CN107739929B - 一种高耐候性铝合金及其制备方法 - Google Patents

一种高耐候性铝合金及其制备方法 Download PDF

Info

Publication number
CN107739929B
CN107739929B CN201711227762.5A CN201711227762A CN107739929B CN 107739929 B CN107739929 B CN 107739929B CN 201711227762 A CN201711227762 A CN 201711227762A CN 107739929 B CN107739929 B CN 107739929B
Authority
CN
China
Prior art keywords
aluminium alloy
alloy
weatherability
preparation
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711227762.5A
Other languages
English (en)
Other versions
CN107739929A (zh
Inventor
陈宝书
栾道成
冯再
陈伟
廖力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xihua University
Original Assignee
Xihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xihua University filed Critical Xihua University
Priority to CN201711227762.5A priority Critical patent/CN107739929B/zh
Publication of CN107739929A publication Critical patent/CN107739929A/zh
Application granted granted Critical
Publication of CN107739929B publication Critical patent/CN107739929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/56Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明公开了一种高耐候性铝合金及其制备方法,属于高性能铝合金材料技术领域。本发明在铝合金中添加由Y2O3、La2O3和CeO2构成的稀土粉末并结合特定条件下的热处理工艺明显提高了铝合金的耐腐蚀性能;同时,本发明在进行活化处理后铝合金表面涂覆含有稀土盐的涂层,使得涂层与铝合金表面以相互嵌入的方式紧密结合,而不是仅覆于铝合金表面,而且由于涂层中也含有稀土元素,进一步提高了铝合金的耐候性。

Description

一种高耐候性铝合金及其制备方法
技术领域
本发明涉及高性能铝合金材料技术领域,具体涉及一种高耐候性铝合金及其制备方法。
背景技术
铝合金由于具有密度小、比强度高、导电导热性能优良、塑性好、机械加工性能好等优点广泛应用于轻工、建材、航天航空等领域。尤其是由于其质轻,在航天航空领域应用更为广泛。但是由于高空飞行环境变幻莫测,空气湿度、温度、腐蚀物质对铝合金的损害较大,因此,如何提高铝合金耐候性成为目前面临的技术难题。
发明内容
本发明的目的在于提供一种高耐候性铝合金及其制备方法,以解决现有铝合金耐候性较差的问题。
本发明解决上述技术问题的技术方案如下:
一种高耐候性铝合金制备方法,包括:
(1)将铝合金粉置于熔炉中,升温至1000-1200℃使其熔化,保温15-20min,然后加入占铝合金粉重量比为0.65-0.8%的稀土粉末,继续升温至1400-1500℃,在800-1000r/min的条件下搅拌20-30min并保温30-45min,将熔炉温度降至745-750℃后浇铸,制得铝合金铸锭,其中,所述稀土粉末为重量比为3:4:7的Y2O3、La2O3和CeO2构成的混合物;将铝合金铸锭进行400℃/12h+460℃/12h的双级均匀化处理,并对铝合金铸锭进行多次轧制处理,再在465℃的条件下固溶处理60min,然后淬火,将淬火后的铝合金铸锭置于干燥箱中在120℃的条件下时效处理24h,制得铝合金粗品;
(2)将所述铝合金粗品浸入至由21.5mmol/L的AlCl3和0.86mol/L的尿素构成的混合溶液中,在155-160℃的条件下反应3-3.5h,清洗后在4.5mmol/L的硬脂酸乙醇溶液中浸泡1.5-2h,清洗后烘干,制得活化铝合金;
(3)将白醇酸和稀释剂混合均匀后加入浓度为30g/L的二苯基磷酸溶液并混合均匀,制得磷化溶液,其中,白醇酸、稀释剂和二苯基磷酸溶液的质量比4:1:0.6,稀释剂由40wt%的乙酸乙酯、10wt%的正丁醇、10wt%的乙醇、10wt%的丙酮和30wt%的二甲苯构成;向所述磷化溶液中按照质量分数为1.2%的比例加入硝酸镧溶液,混合均匀,制得涂层原料;
(4)将步骤(2)制得的活化铝合金置于步骤(3)制得的涂层原料中浸渍3-5次,每次浸渍10-15min,每次浸渍完成后取出并自然阴干,然后再进行下一浸渍,待浸渍完成后在45℃的条件下固化4-5h,制得高强度高耐候性铝合金。
进一步地,在本发明较佳的实施例中,上述铝合金粉为Al-Zn-Mg-Cu系铝合金。
进一步地,在本发明较佳的实施例中,上述Al-Zn-Mg-Cu系铝合金包括按重量百分比计的以下组分:Zn 10.82%,Mg 3.03%,Cu 1.45%,Cr 0.12%,Zr 0.26%,Mn 0.24%,余量为Al。
上述的制备方法制备得到的高耐候性铝合金。
本发明具有以下有益效果:
本发明在铝合金中添加由Y2O3、La2O3和CeO2构成的稀土粉末并结合特定条件下的热处理工艺明显提高了铝合金的耐腐蚀性能;同时,本发明在进行活化处理后铝合金表面涂覆含有稀土盐的涂层,使得涂层与铝合金表面以相互嵌入的方式紧密结合,而不是仅覆于铝合金表面,而且由于涂层中也含有稀土元素,进一步提高了铝合金的耐候性。
本发明在铝合金粉中添加由Y2O3、La2O3和CeO2构成的稀土粉末,由于三种稀土粉末在铝合金中固溶度较小,容易富集在晶界处,增大了固-液界面前沿的成分过冷,缩小了合金的二次枝晶间距,而且由于Y2O3、La2O3和CeO2比较活泼,容易在晶粒和合金液之间形成表面膜,阻止合金晶粒长大,达到细化晶粒的目的,从而提高铝合金强度。
本发明通过将铝合金浸入至由21.5mmol/L的AlCl3和0.86mol/L的尿素构成的混合溶液中,在155-160℃的条件下反应3-3.5h,清洗后在4.5mmol/L的硬脂酸乙醇溶液中浸泡1.5-2h,在铝合金表面构筑处纳米结构,在金属表面形成均匀的孔洞和洞穴结构,为涂层浸润提供了足够的浸润空间,使得涂层与合金结合更加紧密。并且本发明对铝合金进行活化处理的反应温度较低、反应热应力小、反应可控、操作简单。
本发明在耐腐蚀涂层原料中稀土元素,提高了整个涂层的自腐蚀电位,提高了涂层本身的耐腐蚀性,从而提高了整个铝合金的耐候性。
具体实施方式
以下结合实施例对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本发明实施例的铝合金粉优选为Al-Zn-Mg-Cu系铝合金,包括按重量百分比计的以下组分:Zn 10.82%,Mg 3.03%,Cu 1.45%,Cr 0.12%,Zr 0.26%,Mn 0.24%,余量为Al。
实施例1:
本实施例的高耐候性铝合金制备方法,包括:
(1)将铝合金粉置于熔炉中,升温至1000℃使其熔化,保温20min,然后加入占铝合金粉重量比为0.65%的稀土粉末,继续升温至1400℃,在800r/min的条件下搅拌30min并保温45min,将熔炉温度降至745℃后浇铸,制得铝合金铸锭,其中,所述稀土粉末为重量比为3:4:7的Y2O3、La2O3和CeO2构成的混合物;将铝合金铸锭进行400℃/12h+460℃/12h的双级均匀化处理,并对铝合金铸锭进行多次轧制处理,再在465℃的条件下固溶处理60min,然后淬火,将淬火后的铝合金铸锭置于干燥箱中在120℃的条件下时效处理24h,制得铝合金粗品;
(2)将所述铝合金粗品浸入至由21.5mmol/L的AlCl3和0.86mol/L的尿素构成的混合溶液中,在155℃的条件下反应3.5h,清洗后在4.5mmol/L的硬脂酸乙醇溶液中浸泡1.5h,清洗后烘干,制得活化铝合金;
(3)将白醇酸和稀释剂混合均匀后加入浓度为30g/L的二苯基磷酸溶液并混合均匀,制得磷化溶液,其中,白醇酸、稀释剂和二苯基磷酸溶液的质量比4:1:0.6,稀释剂由40wt%的乙酸乙酯、10wt%的正丁醇、10wt%的乙醇、10wt%的丙酮和30wt%的二甲苯构成;向所述磷化溶液中按照质量分数为1.2%的比例加入硝酸镧溶液,混合均匀,制得涂层原料;
(4)将步骤(2)制得的活化铝合金置于步骤(3)制得的涂层原料中浸渍3次,每次浸渍15min,每次浸渍完成后取出并自然阴干,然后再进行下一浸渍,待浸渍完成后在45℃的条件下固化4h,制得高强度高耐候性铝合金。
实施例2:
本实施例的高耐候性铝合金制备方法,包括:
(1)将铝合金粉置于熔炉中,升温至1200℃使其熔化,保温150min,然后加入占铝合金粉重量比为0.8%的稀土粉末,继续升温至1500℃,在1000r/min的条件下搅拌20min并保温30min,将熔炉温度降至750℃后浇铸,制得铝合金铸锭,其中,所述稀土粉末为重量比为3:4:7的Y2O3、La2O3和CeO2构成的混合物;将铝合金铸锭进行400℃/12h+460℃/12h的双级均匀化处理,并对铝合金铸锭进行多次轧制处理,再在465℃的条件下固溶处理60min,然后淬火,将淬火后的铝合金铸锭置于干燥箱中在120℃的条件下时效处理24h,制得铝合金粗品;
(2)将所述铝合金粗品浸入至由21.5mmol/L的AlCl3和0.86mol/L的尿素构成的混合溶液中,在160℃的条件下反应35h,清洗后在4.5mmol/L的硬脂酸乙醇溶液中浸泡2h,清洗后烘干,制得活化铝合金;
(3)将白醇酸和稀释剂混合均匀后加入浓度为30g/L的二苯基磷酸溶液并混合均匀,制得磷化溶液,其中,白醇酸、稀释剂和二苯基磷酸溶液的质量比4:1:0.6,稀释剂由40wt%的乙酸乙酯、10wt%的正丁醇、10wt%的乙醇、10wt%的丙酮和30wt%的二甲苯构成;向所述磷化溶液中按照质量分数为1.2%的比例加入硝酸镧溶液,混合均匀,制得涂层原料;
(4)将步骤(2)制得的活化铝合金置于步骤(3)制得的涂层原料中浸渍5次,每次浸渍10min,每次浸渍完成后取出并自然阴干,然后再进行下一浸渍,待浸渍完成后在45℃的条件下固化5h,制得高强度高耐候性铝合金。
实施例3:
本实施例的高耐候性铝合金制备方法,包括:
(1)将铝合金粉置于熔炉中,升温至1100℃使其熔化,保温18min,然后加入占铝合金粉重量比为0.7%的稀土粉末,继续升温至1450℃,在900r/min的条件下搅拌25min并保温40min,将熔炉温度降至748℃后浇铸,制得铝合金铸锭,其中,所述稀土粉末为重量比为3:4:7的Y2O3、La2O3和CeO2构成的混合物;将铝合金铸锭进行400℃/12h+460℃/12h的双级均匀化处理,并对铝合金铸锭进行多次轧制处理,再在465℃的条件下固溶处理60min,然后淬火,将淬火后的铝合金铸锭置于干燥箱中在120℃的条件下时效处理24h,制得铝合金粗品;
(2)将所述铝合金粗品浸入至由21.5mmol/L的AlCl3和0.86mol/L的尿素构成的混合溶液中,在158℃的条件下反应3.2h,清洗后在4.5mmol/L的硬脂酸乙醇溶液中浸泡1.8h,清洗后烘干,制得活化铝合金;
(3)将白醇酸和稀释剂混合均匀后加入浓度为30g/L的二苯基磷酸溶液并混合均匀,制得磷化溶液,其中,白醇酸、稀释剂和二苯基磷酸溶液的质量比4:1:0.6,稀释剂由40wt%的乙酸乙酯、10wt%的正丁醇、10wt%的乙醇、10wt%的丙酮和30wt%的二甲苯构成;向所述磷化溶液中按照质量分数为1.2%的比例加入硝酸镧溶液,混合均匀,制得涂层原料;
(4)将步骤(2)制得的活化铝合金置于步骤(3)制得的涂层原料中浸渍4次,每次浸渍12min,每次浸渍完成后取出并自然阴干,然后再进行下一浸渍,待浸渍完成后在45℃的条件下固化4.5h,制得高强度高耐候性铝合金。
试验例
将上述实施例1-3制得的铝合金样品进行性能检测。对比例为市面出售的Al-Zn-Mg-Cu系铝合金。测试结果见表1。
表1
从表1可以看出,本发明实施例的抗拉伸强度明显高于对比例,并且其在25℃和-20℃下的抗腐蚀性能也优于对比例。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种高耐候性铝合金的制备方法,其特征在于,包括:
(1)将铝合金粉置于熔炉中,升温至1000-1200℃使其熔化,保温15-20min,然后加入占铝合金粉重量比为0.65-0.8%的稀土粉末,继续升温至1400-1500℃,在800-1000r/min的条件下搅拌20-30min并保温30-45min,将熔炉温度降至745-750℃后浇铸,制得铝合金铸锭,其中,所述稀土粉末为重量比为3:4:7的Y2O3、La2O3和CeO2构成的混合物;将铝合金铸锭进行400℃/12h+460℃/12h的双级均匀化处理,并对铝合金铸锭进行多次轧制处理,再在465℃的条件下固溶处理60min,然后淬火,将淬火后的铝合金铸锭置于干燥箱中在120℃的条件下时效处理24h,制得铝合金粗品;
(2)将所述铝合金粗品浸入至由21.5mmol/L的AlCl3和0.86mol/L的尿素构成的混合溶液中,在155-160℃的条件下反应3-3.5h,清洗后在4.5mmol/L的硬脂酸乙醇溶液中浸泡1.5-2h,清洗后烘干,制得活化铝合金;
(3)将白醇酸和稀释剂混合均匀后加入浓度为30g/L的二苯基磷酸溶液并混合均匀,制得磷化溶液,其中,白醇酸、稀释剂和二苯基磷酸溶液的质量比4:1:0.6,稀释剂由40wt%的乙酸乙酯、10wt%的正丁醇、10wt%的乙醇、10wt%的丙酮和30wt%的二甲苯构成;向所述磷化溶液中按照质量分数为1.2%的比例加入硝酸镧溶液,混合均匀,制得涂层原料;
(4)将步骤(2)制得的活化铝合金置于步骤(3)制得的涂层原料中浸渍3-5次,每次浸渍10-15min,每次浸渍完成后取出并自然阴干,然后再进行下一浸渍,待浸渍完成后在45℃的条件下固化4-5h,制得高强度高耐候性铝合金。
2.根据权利要求1所述的高耐候性铝合金的制备方法,其特征在于,所述铝合金粉为Al-Zn-Mg-Cu系铝合金。
3.根据权利要求2所述的高耐候性铝合金的制备方法,其特征在于,所述Al-Zn-Mg-Cu系铝合金包括按重量百分比计的以下组分:
Zn 10.82%,Mg 3.03%,Cu 1.45%,Cr 0.12%,Zr 0.26%,Mn 0.24%,余量为Al。
4.权利要求1至3任一项所述的制备方法制备得到的高耐候性铝合金。
CN201711227762.5A 2017-11-29 2017-11-29 一种高耐候性铝合金及其制备方法 Active CN107739929B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711227762.5A CN107739929B (zh) 2017-11-29 2017-11-29 一种高耐候性铝合金及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711227762.5A CN107739929B (zh) 2017-11-29 2017-11-29 一种高耐候性铝合金及其制备方法

Publications (2)

Publication Number Publication Date
CN107739929A CN107739929A (zh) 2018-02-27
CN107739929B true CN107739929B (zh) 2019-04-16

Family

ID=61239681

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711227762.5A Active CN107739929B (zh) 2017-11-29 2017-11-29 一种高耐候性铝合金及其制备方法

Country Status (1)

Country Link
CN (1) CN107739929B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004315A (zh) * 2019-01-28 2019-07-12 兰州理工大学 基于纳米y2o3颗粒改善zl205a合金热裂倾向性的方法
CN116287903B (zh) * 2023-03-22 2023-09-22 山东国泰铝业有限公司 一种轻量化耐腐蚀铝合金及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952049A (en) * 1996-10-09 1999-09-14 Natural Coating Systems, Llc Conversion coatings for metals using group IV-A metals in the presence of little or no fluoride and little or no chromium
US5964928A (en) * 1998-03-12 1999-10-12 Natural Coating Systems, Llc Protective coatings for metals and other surfaces
ATE389738T1 (de) * 2003-01-17 2008-04-15 Nanmat Technology Co Ltd Chromatfreies vorbehandlungsverfahren für metallegierungen
CN102181855A (zh) * 2011-03-29 2011-09-14 北京化工大学 一种形貌可控尖晶石薄膜及其制备方法
CN103014806A (zh) * 2012-09-05 2013-04-03 业纮企业股份有限公司 阀门用铝合金零部件表面处理方法
CN104962765B (zh) * 2015-06-12 2017-01-04 浙江米皇铝业股份有限公司 一种高耐候性铝合金型材

Also Published As

Publication number Publication date
CN107739929A (zh) 2018-02-27

Similar Documents

Publication Publication Date Title
Dai et al. Microstructure and high-temperature oxidation resistance of Ti-Al-Nb coatings on a Ti-6Al-4V alloy fabricated by laser surface alloying
Guo et al. Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1200° C
US7569283B2 (en) Aluminizing composition and method for application within internal passages
CN107739929B (zh) 一种高耐候性铝合金及其制备方法
US9181447B2 (en) Metal protection coating, hot-dip Zn metallic material and hot-dip Al—Zn metallic material using the same
US8932492B2 (en) Energy-saving anti-corrosive metal film composition and manufacturing method for the same
US9012032B1 (en) MCrAlY bond coat with enhanced Yttrium layer
Montero et al. A single step process to form in-situ an alumina foam/aluminide TBC system for alloys in extreme environments at high temperatures
US20180340445A1 (en) Aluminum-chromium oxide coating and method therefor
EP2644745B1 (en) Metal protective coating, the use thereof, and hot-dip metallic material using the same
JPH04193725A (ja) 緻密保護被覆層を有するフレーク状ガラス及びその製造方法並びに該フレーク状ガラスを含有する塗料
DE69920153T2 (de) Verfahren zur Reparatur eines Turbinebauteiles aus einer Superlegierung
CN106493348B (zh) 一种TiAl3/Al2O3复合粉末及其制备方法和应用
CN102086023B (zh) 溶胶--凝胶结合铝热反应原位合成方法及用该方法合成的FeNiCrTi/NiAl-Al2O3纳米复合材料
Latief et al. Oxidation behavior characteristics of an aluminized Ni-based single crystal superalloy CM186LC between 900 C and 1100 C in air
Wang et al. Oxidation behavior of Hf-modified aluminide coatings on Haynes-188 at 1050° C
DE60209661T2 (de) Hafnium enthaltende Nickelaluminid-Beschichtung und daraus hergestellte Beschichtungssysteme
CN110218332A (zh) 一种负载缓蚀剂的锌配合物纳米容器及其制备方法与应用
CN107267829B (zh) 一种含稀土高强镁合金及其制备方法
CN104923721A (zh) 一种钛合金熔模精密铸造用型壳面层涂料的制备方法
Das et al. Formation of secondary reaction zone in ruthenium bearing nickel based single crystal superalloys with diffusion aluminide coatings
Alam et al. Microstructure and oxidation performance of a γ-γ′ Pt-aluminide bond coat on directionally solidified superalloy CM-247LC
US9963788B2 (en) Concentrate for use in corrosion resistant treatment of metal surfaces
CN110125326A (zh) 一种钛合金熔模精密铸造用复合涂料、面层涂料及其制备方法与应用
CN114540748A (zh) 稀土增强高温渗铝浆料及其涂层制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant