CN107709115A - 用于预期起动热力发动机的方法 - Google Patents

用于预期起动热力发动机的方法 Download PDF

Info

Publication number
CN107709115A
CN107709115A CN201680036471.5A CN201680036471A CN107709115A CN 107709115 A CN107709115 A CN 107709115A CN 201680036471 A CN201680036471 A CN 201680036471A CN 107709115 A CN107709115 A CN 107709115A
Authority
CN
China
Prior art keywords
thermal motor
state
wheel
expected
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680036471.5A
Other languages
English (en)
Inventor
F·勒卡姆
F·鲁多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Nissan Motor Co Ltd
Original Assignee
Renault SAS
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS, Nissan Motor Co Ltd filed Critical Renault SAS
Publication of CN107709115A publication Critical patent/CN107709115A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/30Wheel torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor

Abstract

一种用于预期起动混合动力传动系中的热力发动机的方法,该混合动力传动系包括至少一个热力发动机、电动牵引机器以及自动变速器,该自动变速器在其传动系的至少一个初始状态下以及在至少另一个目标状态下将传动动力传递到车辆的车轮,在该至少一个初始状态下,该牵引机器单独地提供车辆牵引力并且该热力发动机被关闭,并且在该至少另一个目标状态下,该热力发动机提供牵引动力,该方法的特征在于,其涉及在该传动系在不需要起动的热力发动机的初始状态与需要起动热力发动机的目标状态之间的每个状态变化之前根据该车辆的纵向加速度(A_longi)及其起动时间(T_dem_Mth)将预期的起动请求(Mth_allumé_req)发送给该热力发动机。

Description

用于预期起动热力发动机的方法
本发明涉及混合动力传动系的控制,该混合动力传动系包括至少一个热力发动机、电动牵引机器以及自动变速器,该自动变速器被连接到车辆的车轮上。
更确切地,本发明涉及一种用于预期起动混合动力传动系中的热力发动机的方法,该混合动力传动系包括至少一个热力发动机、电动牵引机器以及自动变速器,该自动变速器在其传动系的至少一个初始状态下以及在至少另一个目标状态下将动力传递到车辆的车轮,在该至少一个初始状态下,该电动牵引机器单独地提供车辆牵引力并且该热力发动机被停止,并且在该至少另一个目标状态下,该热力发动机提供牵引动力。
配备有自动变速器的机动车辆的动力传动系具有一定数量的传动系状态(ECC),这些传动系状态是由车辆中可用的减速器、耦合器以及动力模块的特定组合限定的。变速器控制系统的一个目的是使动力传动系在所有情况下(不论运行条件)处于最优传动系状态。用于提供期望的行为的控制约束条件包括噪声和振动(或NVH,表示“噪声、振动与声振粗糙度”)的限制、机械部件的可靠性限制、以及性能(加速度储备、驾驶员需求等)的优化。最后,在混合动力车辆中,按照定义该混合动力车辆包括至少两个动力源,该至少两个动力源包括热力发动机,传动系通常可以具有至少一个状态,在该至少一个状态下,热力发动机是不需要的、并且经常被停止以限制燃料消耗。
当传动系从热力发动机被停止的一个状态变换到热力发动机被用于提供或有助于车辆的牵引力并且满足加速度请求的一个状态时,热力发动机不是瞬间起动。由于其起动时间,新的目标状态的选择与热力发动机的可用性之间存在延迟。
图1示出了根据车辆的速度的相同变速器的传动系状态的最大力包络之间在大多数情况下的可能的差异。在这个示例中,车轮可用的力在第一状态下比在热的或混合的第二状态ECC2小得多,该第一状态不需要将热力发动机作为动力源(电传动系状态,EEC1)。然而,ECC2状态仅在高于由ECC1提供的车辆的发动速度的速度下(换言之,当热力发动机可以联接到车轮而无失速风险时)才可用。ECC1状态,其将纯电动原点(零排放车辆(ZEV))的最大力供给车轮,该状态没有覆盖混合的或热的模式下动力传动系的整个最大力包络。
当触发了从电动状态变换到混合的或热的状态以遵循车轮处的转矩要求的发展时,热力发动机不是瞬间起动。由于其速度太高而不允许联接新的状态,用于状态变换的时间然后可以如此长以致于新的状态超过其可靠性限制。这延迟了相同的持续时间中驾驶员期望的转矩的供应。
公开文件US 7 407 026披露了一种通过预测传动系的状态的变换来将预期的起动请求发送给热力发动机的方式,这需要起动热力发动机。这个方法在于,在发动机本将起动的时刻计算没有热力发动机的情况下车轮可用的力。然后,可以将可用的力与车轮处的力请求进行比较,该车轮处的力请求被假定为恒定的。
这个方法不能操作除非变速器仅具有电传动系的一个状态。此外,它不允许这个状态下电动机器的动力的任何变化。需要时,它使热力发动机起动,但不能使混合的或热的状态的选择与用于转换的执行和车轮处所需的转矩的供应的热力发动机的可用性之间的延迟最小化。
本发明旨在实现这个目标。
为此目的,本发明提出,在该传动系在不需要起动热力发动机的初始状态与需要起动热力发动机的目标状态之间的每个状态变换之前基于车辆的纵向加速度及其起动时间将预期起动请求发送给热力发动机。
该方法是基于在热力发动机起动的预测时刻车轮在非热的或非混合的状态下可用的力的计算、考虑所需的起动时间、以及这个力与车轮处的目标力请求的比较。
优选地,用于起动热力发动机的预期请求的必要条件是:该发动机被停止、并且该动力传动系不能满足车轮处的目标力请求,该车轮处的目标力请求与驾驶员和/或驾驶员辅助系统(如速度控制器)的请求相对应。
这个方法可以使用在配备有自动变速器的所有混合动力车辆上,其中动力传动系具有不需要起动的热力发动机的至少一个传动系状态以及需要起动发动机的至少一个状态。
本发明将从本发明的非限制性实施例的以下说明的阅读中并参照附图得到更好地理解,在附图中:
-图1示出了两个传动系状态(ZEV以及热的或混合的)之间的差异,
-图2是所开发的策略的流程图,
-图3是所开发的策略的第一子流程图F1,并且
-图4是所开发的策略的第二子流程图F2。
图2示出了针对预期的最大力的计算、在该方法的第一阶段F1中所使用的所有数据:
-V_veh:车辆的速度,
-P_max_ECC_1至P_max_ECC_X:传动系的非热的或非混合的状态ECC1至ECCX中可用的最大动力,
-A_longi:车辆的纵向加速度,
-T_dem_Mth:主要根据热力发动机的温度变化、例如基于冷却液体温度估计的热力发动机的起动时间。
在第一步骤F1中计算每个状态下预期的最大力F_max_ant_1至F_max_ant_X。在第二步骤F2中使用这些最大力,该第二步骤还使用车轮处的目标力请求F_cible以及热力发动机的状态Mth_état(停止或运行)。车轮处的目标力F_cible被假定为恒定的直到起动热力发动机。步骤F2运算用于热力发动机的预期的起动请求Mth_allumé_req。
这个方法使得能够在混合动力传动系中预期启动热力发动机,该混合动力传动系包括至少一个热力发动机、电动牵引机器以及自动变速器,该自动变速器在其传动系的至少一个初始状态下以及在至少另一个目标状态下将热力发动机和/或电动机器的动力传递到车辆的车轮,在该至少一个初始状态下,该电动牵引机器单独地提供车辆牵引力并且该热力发动机没有被起动,并且在该至少另一个目标状态下,该热力发动机提供牵引动力。
图3详述了第一步骤F1。在此步骤中,车轮处的最大力F_max_calc_X是基于在这个状态下的最大动力P_max_ECC_X以及在该发动机的实际起动时预期的速度V_ant、针对该传动系的每个状态X计算的。预期的速度V_ant是基于在起动该热力发动机之后达到的估计的速度V_ant_calc计算的,该估计的速度是在起动热力发动机之前从估计的速度增加V_delta推导出来的。
该预期的速度(V_ant)等于计算出的估计的速度(V_ant_calc)和校准的最小速度(V_min_sat)中的较高项。
该速度增加(V_delta)是基于该纵向加速度(A_longi)和该热力发动机的起动时间(T_dem_Mth)估计的。
各个计算子步骤F1为:
a)基于纵向加速度A_longi和热力发动机的起动时间T_dem_Mth来计算热力发动机的起动过程中估计的速度增加V_delta:V_delta=A_longi*T_dem_Mth;
b)基于估计的速度增加V_delta和车辆速度V_veh来计算热力发动机起动之后达到的估计的速度V_ant_calc:V_ant_calc=V_delta+V_veh;
c)基于校准的最小速度V_min_sat和V_ant_calc来计算所达到的饱和的估计的速度V_ant:V_ant=MAX(V_min_sat;V_ant_calc);
d)对于所涉及的每个状态(从1到X)而言,基于最大动力P_max_X和饱和的预期速度V_ant来计算车轮处的最大力F_max_calc_X:F_max_calc_X=P_max_X/V_ant;
e)对于所涉及的每个状态(从1到X)而言,基于F_max_calc_X和校准的最大力来计算车轮处饱和的最大力F_max_ant_X:F_max_ant_X=MIN(F_max_ECC_X;F_max_calc_X)。
该方法是基于在用于起动热力发动机所需的时间T_dem_Mth之后车轮在非热的或非混合的状态下可用的力的计算、以及这个力与车轮处的目标力请求之间的比较。
每个状态下车轮处的预期的最大力F_max_ant_X(等于在e)中计算的车轮处的饱和的最大力)等于计算的最大力F_max_calc_X和校准的最大力(F_max_ECC_X)中的较小项。
c)中介绍的校准的最小速度V_min_sat可以避免策略执行过程中不可能的操作。变量F_max_ant_X表示在状态X下预期的最大力。如果热力发动机立即起动,则这是在延迟T_dem_Mth结束时将可用的最大力。
图4示出了第二步骤F2。这个步骤在于运算用于热力发动机的预期的起动请求Mth_allumé_req。为此目的,车轮处的预期的最大力(F_max_ant_X)是在该传动系的每个状态下确定的、并且与该车轮处的该目标力请求(F_cible)进行比较的。
借助于命令Mth_allumé_req起动热力发动机的决策的必要条件如下:
-发动机停止:Mth_état=停止(Stopped),
-传动系中纯电动(非混合的和非热的)传动状态、不能供应车轮处请求的目标力:F_max_ant_1<F_cible并且F_max_ant_X<F_cible。
这个最后条件意味着与所有电动状态相比,混合的或热的状态供应更多动力。如果满足这两个条件,则起动请求Mth_allumé_req变为“真(true)”。否则,请求保持“假(false)”。最终,在该传动系在不需要起动热力发动机的初始状态与需要起动热力发动机的目标状态之间的每个状态变化之前、基于车辆的纵向加速度A_longi及其起动时间T_dem_Mth将预期的起动请求Mth_allumé_req发送给发动机。
所提出的方法具有许多优点,包括:
-易于总体变速器控制策略的实施,
-实时执行,把车辆的可变参数(如在传动系状态下的最大动力、车辆的加速度、道路坡度等)考虑进去,
-所有混合动力传动系架构的潜在应用,该混合动力传动系架构具有至少两个传动系状态,该至少两个传动系状态包括一种状态(在该状态中,该热力发动机运行)和一种状态(在该状态中,该热力发动机停止)。

Claims (9)

1.一种用于预期起动混合动力传动系中的热力发动机的方法,该混合动力传动系包括至少一个热力发动机、电动牵引机器以及自动变速器,该自动变速器在其传动系的至少一个初始状态下以及在至少另一个目标状态下将动力传递到车辆的车轮,在该至少一个初始状态下,该电动牵引机器单独地提供车辆牵引力并且该热力发动机被停止,并且在该至少另一个目标状态下,该热力发动机提供牵引动力,根据该方法,在该传动系在不需要起动热力发动机的初始状态与需要起动该发动机的目标状态之间的每个状态变化之前基于该车辆的纵向加速度(A_longi)及其起动时间(T_dem_Mth)将预期的起动请求(Mth_allumé_req)发送给该热力发动机,该方法的特征在于,其是基于在用于起动该热力发动机所需的时间(T_dem_Mth)之后该车轮在非热的或非混合的状态下可用的最大力的计算、并且基于这个力与该车轮处的目标力请求(F_cible)的比较,该车轮处的该目标力请求与驾驶员和/或驾驶员辅助系统的请求相对应。
2.如权利要求1所述的预期方法,其特征在于,触发用于起动该热力发动机的预期请求(Mth_allumé_req)的必要条件是:该发动机被停止、并且该动力传动系不能满足在这些非热的和非混合的传动系状态下该车轮处的该目标力请求(F_cible)。
3.如权利要求1或2所述的预期方法,其特征在于,该车轮处的该目标力请求(F_cible)被假定为恒定的直至起动该热力发动机。
4.如权利要求1、2或3所述的预期方法,其特征在于,该车轮处的预期的最大力(F_max_ant_X)是在该传动系的每个状态下确定的、并且与该车轮处的该目标力请求(F_cible)进行比较。
5.如权利要求2或3所述的预期方法,其特征在于,该车轮处的最大力(F_max_calc_X)是基于在这个状态下的最大动力(P_max_ECC_X)以及与该热力发动机的实际起动时刻相对应的预期的速度(V_ant)、针对该传动系的每个状态计算的。
6.如权利要求4和5所述的预期方法,其特征在于,每个状态下该车轮处的该预期的最大力(F_max_ant_X)等于计算的最大力F_max_calc_X和校准的最大力(F_max_ECC_X)中的较小项。
7.如以上权利要求中任一项所述的预期方法,其特征在于,在起动该热力发动机之后达到的估计的速度(V_ant_calc)是基于在该热力发动机的起动过程中估计的速度增加(V_delta)计算的。
8.如权利要求5、6或7所述的预期方法,其特征在于,该预期的速度(V_ant)等于计算的估计速度(V_ant_calc)和校准的最小速度(V_min_sat)中的较高项。
9.如权利要求7和8中任一项所述的预期方法,其特征在于,该速度增加(V_delta)是基于该纵向加速度(A_longi)和该热力发动机的起动时间(T_dem_Mth)估计的。
CN201680036471.5A 2015-07-07 2016-01-14 用于预期起动热力发动机的方法 Pending CN107709115A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1556428 2015-07-07
FR1556428A FR3038567B1 (fr) 2015-07-07 2015-07-07 Procede d'anticipation du demarrage d'un moteur thermique
PCT/FR2016/050060 WO2017005996A1 (fr) 2015-07-07 2016-01-14 Procede d'anticipation du demarrage d'un moteur thermique

Publications (1)

Publication Number Publication Date
CN107709115A true CN107709115A (zh) 2018-02-16

Family

ID=54260934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680036471.5A Pending CN107709115A (zh) 2015-07-07 2016-01-14 用于预期起动热力发动机的方法

Country Status (11)

Country Link
US (1) US20180186382A1 (zh)
EP (1) EP3319852A1 (zh)
JP (1) JP2018521902A (zh)
KR (1) KR20180020237A (zh)
CN (1) CN107709115A (zh)
BR (1) BR112018000290A2 (zh)
CA (1) CA2991379A1 (zh)
FR (1) FR3038567B1 (zh)
MX (1) MX2018000025A (zh)
RU (1) RU2018103404A (zh)
WO (1) WO2017005996A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10413167B2 (en) * 2017-05-30 2019-09-17 Synaptive Medical (Barbados) Inc. Micro-optical surgical probes and micro-optical probe tips and methods of manufacture therefor
KR102343955B1 (ko) * 2017-07-31 2021-12-27 현대자동차주식회사 하이브리드 자동차 및 그를 위한 주행 모드 제어 방법
FR3070946B1 (fr) * 2017-09-08 2020-10-16 Psa Automobiles Sa Procede de commande de la gestion du groupe moto-propulseur d’un vehicule automobile
JP2019162919A (ja) * 2018-03-19 2019-09-26 本田技研工業株式会社 制御装置、制御方法及びプログラム
FR3091837B1 (fr) * 2019-01-17 2020-12-18 Renault Sas Procede de controle du demarrage d’un moteur thermique dans un groupe motopropulseur hybride

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331780A (zh) * 1998-12-24 2002-01-16 丰田自动车株式会社 内燃机的输出状态检测装置
CN1386972A (zh) * 2001-05-23 2002-12-25 现代自动车株式会社 汽车冷启动和空转时减少排气的发动机控制方法
CN1547643A (zh) * 2001-08-29 2004-11-17 �ٹ��� 用于接合至一涡轮增压内燃机的自动手动变速器的换档控制策略
US20050211479A1 (en) * 2000-10-11 2005-09-29 Ford Global Technologies, Llc Control system for a hybrid electric vehicle to anticipate the need for a mode change
US20150051821A1 (en) * 2013-08-19 2015-02-19 GM Global Technology Operations LLC Method of controlling a tandem solenoid starter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067358A (ja) * 2007-09-18 2009-04-02 Advics:Kk 車両自動走行制御装置
DE102009045567A1 (de) * 2009-10-12 2011-04-14 Robert Bosch Gmbh Verfahren zum Betreiben einer Antriebsvorrichtung eines Kraftfahrzeugs sowie Antriebsvorrichtung für ein Kraftfahrzeug
JP2012224238A (ja) * 2011-04-20 2012-11-15 Aisin Aw Co Ltd ハイブリッド車両の制御装置
GB2508670A (en) * 2012-12-10 2014-06-11 Jaguar Land Rover Ltd Hybrid vehicle and boost control for gradients

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1331780A (zh) * 1998-12-24 2002-01-16 丰田自动车株式会社 内燃机的输出状态检测装置
US20050211479A1 (en) * 2000-10-11 2005-09-29 Ford Global Technologies, Llc Control system for a hybrid electric vehicle to anticipate the need for a mode change
CN1386972A (zh) * 2001-05-23 2002-12-25 现代自动车株式会社 汽车冷启动和空转时减少排气的发动机控制方法
CN1547643A (zh) * 2001-08-29 2004-11-17 �ٹ��� 用于接合至一涡轮增压内燃机的自动手动变速器的换档控制策略
US20150051821A1 (en) * 2013-08-19 2015-02-19 GM Global Technology Operations LLC Method of controlling a tandem solenoid starter

Also Published As

Publication number Publication date
BR112018000290A2 (pt) 2018-09-04
CA2991379A1 (en) 2017-01-12
RU2018103404A (ru) 2019-08-07
WO2017005996A1 (fr) 2017-01-12
FR3038567B1 (fr) 2018-06-22
FR3038567A1 (fr) 2017-01-13
EP3319852A1 (fr) 2018-05-16
MX2018000025A (es) 2018-03-15
JP2018521902A (ja) 2018-08-09
RU2018103404A3 (zh) 2019-08-07
KR20180020237A (ko) 2018-02-27
US20180186382A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
CN107709115A (zh) 用于预期起动热力发动机的方法
US9308907B2 (en) Apparatus and method for controlling clutch slip of hybrid vehicle
US10128780B2 (en) Method and system for controlling the regenerative braking of a vehicle
CN103863298B (zh) 用于控制混合动力车的行驶模式转换的方法和系统
CN104943677B (zh) 用于确定发动机分离离合器扭矩的系统和方法
US10017173B2 (en) Apparatus and method for controlling torque intervention of hybrid vehicle
US20140343771A1 (en) System and method of converting driving mode and controlling shifting of hybrid vehicle
US20150344025A1 (en) Apparatus and method for controlling clutch of hybrid vehicle
US9371069B2 (en) Apparatus and method for controlling engine clutch of hybrid electric vehicle
US8457825B2 (en) Method and apparatus for operating a powertrain system in response to accessory load
US9975451B2 (en) Method and apparatus for the determination of regenerative braking capacity in a vehicle with a step-gear transmission
US9014892B2 (en) Control system and method for hybrid vehicle
US9283952B2 (en) Method and apparatus for fault mitigation in a torque machine of a powertrain system
US20150197250A1 (en) Method and apparatus for controlling creep torque in a hybrid powertrain system
US20170361830A1 (en) Shifting control method for hybrid vehicle
CN105437983B (zh) 用于调整抬升踏板再生的车辆系统和方法
US10411631B2 (en) Method and apparatus for vibration damping in a powertrain system
CN105460006B (zh) 车辆
US10124679B2 (en) Method and apparatus for recharging an energy storage device on a vehicle
CN104417540B (zh) 车辆
CN105730434B (zh) 用于控制混合动力车的充电的系统和方法
US10941723B2 (en) Controller for controlling an engine of a vehicle
US9260108B2 (en) Hybrid powertrain and method for controlling the same
JP6439553B2 (ja) 制御システム
US10399559B2 (en) System and method of controlling engine clutch engagement during TCS operation of hybrid vehicle

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination