CN107708854A - 纯化金刚石粉末 - Google Patents

纯化金刚石粉末 Download PDF

Info

Publication number
CN107708854A
CN107708854A CN201580080856.7A CN201580080856A CN107708854A CN 107708854 A CN107708854 A CN 107708854A CN 201580080856 A CN201580080856 A CN 201580080856A CN 107708854 A CN107708854 A CN 107708854A
Authority
CN
China
Prior art keywords
diamond
pollutant
metal
plasma
diamond particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580080856.7A
Other languages
English (en)
Inventor
梁齐
W·B·阿特金斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of CN107708854A publication Critical patent/CN107708854A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/28Acidic compositions for etching iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F7/00Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/02Particle morphology depicted by an image obtained by optical microscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8477Investigating crystals, e.g. liquid crystals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/87Investigating jewels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Abstract

本公开涉及一种纯化金刚石的方法,所述方法通过以下步骤来进行:利用等离子体清洗工艺,在金刚石颗粒中的金属夹杂污染物使所述金刚石颗粒从内部破裂时的温度下,从所述金刚石中的所述金刚石颗粒中去除碳污染物,和在化学或电化学清洗工艺中从所述金刚石中去除金属污染物。

Description

纯化金刚石粉末
技术领域
本公开涉及纯化金刚石粉末。
背景
材料的晶体结构可能会极大地影响所得性质。举例来说,金刚石、石墨和烟灰各自几乎完全由碳(C)形成且仅在其晶体结构上有所不同。然而,金刚石是已知最坚硬的物质之一且具有极高的导热能力。相比之下,石墨和许多其他形式的碳极软且不能较好地导热而且缺乏金刚石的其他有用性质。金刚石经常受到这些其他碳形式的污染,这会降低金刚石在一些应用中的有用性。
金刚石也可能会受到在给定应用中硬度较小、导热性较低或在其他方面较差的金属或其他材料的污染。人造金刚石尤其是如此,所述人造金刚石通常是通过溶剂-催化剂方法由溶解于例如镍(Ni)、钴(Co)或铁(Fe)等熔融催化剂金属中的石墨制得。所述溶剂-催化剂工艺通常会余留过量的石墨和沉淀的催化剂金属与金属化合物作为污染物。出于各种各样的原因,这些污染物在金刚石中的存在是有害的。尽管可使用诸多方法来去除金刚石污染物,例如酸浴、电化学浸出和冲洗,但这些方法通常仅限于纯化金刚石颗粒的表面。囊封在金刚石结构内的污染物,有时被称为夹杂材料,是很常见的且通常是通过压碎金刚石颗粒而接近。然而,由于金刚石是已知最硬的材料,所以压碎工艺的实施困难且昂贵。
附图简述
通过参照以下说明且结合附图来理解,可实现更完全且彻底地理解本发明实施方案和其优点,所述附图未按比例绘制,其中相同参考编号指示相同特征,且其中:
图1A是通过溶剂-催化剂方法形成后未经纯化的金刚石颗粒横截面的示意图;
图1B是使用本公开的方法纯化后,来自图1A的金刚石颗粒横截面的示意图。
图2是用于纯化金刚石的工艺的流程图;
图3是经纯化金刚石的实例性X-射线衍射(XRD)图;且
图4是受污染金刚石(1)和经纯化金刚石(2)的实例性光学显微镜图像。
详细描述
可通过以下步骤来纯化受污染金刚石:首先使用等离子体清洗处理来去除碳污染物,同时使得金属夹杂污染物膨胀,这使金刚石颗粒从内部破裂,从而使金属污染物以及任何与金属污染物共存的其他碳污染物暴露。接着使用化学或电化学处理来去除暴露的金属污染物,从而产生经纯化的金刚石。整个工艺不仅提高了金刚石纯度,还可使金刚石颗粒解聚和/或产生更小的金刚石粒径,例如具有纳米粒径的金刚石颗粒。
图1A是实例性未经纯化的金刚石颗粒聚集物10的横截面示意图。未经纯化的金刚石颗粒20a位于烃基质30中,所述烃基质可由烟灰和其他烃形成。未经纯化的金刚石颗粒20a还含有碳污染物的洋葱状壳40(例如石墨材料)以及金属夹杂污染物50。金属夹杂污染物可包含金属(例如VII族金属,特别是Co、Ni和Fe)、金属合金和金属化合物(例如金属盐)。图1B(也未按比例绘制)是实例性经纯化金刚石颗粒20b的横截面示意图。这些金刚石颗粒小于未经纯化的金刚石颗粒20a且缺少烃基质30和洋葱状壳40。
经纯化的金刚石(例如图1B中所绘示的)可使用图2的纯化工艺由受污染金刚石(例如图1A中所绘示的)产生。在步骤110中,将含有受污染金刚石颗粒的受污染金刚石置于等离子体清洗室中。等离子体清洗室通常含有用于清洗样品的区域,使得样品在等离子体产生时暴露于所述等离子体。而且在步骤110中,将氧从等离子体清洗室中去除。通常,通过密封等离子体清洗室,然后泵送出气体而在所述等离子体清洗室中产生真空。在容许正常空气排出的同时,也可使用减少或最小化等离子体清洗室中所存在氧量的其他方法,例如用泵吸入其他气体。如果在等离子体清洗室中产生等离子体时存在氧,则可导致额外的金刚石污染。因此,可去除足够的氧以使氧衍生的污染物保持在预定水平以下,例如通过经纯化金刚石样品的XRD可检测到低于预定水平。
将氧从等离子体清洗室中去除后,在步骤120中,将等离子体形成气体注入所述室中并点燃以形成等离子体。这个步骤还提高了所述室内的温度,包含受污染金刚石的温度。适用于步骤120的等离子体形成气体包含氢(H)、氩(Ar)、氧(O)、氟(F)和其任何组合。用于点燃等离子体的能源包含微波、直流电极、交流电极、射频电极、弧光电极和电感耦合。等离子体清洗室中的压力可在10毫托(milli Torr)(对于低压等离子体清洗)与7600托(对于弧光等离子体清洗)之间。等离子体与金刚石颗粒表面上的碳污染物反应并将其从金刚石中去除。副产物为二氧化碳、一氧化碳和烃气体,其可从等离子体清洗室中去除或可进一步反应以形成不会再沉积于金刚石上的其他气态材料。
等离子体可产生300℃到1500℃或500℃到高达1500℃的金刚石表面温度。内部温度还可在300℃到1500℃或500℃到高达1500℃之间。在这个温度下,金属夹杂污染物膨胀远超过金刚石,如其热膨胀系数(CTE)所反映的。膨胀使金刚石颗粒从内部破裂。表1列示金刚石和常见金属夹杂污染物的CTE。在使用不同金属夹杂污染物来使金刚石颗粒破裂的情况下,确保相似金刚石晶体破裂的适当等离子体温度可从使用这些常见金属夹杂污染物获得的数据中推测出来,且如果适用,则可推测出其他数据,例如浓度或其他比例和反映夹杂污染物在金刚石颗粒内的位置的数据。
表1-金刚石和常见金属夹杂污染物在20℃下的CTE
*表示为10-6m/mK
对步骤120实施预选时间段。尽管等离子体也可与金刚石反应,但其与金刚石反应的速率大幅低于其与石墨、非晶形碳和其他碳污染物反应的速率。因此,预选时间段可容许充分去除碳污染物,同时限制所去除金刚石的量。
对于具有相似类型和碳污染物和金属夹杂污染物量的金刚石颗粒,所述时间段可以实验方式来预先确定。这种方式容许步骤120实施最少量的时间,这可能是最高效且最成本有效的。或者,时间段可能仅仅是预选的时间段,例如5分钟、10分钟、30分钟或1小时。通常,以实验方式确定的时间段或仅预选的时间段都将足够长以预期去除至少预选量的碳污染物,导致预选量的由金属夹杂污染物引起的破裂,导致预选比例的金属夹杂污染物经由破裂暴露或经由破裂获得预选的粒径。
步骤120任选地还包含金刚石颗粒的物理搅动。物理搅动可利用等离子体清洗室中的搅动器或通过搅动整个室或二者来实现。在通过金属夹杂污染物形成裂纹后,物理搅动可使得金刚石颗粒更快地分裂。物理搅动还可使所去除碳污染物的量增加,容许更快的去除未从其中去除碳污染物的金刚石颗粒或聚集金刚石或避免所述金刚石颗粒或聚集金刚石的碎片。这些效应中的任一个都可提高整体工艺的效率并且可容许预选时间段比如果不提供物理搅动的情况更短。
在步骤120之后可任选地进行淬火步骤(未显示),在所述淬火步骤中金刚石的温度迅速降低。在淬火期间因材料收缩而加于金刚石颗粒上的应力也可使得所述金刚石颗粒破裂。举例来说,由于金刚石极其导热,所以在淬火期间可比任何夹杂污染物远远更快地冷却,从而导致在污染物周围破裂。
金属污染物通常不是通过等离子体处理来去除,因为大多数金属污染物不具有气相。在步骤130中,使经等离子体处理的金刚石(包含经等离子体处理的金刚石颗粒)经受化学或电化学清洗工艺以去除金属污染物。处理可基于预期或以实验方式确定在金刚石中的金属污染物来选择。通常,单一处理方法可能会去除多种类型的金属污染物,在许多情形下包含所有类型的金属污染物。可同时或依序使用多种类型的处理。去除金属污染物的处理包含化学和电化学方法。通常,在化学或电化学处理之前将金刚石从等离子体清洗室中去除。
去除金属污染物的化学处理可包含使金刚石颗粒暴露于能溶解金属污染物的液体。适宜液体可基于待去除的金属污染物来选择,但通常将包含酸,例如王水(一份硝酸,三份盐酸)、其他盐酸、其他硝酸、氢氟酸、氯化铜和氯化铁和其任何组合。适宜液体还可包含腐蚀性材料,例如氢氧化钠和氢氧化钾或其组合。无论化学处理是在浴中还是在冲洗或洗涤中发生,实施的时间长度、实施时的温度和是否施加压力取决于所用液体、其浓度、待去除金属污染物的量和如何提供金刚石。举例来说,强酸浴可用于在化学处理之前已形成PCD的金刚石,通常在高达800℃的温度下或足以容许去除金属或烧结助剂的其他高温下进行。相比之下,具有易溶金属污染物的松散金刚石颗粒可以仅仅洗涤。
去除金属污染物的电化学处理可包含在还含有阴极和电解质的电化学电池的阳极中使用金刚石。阳极和阴极可经由铅和电压源电连接,除此之外以其他方式电绝缘,否则将发生短路。阳极和阴极是通过电解质化学连接。电解质可呈液体形式且可为酸性盐水溶液、非水性离子液体、液体盐和其任何组合。电解质可包含至少一种离子、特别是无机盐离子,例如卤离子、硫酸根离子、碳酸氢根离子、次磷酸根离子和其任何组合。举例来说,一个实例性电解质可由硫酸和氯离子形成。
在一些处理方法中,由金属污染物形成的阳离子可能与存在于电解质中的氢氧根(OH-)反应,从而形成金属氢氧化物,所述金属氢氧化物不溶于水且可能在阳极或阴极形成沉积物,因此需要酸来将其去除。这种形成沉积物的倾向经常妨碍电化学处理,且因此可以通过提供金属离子可与其反应的另一阴离子来减少或避免金属氢氧化物的形成。适宜的替代离子包含硫酸根离子(SO4 2-)、氯离子(Cl-)和硝酸根离子(NO3 -)和其组合。电解质中酸的夹杂进一步有助于避免沉积物,即便在对干扰金属氢氧化物沉积物无效的pH或酸浓度下也是如此。举例来说,电解质可含有稀硝酸(HNO3)和硝酸铁(III)(Fe(NO3)3)。
如果金刚石颗粒最终将被纳入诸如多晶金刚石(PCD)台等制品中,则所述制品可在等离子体清洗处理之后且在任一化学或电化学处理之前由金刚石颗粒形成。这可容许其他污染物(例如,用于形成PCD的烧结助剂)与金属污染物在步骤130中同时被去除。此外,在金属污染物可在PCD形成期间用作烧结助剂的情况下,等待PCD形成后再实施步骤130,可提高PCD形成效率或容许较少的其他烧结助剂在PCD形成之前或期间添加到金刚石颗粒中。
在步骤140中,评估金刚石的残余污染物。评估方法可能有所不同,这取决于金刚石是否仍呈粉末形式或其是否已形成制品,例如PCD。
如果在步骤140中确定金刚石具有少于预选量的预选污染物或污染物集合,则在步骤150中将其视为经纯化的金刚石。如果金刚石具有多于预选量的预选污染物或污染物集合,则将其返回至步骤110并进一步进行等离子体清洗处理,随后进一步进行化学或电化学处理。或者,可将金刚石仅仅返回至等离子体清洗处理或仅仅化学或电化学处理,这取决于所发现残余污染物的类型和量。
磁力分选是一种适用于在步骤140中评估金刚石的方法。许多污染物是顺磁性的且因此对由磁场所施加的力敏感。可使用磁场来使污染物或含有污染物的金刚石与经纯化金刚石分离。
XRD是一种适用于在步骤140中评估金刚石的方法。可将使用XRD获得的峰型与已知金刚石型式和已知污染物的型式匹配以鉴别残余污染物。图3是经纯化金刚石的实例性XRD图案。可观察到[11]、[220]和[311]处的金刚石破裂峰。较低2θ轴上的小峰代表极少量的残余污染物。也可使用残余污染物峰强度来估计特定残余污染物的相对量或总量。即使在峰不能与具体残余污染物匹配时,不符合金刚石的峰的存在也可指示未鉴别残余污染物的存在,这可能指示需要重复纯化工艺。在预期存在结晶残余污染物时,可使用XRD作为唯一的评估方法。然而,由于通过XRD检测非晶形材料的限制,所以如果预期存在或特别关注非晶形残余污染物,则可将XRD与能更好地检测非晶形材料的其他方法组合。另外,由于用于XRD的样品制备通常对PCD制品具有破坏性,所以如果在步骤140中评估PCD,则可使代表性PCD制品经受XRD测试,且可假定PCD制品的结果适用于在同一金刚石颗粒工艺批次和同一PCD制造批次中由相同金刚石形成的其他PCD制品。
光学显微术是适于在步骤140中使用的另一方法。可使用光学显微术来检测夹杂污染物,例如可在图4的金刚石颗粒(1)中观察到的那些。此类深色夹杂污染物在经纯化的金刚石颗粒中可能不可见,例如图4中的颗粒(2)。可基于粒径来调整显微镜放大率,且对于超过光学显微镜极限的极小颗粒,可使用替代评估方法。通常将评估金刚石颗粒的代表性样品且将假定所述样品的结果适用于同一金刚石颗粒工艺批次。由于光学显微术不具破坏性,所以可使经评估的金刚石颗粒返回至剩下的批次。这容许评估整个批次,作为使用代表性样品的替代方案。通常,如果评估整个批次,则将使光学显微术工艺自动化,且将使用图像分析软件来检测夹杂污染物并对其进行编目。此类软件还可用于代表性样品方法以改良精确度。
尽管夹杂污染物可能是通过光学显微术最容易检测的污染物,但也可检测到金刚石颗粒外部的污染物。
可使用不同光源来检测不同污染物或容许检测不同颜色的金刚石颗粒。当人类评估员使用不同光源时,还可使用滤光器来观察污染物。基于软件的检测也可使用滤光器,但也可使用较宽谱监测器代替滤光器。
尽管可通过光学显微术来评估诸如PCD等制品,但一些制品太不透明而无法进行光学显微术。
步骤140还可包含非光学显微术,例如扫描电子显微术(SEM)、透射电子显微术(TEM)和扫描透射电子显微术(STEM)。尽管这些形式的显微术可以用于检测污染物,但通过将其与能量色散X射线光谱仪(EDS)组合通常可改良检测。EDS鉴别显微镜图像中的特定元素,所以其也可容许极具体地鉴别污染物的类型。SEM、TEM和STEM在单独或与EDS组合时几乎不能或不能检测表面下污染物。所以可将这些方法与其他评估方法组合来检测夹杂污染物。
用于非光学显微术的样品制备易于破坏制品并且使样品不适于后续使用。因此,金刚石颗粒或PCD的代表性样品与上文针对XRD和光学显微术所描述的代表性样品相似,可用于非光学显微术评估。
可在步骤140中评估磁性饱和以确定是否存在许多金属污染物。磁性饱和是某些金属的性质,包含许多VIII族金属,例如Co、Ni、Fe和其合金。在施加到材料的外磁场增加无法进一步增加材料的磁化时发生磁性饱和,所以材料的总磁通量密度趋于平稳。如果金刚石颗粒或PCD展示磁性饱和,则其指示仍存在金属污染物。确定磁性饱和的方法通常没有破坏性,从而容许测试代表性样品或整个批次的金刚石颗粒或制品(例如PCD)。
类似地,可在步骤140中评估矫顽磁性以检测某些金属,特别是VIII族金属,例如Co、Ni和Fe。矫顽磁性是材料被磁化到饱和后,使材料的磁化降到零所需施加磁场的强度。测定矫顽磁性的方法通常没有破坏性,从而容许测试代表性样品或整个批次的金刚石颗粒或制品(例如PCD)。
本公开提供实施方案A,所述实施方案涉及通过以下步骤来纯化金刚石的方法:利用等离子体清洗工艺,在金刚石颗粒中的金属夹杂污染物使金刚石颗粒从内部破裂时的温度下,从金刚石中的金刚石颗粒中去除碳污染物,和在化学或电化学清洗工艺中从金刚石中去除金属污染物。
本公开提供实施方案B,所述实施方案涉及通过以下步骤来纯化多晶金刚石(PCD)的方法:利用等离子体清洗工艺,在金刚石颗粒中的金属夹杂污染物使金刚石颗粒从内部破裂时的温度下,从金刚石颗粒中去除碳污染物、在化学或电化学清洗工艺中从PCD中去除金属污染物和由经纯化的金刚石颗粒形成PCD。
此外,实施方案A、B和C可与以下附加要素结合使用,除非明显互斥,否则所述实施方案和以下附加要素还可彼此组合:i)等离子体清洗工艺可在不存在氧时进行;ii)等离子体清洗工艺可包含由氢(H)气、氩(Ar)气、氧(O)气或氟(F)气或其任何组合形成等离子体;iii)金属污染物可包含金属夹杂污染物;iv)金属污染物可包含VIII族金属或其合金或化合物;v)等离子体清洗工艺温度可在300℃与1500℃之间;vi)所述工艺可进一步包含在等离子体清洗工艺期间供应微波加热或感应加热;vii)所述工艺可进一步包含在等离子体清洗工艺期间搅动金刚石颗粒;viii)所述工艺可进一步包含在等离子体清洗工艺之后对金刚石颗粒进行淬火;ix-)化学清洗工艺可进一步包含使金刚石颗粒暴露于能溶解金属污染物的液体;ix-1)所述液体可包含盐酸、硝酸、氢氟酸、氯化铜和氯化铁或其任何组合;ix-2)所述液体可包含氢氧化钠、氢氧化钾或其组合;x)电化学清洗工艺可包含将金刚石置于还包括阴极和电解质的电化学电池的阳极中并将电压施加到电化学电池;xi)所述工艺可包含在等离子体清洗工艺之后且在化学或电化学清洗工艺之前由金刚石颗粒形成制品;xii)所述工艺可包含在化学或电化学清洗工艺之后评估金刚石,以确定所述金刚石是否含有少于预选量的预选金属污染物或碳污染物或包括金属污染物或碳污染物的预选污染物集合的污染物,且如果金刚石含有多于预选量的污染物,则将金刚石返回至等离子体纯化工艺、化学或电化学清洗工艺或二者;xii-1)评估可包含对金刚石进行x-射线衍射(XRD);xii-2)评估可包含对金刚石进行光学显微术;xii-3)评估可包含对金刚石进行非光学显微术;xii-4)评估可包含测试金刚石的磁性饱和或矫顽磁性。
尽管已详细描述了本公开和其优点,但应理解在不偏离由以下权利要求书所界定的本公开的精神和范围的情况下在本文中可作出多种改变、取代和替代。

Claims (20)

1.一种纯化金刚石的方法,所述方法包括:
利用等离子体清洗工艺,在金刚石颗粒中的金属夹杂污染物使所述金刚石颗粒从内部破裂时的温度下,从所述金刚石中的所述金刚石颗粒中去除碳污染物;和
在化学或电化学清洗工艺中从所述金刚石中去除金属污染物。
2.如权利要求1所述的方法,其包括在不存在氧时进行所述等离子体清洗。
3.如权利要求1所述的方法,其中所述等离子体清洗工艺包括由氢(H)气、氩(Ar)气、氧(O)气或氟(F)气或其任何组合形成等离子体。
4.如权利要求1所述的方法,其中所述金属污染物包括金属夹杂污染物。
5.如权利要求1所述的方法,其中所述金属污染物包括VIII族金属或其合金或化合物。
6.如权利要求1所述的方法,其中所述温度在300℃与1500℃之间。
7.如权利要求1所述的方法,其进一步包括在所述等离子体清洗工艺期间供应微波加热或感应加热。
8.如权利要求1所述的方法,其进一步包括在所述等离子体清洗工艺期间搅动所述金刚石颗粒。
9.如权利要求1所述的方法,其进一步包括在所述等离子体清洗工艺之后对所述金刚石颗粒进行淬火。
10.如权利要求1所述的方法,其中所述化学清洗工艺包括使所述金刚石颗粒暴露于能溶解所述金属污染物的液体。
11.如权利要求10所述的方法,其中所述液体包括盐酸、硝酸、氢氟酸、氯化铜和氯化铁,或其任何组合。
12.如权利要求10所述的方法,其中所述液体包括氢氧化钠、氢氧化钾或其组合。
13.如权利要求1所述的方法,其中所述电化学清洗工艺包括:
将所述金刚石置于还包括阴极和电解质的电化学电池中的阳极中;和
将电压施加到所述电化学电池。
14.如权利要求1所述的方法,其进一步包括在所述等离子体清洗工艺之后且在所述化学或电化学清洗工艺之前,由所述金刚石颗粒形成制品。
15.如权利要求14所述的方法,其中所述制品包括多晶金刚石(PCD)。
16.如权利要求1所述的方法,其在所述化学或电化学清洗工艺之后进一步包括:
评估所述金刚石以确定其是否含有少于预选量的预选金属污染物或碳污染物或包括所述金属污染物或所述碳污染物的预选污染物集合的污染物;和
如果所述金刚石含有多于所述预选量的污染物,则使所述金刚石返回至所述等离子体纯化工艺、所述化学或电化学清洗工艺或二者。
17.如权利要求16所述的方法,其中评估包括对所述金刚石进行x-射线衍射(XRD)。
18.如权利要求16所述的方法,其中评估包括对所述金刚石进行光学显微术。
19.如权利要求16所述的方法,其中评估包括对所述金刚石进行非光学显微术。
20.如权利要求16所述的方法,其中评估包括测试所述金刚石的磁性饱和或矫顽磁性。
CN201580080856.7A 2015-07-21 2015-07-21 纯化金刚石粉末 Pending CN107708854A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2015/041343 WO2017014756A1 (en) 2015-07-21 2015-07-21 Purifying diamond powder

Publications (1)

Publication Number Publication Date
CN107708854A true CN107708854A (zh) 2018-02-16

Family

ID=57834426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580080856.7A Pending CN107708854A (zh) 2015-07-21 2015-07-21 纯化金刚石粉末

Country Status (3)

Country Link
US (1) US10899625B2 (zh)
CN (1) CN107708854A (zh)
WO (1) WO2017014756A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108190883A (zh) * 2018-03-09 2018-06-22 郑州航空工业管理学院 一种人造金刚石的提纯方法
CN108793154A (zh) * 2018-07-20 2018-11-13 河南省亚龙超硬材料有限公司 一种高纯度金刚石微粉杂质的处理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101804656B1 (ko) * 2016-02-04 2017-12-04 고려대학교 산학협력단 수소 플라즈마 처리된 나노 다이아몬드 분말을 포함하는 내마모 저마찰 고분자 복합재 및 그 제조 방법
CN112065591B (zh) * 2020-09-11 2021-08-03 中国航发沈阳黎明航空发动机有限责任公司 一种航空发动机用电磁驱动式点火装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070205847A1 (en) * 2004-03-09 2007-09-06 Taras Kushta Via transmission lines for multilayer printed circuit boards
WO2007133765A2 (en) * 2006-05-15 2007-11-22 Drexel University Process of purifying nanodiamond compositions and applications thereof
US8734748B1 (en) * 2010-09-28 2014-05-27 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Purifying nanomaterials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3317035A (en) 1963-09-03 1967-05-02 Gen Electric Graphite-catalyst charge assembly for the preparation of diamond
GB1588445A (en) 1977-05-26 1981-04-23 Nat Res Dev Toughening diamond
US7300958B2 (en) 2003-05-20 2007-11-27 Futaba Corporation Ultra-dispersed nanocarbon and method for preparing the same
EP1732846A2 (en) * 2004-03-17 2006-12-20 California Institute Of Technology Methods for purifying carbon materials
RU2007118553A (ru) 2007-05-21 2008-11-27 Общество с ограниченной ответственностью "СКН" (RU) Наноалмазный материал, способ и устройство для очистки и модификации наноалмаза
WO2012158380A1 (en) 2011-05-16 2012-11-22 Drexel University Disaggregation of aggregated nanodiamond clusters
US9359213B2 (en) 2012-06-11 2016-06-07 The Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, Las Vegas Plasma treatment to strengthen diamonds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070205847A1 (en) * 2004-03-09 2007-09-06 Taras Kushta Via transmission lines for multilayer printed circuit boards
WO2007133765A2 (en) * 2006-05-15 2007-11-22 Drexel University Process of purifying nanodiamond compositions and applications thereof
US8734748B1 (en) * 2010-09-28 2014-05-27 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Purifying nanomaterials

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BUCHKREMER-HERMANNS H.等人: "ECR plasma polishing of CVD diamond films", 《DIAMOND AND RELATED MATERIALS》 *
JEAN-CHARLES ARNAULT, ETC.: "Surface chemical modifications and surface reactivity of nanodaimonds hydrogenated by CVD plasma", 《CHEM. CHEM. PHYS.》 *
LEE. C.L.等人: "Etching and micro-optics fabrication in diamond using cholorine-based inductively-coupled plasma", 《DIAMOND AND RELATED MATERIALS》 *
P.K.BAUMANN等人: "Surface cleaning, electronic states and electron affinity of diamond (100), (111) and (110) surfaces", 《SURFACE SCIENCE》 *
满卫东等人: "氢等离子体在铁催石墨化作用下对CVD金刚石膜的刻蚀", 《金刚石与磨料磨具工程》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108190883A (zh) * 2018-03-09 2018-06-22 郑州航空工业管理学院 一种人造金刚石的提纯方法
CN108793154A (zh) * 2018-07-20 2018-11-13 河南省亚龙超硬材料有限公司 一种高纯度金刚石微粉杂质的处理方法

Also Published As

Publication number Publication date
US20180179068A1 (en) 2018-06-28
US10899625B2 (en) 2021-01-26
WO2017014756A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
CN107708854A (zh) 纯化金刚石粉末
Kim et al. The effect of copper pre-cleaning on graphene synthesis
TW419399B (en) Post-lapping cleaning process for silicon wafers
WO2012043496A1 (ja) 半導体基板用アルカリ性処理液の精製方法及び精製装置
Jin et al. Controlled electrodeposition of uniform copper powder from hydrochloric acid solutions
Lim et al. Spherical tin oxide, SnO2 particles fabricated via facile hydrothermal method for detection of mercury (II) ions
Song et al. Galvanic deposition of nanostructured noble-metal films on silicon
Ildefonso et al. A phenomenon of degradation of methyl orange observed during the reaction of NH 4 TiOF 3 nanotubes with the aqueous medium to produce TiO 2 anatase nanoparticles
Arulmani et al. Antimony reduction by a non-conventional sulfate reducer with simultaneous bioenergy production in microbial fuel cells
JP3957264B2 (ja) 半導体基板の洗浄方法
Liu et al. Chemical etching behaviour of titanium in bromine-methanol electrolyte
Wang et al. Effect of UV radiation on oxidation for Ru CMP
Gossage et al. Reconstruction of lead acid battery negative electrodes after hard sulfation using controlled chelation chemistry
Jin et al. Electrochemistry and coordination behaviors of hypoxanthine-Au (III) ion in the cyanide-free gold electrodeposition
JP4407557B2 (ja) 硫酸リサイクル型洗浄方法および硫酸リサイクル型洗浄システム
Park et al. Effective characterization of polymer residues on two-dimensional materials by Raman spectroscopy
JP2006191021A (ja) シリコンウェハのd−欠陥評価用腐蝕液、及びこれを利用した評価方法
Hecker et al. Effects of Synthesized Silver Nanoplate Structures on the Electrochemical Reduction of CO2
JP4166883B2 (ja) 炭化ケイ素焼結体の電解洗浄方法
JP3590273B2 (ja) 半導体装置の製造方法及び処理液の生成装置
Bose et al. Study of impurity distribution in mechanically polished, chemically treated and high vacuum degassed pure niobium samples using the TOFSIMS technique
Gryzunova et al. Nanowisker structures of copper oxide under conditions of exposure to temperature fields and corrosive media
Raghavan et al. Understanding and controlling electrochemical effects in wet processing
Ryoo et al. Evolutional Wet Cleaning in the Extreme Ultraviolet Era
Wang et al. Electrocatalytic Performance of V2O5/Ti Composite Membrane for High-Efficiency Treatment of Ammonia Nitrogen Wastewater

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180216