够实现对弹体的有效阻拦。
本发明为解决上述提出的技术问题所采用的技术方案为:
一种平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法,包括以下步骤:
步骤1,根据战斗部和防护结构的具体情况,确定平头空心弹体与靶板的几何尺寸和材料参数;
步骤2,确定弹道极限速度附近靶板的变形位移场;
步骤3,根据弹体和靶板的变形破坏特征,计算弹体和靶板的变形能:
弹体和靶板的变形能包括弹体的塑性变形能Epp、弹靶作用过程中的剪切冲塞能Es、靶板的塑性变形能Etp,所述弹体的塑性变形能Epp包括墩粗变形和空心部分的内凹变形所消耗的能量;
步骤4,基于能量守恒原理确定平头空心弹正侵彻下薄钢板的弹道极限速度:
根据能量守恒原理,即弹体在侵彻靶板前的动能等于弹体侵彻靶板后弹体与冲塞块的动能、弹体的塑性变形能Epp、剪切冲塞能Es、靶板的塑性变形能Etp之和,建立关于平头空心弹正侵彻下薄钢板的弹道极限速度的方程式,并求解弹道极限速度。
上述方案中,步骤1中所述的平头空心弹体的几何尺寸包括弹体长度LP,弹体内径dn,弹体外径de,弹体前端壁厚hp,弹体侧壁厚hc;靶板的几何尺寸包括靶板厚度ht。弹体的材料参数包括弹体材料的密度ρp,弹性模量 Ep,泊松比νp,准静态屈服强度σ0p,失效应变εfp;靶板的材料参数包括靶板材料的ρt,弹性模量Et,泊松比νt,准静态屈服强度σ0t,失效应变εft
上述方案中,步骤2中所述的弹道极限速度附近靶板的变形位移场参考文献《球头弹丸速冲击下薄板大变形的理论计算》(该文献于2012年发表于《华中科技大学学报(自然科学版)》)中的位移场,其变形位移相对于撞击中心完全轴对称,其大小与点到撞击中心的距离相关,变形位移场的表达式为:
Figure BDA0001410415950000031
式中:w0为变形位移场的幅值,单位为mm;r为点到撞击中心的距离,单位为mm;rp为弹体的外半径,单位为mm;a为拟合系数,单位为m-1
变形位移场的幅值w0为靶板材料失效应变的函数:
Figure BDA0001410415950000032
式中:εft为靶板材料的失效应变,a为拟合系数,单位为m-1
在薄板范围内,变形位移场的拟合系数a为靶板厚度的函数:
a=C/ht (3)
式中:ht为靶板厚度,单位为mm;C为固定常数,可近似取为160。
上述方案中,步骤3中所述的弹体的塑性变形包括墩粗变形和空心部分的内凹变形,弹体的塑性变形能与弹体前端空心部分的质量的初始动能成正比:
Epp=0.5kmpfv0 2=0.125kπdn 2hpρpv0 2 (4)
式中:mpf为弹体前端空心部分的质量;v0为弹体的初始速度,单位为m/s; k为比例系数,其与弹体前端壁厚hp,靶板厚度ht,弹体材料与靶板材料的屈服强度σ0p和σ0t相关,k的具体取值参考表1;ρp为弹体密度,dn为空心弹体内径,hp为空心弹体前端厚度。
表1
Figure BDA0001410415950000033
Figure BDA0001410415950000041
上述方案中,步骤3中所述的弹靶作用过程中的剪切冲塞能为:
Es=2πreτdthtδs (5)
式中:re为环形剪切带的半径,τdt为靶板的动态剪切强度,ht靶板厚度,δs为剪切带宽度。
环形剪切带的半径re可取弹体外半径:
re=0.5de (6)
式中:de为弹体外径。
靶板的动态剪切强度τdt为:
τdt=0.5σdt (7)
式中:σdt为靶板的动态屈服强度。
剪切带宽度δs为:
Figure BDA0001410415950000042
式中:ht为靶板厚度。
上述方案中,步骤3中所述的弹靶作用过程中靶板的塑性变性能Etp主要为非接触区靶板的碟形变形所消耗的能量,其由三部分组成:
Etp=Erb+Eθb+Erm (9)
式中:Erb为径向弯曲变形能,Eθb为环形弯曲变形能,Erm为径向拉伸应变能。
径向弯曲变形能Erb,环形弯曲变形能Eθb,径向拉伸应变能Erm相应的表达式依次为:
Figure BDA0001410415950000051
Figure BDA0001410415950000052
Figure BDA0001410415950000053
式中:rp为弹体半径,rj为侵彻过程结束时塑性铰距撞击中心的距离,M为非接触区靶板单位长度的动态极限弯矩,kr为非接触区的径向曲率,kθ为非接触区的环向曲率,εr为靶板的径向应变,σdt为靶板的动态屈服强度,r为点到撞击中心的距离。
M为非接触区靶板单位长度的动态极限弯矩,其表达式为:
M=0.25ht 2σdt (13)
式中:σdt为靶板的动态屈服强度,ht为靶板厚度。
根据薄板大变形假定,其中kr,kθ,εr的表达式分别为:
Figure BDA0001410415950000054
式中:w为靶板的变形位移场函数,r为点到撞击中心的距离。
将变形位移场式(1)代入式(14)的各个表达式中,得到相应曲率与应变的表达式为:
Figure BDA0001410415950000061
Figure BDA0001410415950000062
Figure BDA0001410415950000063
再将式(13)、(15)、(16)、(17)代入式(10)、(11)、(12)中,得到相应变形能的表达式为:
Figure BDA0001410415950000064
Figure BDA0001410415950000065
Figure BDA0001410415950000066
靶板材料的动态屈服强度采用Cowper-Symonds模型(该模型出自于文献《舰船结构毁伤力学》):
Figure BDA0001410415950000067
式中:σ0t为靶板的准静态屈服强度,D为40.4s-1,q为5,
Figure BDA0001410415950000068
为应变率,
Figure BDA0001410415950000069
的取值参考非接触区靶板的径向平均应变率
Figure BDA00014104159500000610
Figure BDA00014104159500000611
式中:v0为弹体的初始速度,a为拟合系数,单位为m-1,w0为变形位移场的幅值,单位为mm;rp为弹体半径,rj为侵彻过程结束时塑性铰距撞击中心的距离。
侵彻过程结束时塑性铰距撞击中心的距离rj较难从理论上得到相关解析解,但根据实际经验,低速侵彻下十倍弹径外靶板的变形大小几乎为零,相应地靶板的变形能也可以近似忽略不计,因此rj可近似取为10倍弹径,即rj=10rp
上述方案中,步骤4中所述的能量守恒原理为:弹体在侵彻靶板前的动能等于弹体侵彻靶板后弹体与冲塞块的动能,弹体的变形能,剪切冲塞能,靶板的塑性变形能之和。即为:
0.5mpv0 2=Epp+Es+Etp+0.5(mp+mg)vr 2 (23)
式中:mp为弹体质量,v0为初始速度,Epp为弹体的塑性变形能,Es为剪切冲塞能,Etp为靶板的塑性变形能,mg为塞块质量,vr为剩余速度。
当弹体的剩余速度vr为零时,此时弹体刚好穿透或内嵌于靶板,该情形下弹体的初始速度即为弹道极限速度vbl,即:
0.5mpvbl 2=Epp+Es+Etp (24)
式中:Epp,Es,Etp的具体表达式分别为上述式(4)、(5)、(9),式(9)的具体表达式则为式(18)、(19)、(20)之和。
上述方案中,采用二分法求解方程式(24)的近似解vbl。在求vbl的近似解中,弹体的初始动能为E0
E0=0.5mpv0 2 (25)
侵彻过程中消耗的能量为E1
E1=Epp+Es+Etp (26)
剩余能量为Er
Er=E0-E1=0.5mpv0 2-(Epp+Es+Etp) (27)
二分法的基本步骤如下:
第一步,首先设定初始速度v1,初始速度v1的设定尽量小于弹道极限速度vbl,代入式(27)中求得Er1(Er1<0),再设定初始速度v2,初始速度v2的设定尽量大于弹道极限速度vbl,代入式(27)中求得Er2(Er2>0)。即在区间[v1,v2]中,连续函数Er1<0,Er2>0,则根据介质定理,这个区间内一定包含着方程式的根,即vbl包含于区间[v1,v2]中。
第二步,取该区间的中点v3=0.5(v1+v2),并代入式(27)中求得Er3
第三步,若Er3与Er1同号,则取[v3,v2]为新的区间,若Er3与Er2同号,则取[v1,v3]为新的区间。
第四步,重复第二步,第三步,直到新区间[vi,vk]的区间长度(vk-vi)在1 以内,相应地:vbl=0.5(vi+vk)。
本发明的有益效果在于:
本发明提出的一种平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法,仅根据弹体与靶板的相关几何尺寸和材料参数,通过理论计算便能够简便且较为准确地得到平头空心弹正侵彻时薄钢板的弹道极限速度vbl,从而能够为相关武器战斗部或防护结构等设计及优化提供方便快捷且可靠的参考依据。通过本发明的方法对靶板的弹道极限速度进行有效预测,以判断弹体能否穿透靶板或者靶板是否能够实现对弹体的有效阻拦,能够应用于工程实际,节省了大量的人力和物力资源,降低成本;同时也能为弹道冲击实验或数值仿真方法提供有效参考以减少实验次数或仿真计算时间。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明的平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法的流程图;
图2是本发明步骤1中所述的平头空心弹体的侧视图;
图3是图2所示的平头空心弹体的主视图;
图4是采用二分法求解弹道极限速度的过程图;
图5是初始速度为210m/s时弹体内嵌于靶板的仿真图及相应的弹体速度的时间历程曲线。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
选取国外某一战斗部侵彻某型舰船舷侧外板的简化情形作为实施例具体说明本发明的平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法,具体步骤如下:
步骤1,根据战斗部和防护结构的具体情况,确定平头空心弹体与靶板的几何和材料参数。
本实施例中平头空心弹体与靶板的几何尺寸及材料参数如下表2所示。
表2
弹体长度L<sub>P</sub> 34mm 弹体泊松比ν<sub>p</sub> 0.3
弹体内径d<sub>n</sub> 11.3mm 弹体准静态屈服强度σ<sub>0p</sub> 355MPa
弹体外径d<sub>e</sub> 14.5mm 弹体失效应变ε<sub>fp</sub> 0.3
弹体前端壁厚h<sub>p</sub> 1.8mm 靶板密度ρ<sub>t</sub> 7800kg/m<sup>3</sup>
弹体侧壁厚h<sub>c</sub> 1.6mm 靶板弹性模量E<sub>t</sub> 210GPa
靶板厚度h<sub>t</sub> 2mm 靶板泊松比ν<sub>t</sub> 0.3
弹体密度ρ<sub>p</sub> 7800kg/m<sup>3</sup> 靶板准静态屈服强度σ<sub>0t</sub> 235MPa
弹体弹性模量E<sub>p</sub> 205GPa 靶板失效应变ε<sub>ft</sub> 0.42
步骤2,确定弹道极限速度附近靶板的变形位移场。
根据步骤1中所确定的靶板的几何与材料参数,得到:
a=C/ht=160/2=80(m-1)
Figure BDA0001410415950000091
根据式(1)确定的变形位移场函数,并将相应的靶板材料参数代入计算,得到弹道极限速度附近靶板的变形位移场函数如下:
Figure BDA0001410415950000101
其中:w0的单位为mm,r的单位为mm。
步骤3:根据弹体或靶板的变形破坏特征,计算弹体和靶板的变形能。
第一步,计算弹体的塑性变形能Epp,弹体的塑性变形主要包括墩粗变形和空心部分的内凹变形,弹体的塑性变形能与弹体前端空心部分的质量的初始动能成正比:
Epp=0.5kmpfv0 2=0.125kπdn 2hpρpv0 2=0.563×10-3v0 2(J) (4)
式中:v0为弹体的初始速度,单位为m/s,k为比例系数,本实例模型中,hp/ht为0.87,σ0t0p为0.66,根据表1可知,比例系数取为1.6。
第二步,计算弹靶作用过程中的剪切冲塞能为:
Es=2πreτdthtδs=0.031σdt (5)
式中:σdt为靶板的动态屈服强度。
第三步,计算弹靶作用过程中的径向弯曲变形能Erb,环形弯曲变形能Eθb,径向拉伸应变能Erm
Figure BDA0001410415950000102
Figure BDA0001410415950000103
Figure BDA0001410415950000104
式中:σdt为靶板的动态屈服强度。
第四步,计算靶板的动态屈服强度σdt
首先计算非接触区靶板的径向平均应变率为:
Figure BDA0001410415950000111
则,靶板材料的动态屈服强度采用Cowper-Symonds模型:
Figure BDA0001410415950000112
式中:σ0t为靶板的准静态屈服强度,σ0t=235MPa,D为40.4s-1,q为5,
Figure BDA0001410415950000113
为应变率,在计算时采用径向平均应变率
Figure BDA0001410415950000114
代入计算。
第五步,将动态屈服强度σdt的计算公式(21)代入上述公式(5),(18), (19),(20)中,得到:
Es=7.311[1+(1.655v0/40.4)1/5]
Erb=26.104[1+(1.655v0/40.4)1/5]
Eθb=16.824[1+(1.655v0/40.4)1/5]
Erm=104.625[1+(1.655v0/40.4)1/5]
步骤4,基于能量守恒原理确定平头空心弹正侵彻下薄钢板的弹道极限速度。
第一步:根据能量守恒原理建立弹道极限速度vbl的平衡表达式。
弹体的初始动能E0为:
E0=0.5mpv0 2=9.282×10-3v0 2
弹道极限速度vbl的平衡表达式:
9.282×10-3vbl 2=0.563×10-3vbl 2+154.864[1+(1.655vbl/40.4)1/5] (24)
第二步:采用二分法求解vbl的近似解。
在求vbl的近似解中,弹体的初始动能为E0
E0=0.5mpv0 2=9.282×10-3v0 2
侵彻过程中消耗的能量为E1
E1=0.563×10-3v0 2+154.864[1+(1.655v0/40.4)1/5] (26)
剩余能量为Er
Er=8.719×10-3v0 2-154.864[1+(1.655v0/40.4)1/5] (27)
S1:首先设定初始速度v1为20m/s(很显然小于弹道极限速度vbl),代入式(27)中求得Er1(Er1<0);再设定初始速度v2为500m/s,代入式(27)中求得Er2(Er2>0),即在区间[20,500]中,连续函数Er1<0,Er2>0,则根据介质定理,这个区间内一定包含着方程式的根,即vbl包含于区间[20,500]中。
S2:取该区间的中点v3=0.5(20+500)=260m/s,并代入式(27)中求得Er3>0。
S3:Er3与Er2同号,则取[20,260]为新的区间。
S4:重复S2、S3,相应的区间设置与对应Eri的正负值如下表3所示。
表3
Figure BDA0001410415950000121
Figure BDA0001410415950000131
新区间
Figure BDA0001410415950000132
的区间长度为15/16,在1以内,相应地:
vbl=0.5(212.186+213.125)=212.656m/s
根据上述计算过程可知,该平头空心弹正侵彻下薄钢板弹道极限速度为212.656m/s。
为验证该结果的正确性,采用ANSYS/LS-DYNA建立了该平头空心弹侵彻靶板的三维有限元模型,弹体和靶板均采用六面体单元。靶板中心4倍弹径内网格尺寸为0.25mm,4倍弹径外采用放射性网格,靶板在厚度方向划分8 个单元。弹体与靶板之间采用面面侵蚀接触。靶板材料采用双线性弹塑性本构模型,材料的应变率效应采用Cowper-Symonds模型,弹体材料采用 Johnson-Cook本构模型,考虑应变率效应。弹体和靶板材料参数如表4所示。
表4弹体和靶板的材料参数
Figure BDA0001410415950000133
如图4-5所示,有限元分析中,当弹体初始速度为210m/s时,弹体内嵌于靶板中,剩余速度约为0,即弹道极限速度为210m/s。
由此可见,本发明所提出的一种平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法所得出的弹道极限速度vbl为212.66m/s,与仿真分析所得的弹道极限速度相对误差约为1.27%。即计算结果吻合较好,能够满足工程应用的需要。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (6)

1.一种平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法,其特征在于,包括以下步骤:
步骤1,根据战斗部和防护结构的具体情况,确定平头空心弹体与靶板的几何尺寸和材料参数;
步骤2,确定弹道极限速度附近靶板的变形位移场,变形位移场的表达式为:
Figure FDA0002820977600000011
式中:w0为变形位移场的幅值,单位为mm;r为点到撞击中心的距离,单位为mm;rp为弹体的外半径,单位为mm;a为拟合系数,单位为m-1
步骤3,根据弹体和靶板的变形破坏特征,计算弹体和靶板的变形能:
弹体和靶板的变形能包括弹体的塑性变形能Epp、弹靶作用过程中的剪切冲塞能Es、靶板的塑性变形能Etp,所述弹体的塑性变形能Epp包括墩粗变形和空心部分的内凹变形所消耗的能量;
所述的弹体的塑性变形能Epp与弹体前端空心部分的质量的初始动能成正比,其表达式为:
Epp=0.5kmpfv0 2=0.125kπdn 2hpρpv0 2 (4)
式中:mpf为弹体前端空心部分的质量;v0为弹体的初始速度,单位为m/s;k为比例系数,其与弹体前端壁厚hp,靶板厚度ht,弹体材料与靶板材料的屈服强度σ0p和σ0t相关;ρp为弹体密度,dn为空心弹体内径,hp为弹体前端厚度;
步骤4,基于能量守恒原理确定平头空心弹正侵彻下薄钢板的弹道极限速度:
根据能量守恒原理,即弹体在侵彻靶板前的动能等于弹体侵彻靶板后弹体与冲塞块的动能、弹体的塑性变形能Epp、剪切冲塞能Es、靶板的塑性变形能Etp之和,建立关于平头空心弹正侵彻下薄钢板的弹道极限速度的方程式,并求解弹道极限速度。
2.根据权利要求1所述的平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法,其特征在于,步骤1中所述的平头空心弹体的几何尺寸包括弹体长度LP,弹体内径dn,弹体外径de,弹体前端壁厚hp,弹体侧壁厚hc;靶板的几何尺寸包括靶板厚度ht;弹体的材料参数包括弹体材料的密度ρp,弹性模量Ep,泊松比νp,准静态屈服强度σ0p,失效应变εfp;靶板的材料参数包括靶板材料的ρt,弹性模量Et,泊松比νt,准静态屈服强度σ0t,失效应变εft
3.根据权利要求1所述的平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法,其特征在于,步骤3中所述的弹靶作用过程中的剪切冲塞能Es为:
Es=2πreτdthtδs (5)
式中:re为环形剪切带的半径,τdt为靶板的动态剪切强度,ht靶板厚度,δs为剪切带宽度。
4.根据权利要求1所述的平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法,其特征在于,步骤3中所述的靶板的塑性变性能Etp为非接触区靶板的碟形变形所消耗的能量,其由三部分组成:
Etp=Erb+Eθb+Erm (9)
式中:Erb为径向弯曲变形能,Eθb为环形弯曲变形能,Erm为径向拉伸应变能,
径向弯曲变形能Erb,环形弯曲变形能Eθb,径向拉伸应变能Erm相应的表达式依次为:
Figure FDA0002820977600000021
Figure FDA0002820977600000031
Figure FDA0002820977600000032
式中:rp为弹体半径,rj为侵彻过程结束时塑性铰距撞击中心的距离,M为非接触区靶板单位长度的动态极限弯矩,kr为非接触区的径向曲率,kθ为非接触区的环向曲率,εr为靶板的径向应变,σdt为靶板的动态屈服强度,r为点到撞击中心的距离,ht为靶板厚度。
5.根据权利要求1所述的平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法,其特征在于,步骤4中根据能量守恒原理建立的方程式为:
0.5mpv0 2=Epp+Es+Etp+0.5(mp+mg)vr 2 (23)
式中:mp为弹体质量,v0为初始速度,Epp为弹体的塑性变形能,Es为剪切冲塞能,Etp为靶板的塑性变形能,mg为塞块质量,vr为剩余速度;
当弹体的剩余速度vr为零时,弹体刚好穿透或内嵌于靶板,此时弹体的初始速度即为弹道极限速度vbl,即:
0.5mpvbl 2=Epp+Es+Etp (24)。
6.根据权利要求5所述的平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法,其特征在于,采用二分法求解方程式(24)的近似解vbl,在求vbl的近似解中,弹体的初始动能为E0
E0=0.5mpv0 2 (25)
侵彻过程中消耗的能量为E1
E1=Epp+Es+Etp (26)
剩余能量为Er
Er=E0-E1=0.5mpv0 2-(Epp+Es+Etp) (27)
二分法的步骤如下:
第一步,首先设定初始速度v1,初始速度v1的设定小于弹道极限速度vbl,代入式(27)中求得Er1<0,再设定初始速度v2,初始速度v2的设定大于弹道极限速度vbl,代入式(27)中求得Er2>0;
第二步,取区间[v1,v2]的中点v3=0.5(v1+v2),并代入式(27)中求得Er3
第三步,若Er3与Er1同号,则取[v3,v2]为新的区间,若Er3与Er2同号,则取[v1,v3]为新的区间;
第四步,重复第二步和第三步,直到新区间[vi,vk]的区间长度vk-vi在1以内,相应地:vbl=0.5(vi+vk)。
CN201710839599.1A 2017-09-18 2017-09-18 平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法 Active CN107742006B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710839599.1A CN107742006B (zh) 2017-09-18 2017-09-18 平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710839599.1A CN107742006B (zh) 2017-09-18 2017-09-18 平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法

Publications (2)

Publication Number Publication Date
CN107742006A CN107742006A (zh) 2018-02-27
CN107742006B true CN107742006B (zh) 2021-05-18

Family

ID=61235898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710839599.1A Active CN107742006B (zh) 2017-09-18 2017-09-18 平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法

Country Status (1)

Country Link
CN (1) CN107742006B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109635232B (zh) * 2019-01-07 2022-09-27 中国人民解放军军事科学院国防工程研究院 一种弹体正侵彻分层介质运动规律的评价方法
CN110008604A (zh) * 2019-04-10 2019-07-12 中国人民解放军军事科学院国防工程研究院工程防护研究所 一种与缩尺效应和应变率效应相关的弹体侵彻深度预估计算方法
CN110532656B (zh) * 2019-08-20 2023-01-03 哈尔滨工程大学 一种基于侵彻毁伤相似性的金属板架结构等效设计方法
CN110728070B (zh) * 2019-10-23 2021-08-24 北京理工大学 一种耦合熔化和切削机制的预测弹体侵蚀方法
CN112268794B (zh) * 2020-09-29 2021-08-31 中国科学院金属研究所 一种确定金属材料抗穿甲最佳微观组织状态的方法
CN114048421B (zh) * 2021-03-26 2023-05-05 南京理工大学 一种破片侵彻靶板数据处理方法
CN114065403B (zh) * 2021-12-02 2023-07-04 中国船舶科学研究中心 基于侵彻舰船多层结构靶板的高速弹体模型评估方法
CN114861508B (zh) * 2022-07-06 2022-09-23 中国飞机强度研究所 一种飞机机身金属平板弹道结构极限速度计算方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101609726A (zh) * 2009-07-17 2009-12-23 清华大学 一种碳纳米管导线的工艺误差估计方法
CN104298848A (zh) * 2014-07-15 2015-01-21 南昌大学 一种用于雨弹自毁功能可靠性的分析与评估方法
CN104794307A (zh) * 2015-05-07 2015-07-22 中国人民解放军海军工程大学 纤维增强复合材料层合结构安全防护速度计算方法
CN105022919A (zh) * 2015-07-06 2015-11-04 北京航空航天大学 一种预测圆形金属薄板低速冲击凹坑尺寸的方法
CN105178468A (zh) * 2015-10-19 2015-12-23 同济大学建筑设计研究院(集团)有限公司 一种放大阻尼器耗能效果的剪刀式变形放大装置
CN106547991A (zh) * 2016-11-25 2017-03-29 中国工程物理研究院总体工程研究所 沿滑翔弹道的扰动引力重构模型优化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4095603B2 (ja) * 2004-10-05 2008-06-04 キヤノン株式会社 設計支援方法及び設計支援プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101609726A (zh) * 2009-07-17 2009-12-23 清华大学 一种碳纳米管导线的工艺误差估计方法
CN104298848A (zh) * 2014-07-15 2015-01-21 南昌大学 一种用于雨弹自毁功能可靠性的分析与评估方法
CN104794307A (zh) * 2015-05-07 2015-07-22 中国人民解放军海军工程大学 纤维增强复合材料层合结构安全防护速度计算方法
CN105022919A (zh) * 2015-07-06 2015-11-04 北京航空航天大学 一种预测圆形金属薄板低速冲击凹坑尺寸的方法
CN105178468A (zh) * 2015-10-19 2015-12-23 同济大学建筑设计研究院(集团)有限公司 一种放大阻尼器耗能效果的剪刀式变形放大装置
CN106547991A (zh) * 2016-11-25 2017-03-29 中国工程物理研究院总体工程研究所 沿滑翔弹道的扰动引力重构模型优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part II:Structural stability analyses;Hao Wu 等;《Acta Mechanica Sinica (2014)》;20141231;第943-955页 *
球头弹丸低速冲击下薄板大变形的理论计算;陈长海 等;《华中科技大学学报(自然科学版)》;20121231;第40卷(第12期);第88-93页 *

Also Published As

Publication number Publication date
CN107742006A (zh) 2018-02-27

Similar Documents

Publication Publication Date Title
CN107742006B (zh) 平头空心弹低速正侵彻下薄钢板弹道极限速度的计算方法
CN107742007B (zh) 一种平头弹低速正侵彻下薄钢板弹道极限速度的计算方法
CN104568613B (zh) 一种基于等效缩比模型的舰船舱室内爆炸结构毁伤评价方法
Silling et al. Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets
Wang et al. An efficient CDEM-based method to calculate full-scale fragment field of warhead
Dong et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete
Elek et al. Experimental and numerical investigation of perforation of thin steel plates by deformable steel penetrators
Wei et al. Oblique penetration of ogive-nosed projectile into aluminum alloy targets
Herrmann et al. Correlation of hypervelocity impact data
Ji et al. Experimental and numerical study on the cumulative damage of water-filled containers impacted by two projectiles
CN106908312A (zh) 一种霍普金森杆试验用防入射杆反冲装置
Senthil et al. Ballistic response of 2024 aluminium plates against blunt nose projectiles
Zhu et al. Axial distribution of fragments from the dynamic explosion fragmentation of metal shells
Ma et al. A model for rigid asymmetric ellipsoidal projectiles penetrating into metal plates
Chen et al. A new analytical model for the low-velocity perforation of thin steel plates by hemispherical-nosed projectiles
Anderson Jr et al. Simulation and analysis of a 23-mm HEI projectile hydrodynamic ram experiment
Xiao et al. Studying normal and oblique perforation of steel plates with SPH simulations
Sun et al. Numerical analysis of the trajectory stability and penetration ability of different lateral-abnormal projectiles for non-normal penetration into soil based on modified integrated force law method
CN113239589A (zh) 一种获取金属材料v50的数值模拟方法
Pradhan et al. Numerical investigations of spherical projectile impact on 4 mm thick mild steel plate
Shi et al. Investigation on penetration model of shaped charge jet in water
Zahrin et al. Numerical simulation of oblique impact on structure using finite element method
Wei et al. Research on damage effect of penetration and explosion integration based on volume filling method
Xue et al. Research on ricochet and its regularity of projectiles obliquely penetrating into concrete target
Zakir et al. Numerical study on the optimum design of explosively formed projectile

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant