CN107705999B - 金属氧化物核壳纳米片阵列电极材料的制备方法 - Google Patents

金属氧化物核壳纳米片阵列电极材料的制备方法 Download PDF

Info

Publication number
CN107705999B
CN107705999B CN201710784067.2A CN201710784067A CN107705999B CN 107705999 B CN107705999 B CN 107705999B CN 201710784067 A CN201710784067 A CN 201710784067A CN 107705999 B CN107705999 B CN 107705999B
Authority
CN
China
Prior art keywords
chip arrays
nano
shell
mmol
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710784067.2A
Other languages
English (en)
Other versions
CN107705999A (zh
Inventor
韩丹丹
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Institute of Chemical Technology
Original Assignee
Jilin Institute of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Institute of Chemical Technology filed Critical Jilin Institute of Chemical Technology
Priority to CN201710784067.2A priority Critical patent/CN107705999B/zh
Publication of CN107705999A publication Critical patent/CN107705999A/zh
Application granted granted Critical
Publication of CN107705999B publication Critical patent/CN107705999B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本专利涉及金属氧化物核壳纳米片阵列电极材料的制备方法,所得的四氧化三钴纳米片骨架具有较好的平行多层结构和取向性,复合后的材料具有海绵体的多孔结构,且保持了骨架原有的有规律取向,与普通相互交叉片不同,近乎平行的纳米片提供了长程有序、稳定统一的导电路径,有利于电子的顺利传递。核壳材料的厚度为200‑500 nm,壳层厚度为5‑15 nm,适当的壳层厚度、多孔结构和垂直生长,使得核材料的电化学特性得到充分发挥,电化学测试结果表明,在电流密度为0.5 A·g‑1时,单电极比容量为715 F·g‑1,当电流密度增大到8 A·g‑1时,比容量的保持率为72%。

Description

金属氧化物核壳纳米片阵列电极材料的制备方法
技术领域
本发明属于超级电容器器件技术领域,具体涉及金属氧化物核壳纳米片阵列电极材料的制备方法。
背景技术
电极材料的电化学活性直接决定器件的电容性能,因此,活性电极材料的开发便成为ECs研究和应用的重点。通常,用于ECs的电极材料包括炭材料、金属氧化物和导电聚合物三大类。炭材料电极通过电解液与电极的界面处形成的双电层存储能量(双电层电容);金属氧化物及导电聚合物材料电极则通过快速可逆的氧化还原反应获得法拉第电容(赝电容),此法拉第电容一般远大于炭材料获得的双电层电容。作为ECs 电极材料使用的贵金属氧化物(如RuO2)具有非常优良的电化学电容性质,但昂贵的价格和剧毒性大大制约其作为电化学电容器电极材料的应用和商品化,研究者尝试通过不同方法制备氧化钴(Co3O4)、氧化镍(NiO)、氧化锡(SnO2)和氧化锰( MnOx)等贱金属氧化物,作为贵金属氧化物的替代品,电极的比容量、充放电效率和长循环寿命显著提高。
申请号为201210438944.8的中国发明专利公开了一种超薄多孔Co3O4纳米片的制备方法,具体公开了向Co(NO3)2溶液中滴加DMSO溶液,采用电沉积法对镍表面进行电化学沉积,得到超薄多孔Co3O4纳米片;申请号为201611255619.2的中国发明专利公开了一种Co3O4多孔纳米片阵列的制备方法。具体公开了将重结晶硝酸钴/碳纤维纸焙烧得生长于碳纤维纸基底的多孔Co3O4纳米片阵列,各种工艺正在提高金属氧化物的比容量,但单一金属氧化物材料的自身缺陷如低电导率,晶型结构有限,比容量较低等缺陷仍是限制高性能电极材料进一步应用的关键。
2D核壳微纳米结构的NiO@Co3O4纳米片阵列,两种金属氧化物以不同的形式有机复合,设计合成的形貌新颖、结构稳定、导电基底原位生长,避免粉体材料在电极制备中需加入的导电性差的粘结剂,从而避免了电极中导电“死区”的出现,同时,利用产生的协同效应,弥补自身缺陷,对实现高效率的能量存储元器件的构筑具有十分重要的意义。
发明内容
本发明将导电集流体原位生长的NiO@Co3O4核壳纳米片阵列应用于超级电容器电极材料,提供一种具有协同增效、较高比容量和优良的倍率特性的超级电容器用复合电极材料的制备方法。
为解决上述技术问题,本发明采取如下技术方案:
本发明的超级电容器电极用NiO@Co3O4核壳纳米片阵列的制备方法,采用两步水热法,首先在导电基底上原位生长四氧化三钴纳米片阵列,并以此为骨架生长边界清晰的NiO核壳阵列,具体包括如下步骤:(1)2.5 mmol 的Co(NO3)2·6H2O,12.5 mmol的Co(NH2)2,溶于30 mL蒸馏水中,充分溶解后连同处理过的泡沫镍转移至40 mL水热合成釜中,95℃反应8h,得到均匀生长在泡沫镍表面的碱式碳酸钴纳米片阵列。(2)将0.3-0.8 mmol硝酸镍加入到烧杯中,溶于36mL蒸馏水中,在磁力搅拌器下,加入6-16 mmol尿素,搅拌10 min后,将生长片状Co3O4的前驱体和反应溶液转移到40mL密封的聚四氟乙烯内衬的不锈钢高压釜中,在95-125℃保持7-13h,反应结束后,取出泡沫镍基底,超声10min,60℃干燥40min,产物在250-400 ℃煅烧3h,得到Co3O4 @NiO 核壳纳米片阵列复合材料。
所得的四氧化三钴纳米片骨架具有较好的平行多层结构和取向性,复合后的材料具有海绵体的多孔结构,且保持了骨架原有的有规律取向,与普通相互交叉片不同,近乎平行的纳米片提供了长程有序、稳定统一的导电路径,有利于电子的顺利传递。核壳材料的厚度为200-500 nm, 壳层厚度为5-15 nm,适当的壳层厚度、多孔结构和垂直生长,使得核材料的电化学特性得到充分发挥,电化学测试结果表明,在电流密度为0.5A·g-1时,单电极比容量为715 F·g-1,当电流密度增大到8 A·g-1时,比容量的保持率为72%。
附图说明
图1是实施例2中所制备的Co3O4 @NiO 核壳纳米片阵列扫描电镜照片。
图2是实施例1中所制备的Co3O4 @NiO 核壳纳米片阵列扫描电镜照片。
图3是实施例3中所制备的Co3O4 @NiO 核壳纳米片阵列扫描电镜照片。
图4是实施例2中所制备的Co3O4 @NiO 核壳纳米片阵列的循环伏安曲线。
图5是实施例2中所制备的Co3O4 @NiO 核壳纳米片阵列的充放电曲线。
具体实施方式
下面结合实施例对本发明的技术方案及效果作进一步描述。但是,所使用的具体方法、配方和说明并不是对本发明的限制。
实施例1:将0.5 mmol硝酸镍溶于36mL蒸馏水中,在磁力搅拌器下,加入10 mmol尿素,搅拌10 min后,将生长片状Co3O4的前驱体和反应溶液转移到40mL密封的聚四氟乙烯内衬的不锈钢高压釜中,在100℃保持7h,反应结束后,取出泡沫镍基底,超声10min,60℃干燥40min,产物在250℃煅烧3h,得到Co3O4 @NiO 核壳纳米片阵列复合材料。
实施例2:将0.5 mmol硝酸镍溶于36mL蒸馏水中,在磁力搅拌器下,加入10 mmol尿素,搅拌10 min后,将生长片状Co3O4的前驱体和反应溶液转移到40mL密封的聚四氟乙烯内衬的不锈钢高压釜中,在100℃保持10h,反应结束后,取出泡沫镍基底,超声10min,60℃干燥40min,产物在250℃煅烧3h,得到Co3O4 @NiO 核壳纳米片阵列复合材料。
实施例3:将0.5 mmol硝酸镍溶于36mL蒸馏水中,在磁力搅拌器下,加入10 mmol尿素,搅拌10 min后,将生长片状Co3O4的前驱体和反应溶液转移到40mL密封的聚四氟乙烯内衬的不锈钢高压釜中,在100℃保持13h,反应结束后,取出泡沫镍基底,超声10min,60℃干燥40min,产物在250℃煅烧3h,得到Co3O4 @NiO 核壳纳米片阵列复合材料。
实施例4:将0.6 mmol硝酸镍溶于36mL蒸馏水中,在磁力搅拌器下,加入12 mmol尿素,搅拌10 min后,将生长片状Co3O4的前驱体和反应溶液转移到40mL密封的聚四氟乙烯内衬的不锈钢高压釜中,在115℃保持10h,反应结束后,取出泡沫镍基底,超声10min,60℃干燥40min,产物在300℃煅烧3h,得到Co3O4 @NiO 核壳纳米片阵列复合材料。
实施例5:将0.7 mmol硝酸镍溶于36mL蒸馏水中,在磁力搅拌器下,加入14 mmol尿素,搅拌10 min后,将生长片状Co3O4的前驱体和反应溶液转移到40mL密封的聚四氟乙烯内衬的不锈钢高压釜中,在100℃保持12h,反应结束后,取出泡沫镍基底,超声10min,60℃干燥40min,产物在350℃煅烧3h,得到Co3O4 @NiO 核壳纳米片阵列复合材料。

Claims (2)

1.一种Co3O4@NiO核壳纳米片阵列电极材料,其特征在于,所述电极材料是直接生长在导电集流体泡沫镍上的,复合后的Co3O4@NiO核壳纳米片具有海绵体的多孔结构,二维核壳纳米片保持了Co3O4纳米片阵列骨架原有的平行多层结构和取向性,核壳纳米片的厚度为200-500 nm,壳层厚度为5-15 nm。
2.一种Co3O4@NiO核壳纳米片阵列电极材料的制备方法,其特征在于,包括如下步骤:(1)2.5 mmol 的Co(NO3)2·6H2O,12.5 mmol的CO(NH2)2,溶于30 mL蒸馏水中,充分溶解后连同处理过的泡沫镍转移至40 mL水热合成釜中,95℃反应8h,得到均匀生长在泡沫镍表面的碱式碳酸钴纳米片阵列;(2)将0.3-0.8 mmol硝酸镍加入到烧杯中,溶于36mL蒸馏水中,在磁力搅拌器下,加入6-16 mmol尿素,搅拌10 min后,将生长碱式碳酸钴纳米片阵列的泡沫镍和步骤(2)的溶液转移到40mL密封的聚四氟乙烯内衬的不锈钢高压釜中,在95-125℃保持7-13h,反应结束后,取出泡沫镍,超声10min,60℃干燥40min,产物在250-400℃煅烧3h,得到Co3O4 @NiO 核壳纳米片阵列复合材料,利用产生的协同效应,弥补自身缺陷,近乎平行的纳米片提供了长程有序、稳定统一的导电路径,有利于电子的传递和电化学性能的提高。
CN201710784067.2A 2017-09-04 2017-09-04 金属氧化物核壳纳米片阵列电极材料的制备方法 Expired - Fee Related CN107705999B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710784067.2A CN107705999B (zh) 2017-09-04 2017-09-04 金属氧化物核壳纳米片阵列电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710784067.2A CN107705999B (zh) 2017-09-04 2017-09-04 金属氧化物核壳纳米片阵列电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN107705999A CN107705999A (zh) 2018-02-16
CN107705999B true CN107705999B (zh) 2019-10-25

Family

ID=61171943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710784067.2A Expired - Fee Related CN107705999B (zh) 2017-09-04 2017-09-04 金属氧化物核壳纳米片阵列电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN107705999B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239150B (zh) * 2018-08-07 2019-09-10 山东大学 一种具有高灵敏度的Co3O4多孔纳米片非酶基葡萄糖传感器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903542A (zh) * 2012-11-06 2013-01-30 东华大学 一种Au-Co3O4复合纳米片阵列超级电容器材料的制备
CN102903533A (zh) * 2012-11-06 2013-01-30 东华大学 一种多孔杂化NiO/Co3O4超级电容器电极材料的制备方法
CN104810162A (zh) * 2015-03-27 2015-07-29 吉林化工学院 钛网原位生长层状四氧化三钴超级电容器电极材料的制备方法
CN106315690A (zh) * 2016-08-12 2017-01-11 浙江美都墨烯科技有限公司 一种多孔四氧化三钴纳米片的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903542A (zh) * 2012-11-06 2013-01-30 东华大学 一种Au-Co3O4复合纳米片阵列超级电容器材料的制备
CN102903533A (zh) * 2012-11-06 2013-01-30 东华大学 一种多孔杂化NiO/Co3O4超级电容器电极材料的制备方法
CN104810162A (zh) * 2015-03-27 2015-07-29 吉林化工学院 钛网原位生长层状四氧化三钴超级电容器电极材料的制备方法
CN106315690A (zh) * 2016-08-12 2017-01-11 浙江美都墨烯科技有限公司 一种多孔四氧化三钴纳米片的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
锂离子电池负极材料Co3O4的性能改善;陈娇;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20131031;39-47页 *

Also Published As

Publication number Publication date
CN107705999A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
Hu et al. Novel MOF-derived nickel nitride as high-performance bifunctional electrocatalysts for hydrogen evolution and urea oxidation
Yuan et al. Oxygen vacancy-determined highly efficient oxygen reduction in NiCo2O4/hollow carbon spheres
Rao et al. Hydrotalcite-like Ni (OH) 2 nanosheets in situ grown on nickel foam for overall water splitting
Feng et al. Facile synthesis of Co9S8 hollow spheres as a high-performance electrocatalyst for the oxygen evolution reaction
Zhan et al. Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media
Xia et al. In situ growth of porous ultrathin Ni (OH) 2 nanostructures on nickel foam: an efficient and durable catalysts for urea electrolysis
Wang et al. Nickel foam supported-Co3O4 nanowire arrays for H2O2 electroreduction
CN102709058B (zh) 制备超级电容器二氧化锰-氢氧化镍复合电极材料的方法
CN104701036A (zh) 基于分级花状NiCo2O4超级电容器电极材料的研究
CN109837558A (zh) 一种水热电沉积结合的羟基氧化铁-镍铁水滑石析氧电极的制备方法
CN106298263B (zh) 一种铋/炭超级电容电池及其制备方法
CN104923268A (zh) 一种自支撑过渡金属硒化物催化剂及其制备方法和应用
CN102664107B (zh) 一种纳米二氧化锰电极的制备方法
CN110517899A (zh) 基于MOF衍生的Ni-Co层状双氢氧化物的制备方法
Sheng et al. Simultaneous hydrogen evolution and ethanol oxidation in alkaline medium via a self-supported bifunctional electrocatalyst of Ni-Fe phosphide/Ni foam
Li et al. Magnetic enhancement of oxygen evolution in CoNi@ C nanosheets
CN109837559A (zh) 一种水热辅助的羟基氧化铁-镍铁水滑石一体化电极的制备方法
CN109786135A (zh) 一种氧化铜@钼酸镍/泡沫铜复合电极材料及其制备方法
Wang et al. Investigation of Fe-based integrated electrodes for water oxidation in neutral and alkaline solutions
Zhao et al. Rapid synthesis of efficient Mo-based electrocatalyst for the hydrogen evolution reaction in alkaline seawater with 11.28% solar-to-hydrogen efficiency
Ren et al. Bimetal-organic framework-derived porous CoFe2O4 nanoparticles as biocompatible anode electrocatalysts for improving the power generation of microbial fuel cells
CN107705999B (zh) 金属氧化物核壳纳米片阵列电极材料的制备方法
CN105957724A (zh) 一种非对称超级电容器及其制备方法
CN105355455A (zh) 金属基底上低温原位生长的金属氧化物材料及其应用
CN102709060A (zh) 超级电容器用高性能氧化镍钴复合纳米线薄膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191025

Termination date: 20200904

CF01 Termination of patent right due to non-payment of annual fee