CN107705953A - 三相法制备烧结钕铁硼磁体的方法及该钕铁硼磁体 - Google Patents

三相法制备烧结钕铁硼磁体的方法及该钕铁硼磁体 Download PDF

Info

Publication number
CN107705953A
CN107705953A CN201610640874.2A CN201610640874A CN107705953A CN 107705953 A CN107705953 A CN 107705953A CN 201610640874 A CN201610640874 A CN 201610640874A CN 107705953 A CN107705953 A CN 107705953A
Authority
CN
China
Prior art keywords
powder
master alloying
trichotomy
ndfeb magnet
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610640874.2A
Other languages
English (en)
Inventor
解伟
肖震
钟炳文
韩珩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longyan Cercis Innovation Research Institute
Original Assignee
Longyan Cercis Innovation Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longyan Cercis Innovation Research Institute filed Critical Longyan Cercis Innovation Research Institute
Priority to CN201610640874.2A priority Critical patent/CN107705953A/zh
Publication of CN107705953A publication Critical patent/CN107705953A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了三相法制备烧结钕铁硼磁体的方法及该钕铁硼磁体,三相分别为主合金粉末、辅合金粉末、纳米铜粉末,将这三种粉末按照一定比例进行混合,置于取向磁场中压制成型,经等静压后进行烧结。其中主合金粉末各成分的质量百分比为NdxFeyB100‑x‑y,其中30≦x≦33,66≦y≦69;辅合金粉末各成分的质量百分比为Nd20Pr15DyxB1Fe64‑x,其中5≦x≦10。与传统的单相法或者两相法制备烧结钕铁硼磁体相比,本发明制备的钕铁硼磁体不仅可以提高钕铁硼磁体剩磁和磁能积,而且能够保持矫顽力基本不变。

Description

三相法制备烧结钕铁硼磁体的方法及该钕铁硼磁体
技术领域
本发明属于稀土永磁合金领域,特别涉及一种三相法制备烧结钕铁硼磁体的方法及该方法制备的钕铁硼磁体。
背景技术
目前我国生产烧结钕铁硼永磁材料大部分是用单合金法。单合金法制备钕铁硼磁体容易导致Nd2Fe14B主相成分的偏离,伴随着富钕相分布不均匀,出现块状富钕相,阻碍高性能钕铁硼磁体的制备,导致制备的钕铁硼磁体剩磁和磁能积较低。
国外有采用双合金法制备钕铁硼磁体,双合金法与单合金的主要区别在于:熔炼两种母合金并分别铸锭。其中主合金成分与Nd2Fe14B相十分接近,辅合金是富有稀土的并含有钴、铜、铝、镓、钒、钛等元素中的一种或者几种以上。双合金法虽然可以提高磁体的剩磁和磁能积,但是会降低矫顽力。
发明内容
本发明采用三相法制备烧结钕铁硼磁体。为解决上述技术问题,本发明采用的技术方案为:
一种三相法制备烧结钕铁硼磁体的方法,包括以下步骤:
1)选取主合金粉末,主合金粉末各成分的质量百分比为NdxFeyB100-x-y,其中30≦x≦33,66≦y≦69;
主合金粉末中,含有质量分数为x%的Nd,含有质量分数为y%的Fe,含有质量分数为(100-x-y)%的B;其中30≦x≦33,66≦y≦69。
2)选取辅合金粉末,辅合金粉末各成分的质量百分比为Nd20Pr15DyxB1Fe64-x,其中5≦x≦10;
辅合金粉末中,含有质量分数为20%的Nd,含有质量分数为15%的Pr,含有质量分数为x%的Dy,含有质量分数为1%的B,含有质量分数为(64-x)%的Fe;其中5≦x≦10。
3)将主合金粉末、辅合金粉末与纳米铜粉末进行混合,得到混合粉末;混合粉末中各组分的重量百分比为:主合金粉末质量分数为80%至89%、辅合金粉末质量分数为10%至19%、纳米铜粉末质量分数为1%至1.5%;
4)将获得的混合粉末置于取向磁场中压制成型,经等静压处理后进行烧结。
在磁场中取向的目的是为了提高钕铁硼磁体的磁性能。
等静压技术是一种利用密闭高压容器内制品在各向均等的超高压压力状态下成型的超高压液压先进设备。等静压技术按成型和固结时的温度高低,分为冷等静压、温等静压、热等静压三种不同类型。
等静压技术作为一种先进成形技术,与传统的成形技术相比具有明显的优势,主要集中在:第一、等静压成形的产品,具有密度高而分布均匀、产品内部不存在气泡、成品晶粒间显微孔隙度很低,其力学性能与电性能均比别的成形方法好。第二、等静压制品几乎无内应力,压坯可以直接进窑烧结,不会翘曲与开裂。第三、制作长径比(长度与直径之比)很大的产品是轻而易举的事,而其他方法是则是事倍功半或者无法实现。第四、制作高熔点、高硬度材料的大型产品及形状复杂的产品。第五、等静压成形的坯体比其他成形方法制得坯体烧成温度低并且不会污染高纯度的压坯材料。
采用等静压技术对压制后成型后的粉末进行处理,使得烧结后的产品密度高、内部结构均匀、进一步提高钕铁硼磁体的性能。
优选地,所述的三相法制备烧结钕铁硼磁体的方法,主合金粉末的制备方法如下:
1)将主合金各成分混合后冶炼、铸锭,制得主合金铸锭;
2)将主合金铸锭在温度为700℃至900℃进行热处理;
热处理使晶界处的富钕相变成液相,使边界显微结构得到改善,主相体积分数增加,磁体致密性得到改善,进而提高钕铁硼磁体的性能。
3)用氢爆工艺将高温处理后的主合金铸锭进行粗破碎;
氢爆碎工艺,是稀土永磁材料制备中一种重要的新工艺。此工艺是利用稀土永磁材料合金在吸氢和放氢过程中合金本身所产生的晶界断裂和穿晶断裂导致合金粉化,从而得到一定粒度的合金粉末。与传统工艺相比,氢爆碎工艺具有易破碎、含氧量低、颗粒细、烧结温度低、节约能源、成本低等优点。
4)用气流磨将粗破碎后的主合金铸锭进行研磨,制得主合金粉末。
气流磨粉碎的工作原理是利用高速气流喷出时形成的强烈多相紊流场使其中的颗粒自撞、摩擦或与设备内壁碰撞、摩擦而引起颗粒粉碎。主要由如下几种类型:扁平式气流磨、循环式气流磨、对喷式气流磨、靶式气流磨、流态化对喷式气流磨。
传统的做法是主合金、辅合金一起熔炼,这样导致Nd2Fe14B主相成分的偏离,伴随着富钕相分布不均匀,出现块状富钕相,阻碍高性能钕铁硼磁体的制备,导致制备的钕铁硼磁体剩磁和磁能积较低。主合金、辅合金分别冶炼、铸锭避免了上述情况。主合金、辅合金分别磨成细粉后,混合一定纳米铜粉末,,将这三相按照比例混合进行烧结,获得相应性能。
优选地,所述的三相法制备烧结钕铁硼磁体的方法,辅合金粉末的制备方法如下:
1)将辅合金各成分混合后冶炼、铸锭,制得辅合金铸锭;
2)将辅合金铸锭在温度为700℃至900℃进行热处理;
热处理使晶界处的富钕相变成液相,使边界显微结构得到改善,主相体积分数增加,磁体致密性得到改善,进而提高钕铁硼磁体的性能。
3)用氢爆工艺将高温处理后的辅合金铸锭进行粗破碎;
氢爆碎工艺,是稀土永磁材料制备中一种重要的新工艺。此工艺是利用稀土永磁材料合金在吸氢和放氢过程中合金本身所产生的晶界断裂和穿晶断裂导致合金粉化,从而得到一定粒度的合金粉末。与传统工艺相比,氢爆碎工艺具有易破碎、含氧量低、颗粒细、烧结温度低、节约能源、成本低等优点。
4)用气流磨将粗破碎后的辅合金铸锭进行研磨,制得辅合金粉末。
气流磨粉碎的工作原理是利用高速气流喷出时形成的强烈多相紊流场使其中的颗粒自撞、摩擦或与设备内壁碰撞、摩擦而引起颗粒粉碎。主要由如下几种类型:扁平式气流磨、循环式气流磨、对喷式气流磨、靶式气流磨、流态化对喷式气流磨。
传统的做法是主合金、辅合金一起熔炼,这样导致Nd2Fe14B主相成分的偏离,伴随着富钕相分布不均匀,出现块状富钕相,阻碍高性能钕铁硼磁体的制备,导致制备的钕铁硼磁体剩磁和磁能积较低。主合金、辅合金分别冶炼、铸锭避免了上述情况。主合金、辅合金分别磨成细粉后,混合一定纳米铜粉末,,将这三相按照比例混合进行烧结,获得相应性能。
优选地,所述的三相法制备烧结钕铁硼磁体的方法,用真空感应熔炼炉对主合金或辅合金冶炼、铸锭;真空度≦3×10-2Pa,熔炼温度为1300℃至1700℃。
优选地,所述的三相法制备烧结钕铁硼磁体的方法,主合金粉末、辅合金粉末的颗粒度为3μm至5μm。
优选地,所述的三相法制备烧结钕铁硼磁体的方法,纳米铜粉末的颗粒度为500nm至700nm。
优选地,所述的三相法制备烧结钕铁硼磁体的方法,步骤7)中烧结温度为1050℃至1100℃,烧结时间为6小时至10小时。
一种钕铁硼磁体,该钕铁硼磁体是由上述的三相法制备烧结钕铁硼磁体的方法制备而成。
本发明采用的是三相法制备烧结钕铁硼磁体,三相分别为主合金粉末、辅合金粉末、纳米铜粉末,将这三种粉末按照一定比例进行混合,置于取向磁场中压制成型,经等静压后进行烧结。这种方法制备的钕铁硼磁体,不仅可以提高钕铁硼磁体剩磁和磁能积,而且能够保持矫顽力基本不变。
具体实施方式
为详细说明本发明的技术内容、构造特征、所实现目的及效果,以下结合具体实施方式详予说明。
实施例1
本实施例的具体工艺方法如下:
一种三相法制备烧结钕铁硼磁体的方法,包括以下步骤:
1)分别将下表中主合金、辅合金各成分混合后,用真空感应熔炼炉冶炼、铸锭;真空度≦3×10-2Pa,熔炼温度为1300℃至1700℃,分别制得主合金铸锭、辅合金铸锭;
2)分别将步骤1)制备的主合金铸锭、辅合金铸锭在温度为700℃进行热处理;
3)用氢爆工艺分别将高温处理后的主合金铸锭、辅合金铸锭进行粗破碎;
4)用气流磨分别将粗破碎后的主合金铸锭、辅合金铸锭进行研磨,分别制得主合金粉末、辅合金粉末;主合金粉末、辅合金粉末的颗粒度为3μm;
5)将主合金粉末、辅合金粉末与纳米铜粉末(纳米铜粉末的颗粒度为500nm)按照下表配比进行混合,得到混合粉末:
6)将获得的混合粉末置于取向磁场中压制成型,经等静压处理后进行烧结,中烧结温度为1050℃,烧结时间为10小时。
一种钕铁硼磁体,该钕铁硼磁体是由上述的三相法制备烧结钕铁硼磁体的方法制备而成。
实施例2
本实施例的具体工艺方法如下:
一种三相法制备烧结钕铁硼磁体的方法,包括以下步骤:
1)分别将下表中主合金、辅合金各成分混合后,用真空感应熔炼炉冶炼、铸锭;真空度≦3×10-2Pa,熔炼温度为1700℃,分别制得主合金铸锭、辅合金铸锭;
2)分别将步骤1)制备的主合金铸锭、辅合金铸锭在温度为800℃进行热处理;
3)用氢爆工艺分别将高温处理后的主合金铸锭、辅合金铸锭进行粗破碎;
4)用气流磨分别将粗破碎后的主合金铸锭、辅合金铸锭进行研磨,分别制得主合金粉末、辅合金粉末;主合金粉末、辅合金粉末的颗粒度为4μm;
5)将主合金粉末、辅合金粉末与纳米铜粉末(纳米铜粉末的颗粒度为700nm)按照下表配比进行混合,得到混合粉末:
6)将获得的混合粉末置于取向磁场中压制成型,经等静压处理后进行烧结,中烧结温度为1100℃,烧结时间为6小时。
一种钕铁硼磁体,该钕铁硼磁体是由上述的三相法制备烧结钕铁硼磁体的方法制备而成。
实施例3
本实施例的具体工艺方法如下:
一种三相法制备烧结钕铁硼磁体的方法,包括以下步骤:
1)分别将下表中主合金、辅合金各成分混合后,用真空感应熔炼炉冶炼、铸锭;真空度≦3×10-2Pa,熔炼温度为1600℃,分别制得主合金铸锭、辅合金铸锭;
2)分别将步骤1)制备的主合金铸锭、辅合金铸锭在温度为900℃进行热处理;
3)用氢爆工艺分别将高温处理后的主合金铸锭、辅合金铸锭进行粗破碎;
4)用气流磨分别将粗破碎后的主合金铸锭、辅合金铸锭进行研磨,分别制得主合金粉末、辅合金粉末;主合金粉末、辅合金粉末的颗粒度为5μm;
5)将主合金粉末、辅合金粉末与纳米铜粉末(纳米铜粉末的颗粒度为600nm)按照下表配比进行混合,得到混合粉末:
6)将获得的混合粉末置于取向磁场中压制成型,经等静压处理后进行烧结,中烧结温度为1065℃,烧结时间为7小时。
一种钕铁硼磁体,该钕铁硼磁体是由上述的三相法制备烧结钕铁硼磁体的方法制备而成。
实施例4
本实施例的具体工艺方法如下:
一种三相法制备烧结钕铁硼磁体的方法,包括以下步骤:
1)分别将下表中主合金、辅合金各成分混合后,用真空感应熔炼炉冶炼、铸锭;真空度≦3×10-2Pa,熔炼温度为1500℃,分别制得主合金铸锭、辅合金铸锭;
2)分别将步骤1)制备的主合金铸锭、辅合金铸锭在温度为850℃进行热处理;
3)用氢爆工艺分别将高温处理后的主合金铸锭、辅合金铸锭进行粗破碎;
4)用气流磨分别将粗破碎后的主合金铸锭、辅合金铸锭进行研磨,分别制得主合金粉末、辅合金粉末;主合金粉末、辅合金粉末的颗粒度为4μm;
5)将主合金粉末、辅合金粉末与纳米铜粉末(纳米铜粉末的颗粒度为550nm)按照下表配比进行混合,得到混合粉末:
6)将获得的混合粉末置于取向磁场中压制成型,经等静压处理后进行烧结,中烧结温度为1085℃,烧结时间为8小时。
一种钕铁硼磁体,该钕铁硼磁体是由上述的三相法制备烧结钕铁硼磁体的方法制备而成。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接应用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

1.一种三相法制备烧结钕铁硼磁体的方法,其特征在于,包括以下步骤:
1)选取主合金粉末,主合金粉末各成分的质量百分比为NdxFeyB100-x-y,其中30≦x≦33,66≦y≦69;
2)选取辅合金粉末,辅合金粉末各成分的质量百分比为Nd20Pr15DyxB1Fe64-x,其中5≦x≦10;
3)将主合金粉末、辅合金粉末与纳米铜粉末进行混合,得到混合粉末;混合粉末中各组分的重量百分比为:主合金粉末质量分数为80%至89%、辅合金粉末质量分数为10%至19%、纳米铜粉末质量分数为1%至1.5%;
4)将获得的混合粉末置于取向磁场中压制成型,经等静压处理后进行烧结。
2.如权利要求1所述的三相法制备烧结钕铁硼磁体的方法,其特征在于,主合金粉末的制备方法如下:
1)将主合金各成分混合后冶炼、铸锭,制得主合金铸锭;
2)将主合金铸锭在温度为700℃至900℃进行热处理;
3)用氢爆工艺将高温处理后的主合金铸锭进行粗破碎;
4)用气流磨将粗破碎后的主合金铸锭进行研磨,制得主合金粉末。
3.如权利要求1所述的三相法制备烧结钕铁硼磁体的方法,其特征在于,辅合金粉末的制备方法如下:
1)将辅合金各成分混合后冶炼、铸锭,制得辅合金铸锭;
2)将辅合金铸锭在温度为700℃至900℃进行热处理;
3)用氢爆工艺将高温处理后的辅合金铸锭进行粗破碎;
4)用气流磨将粗破碎后的辅合金铸锭进行研磨,制得辅合金粉末。
4.如权利要求2或3所述的三相法制备烧结钕铁硼磁体的方法,其特征在于,用真空感应熔炼炉对主合金或辅合金冶炼、铸锭;真空度≦3×10-2Pa,熔炼温度为1300℃至1700℃。
5.如权利要求1至3任一所述的三相法制备烧结钕铁硼磁体的方法,其特征在于,主合金粉末、辅合金粉末的颗粒度为3μm至5μm。
6.如权利要求1至3所述的三相法制备烧结钕铁硼磁体的方法,其特征在于,纳米铜粉末的颗粒度为500nm至700nm。
7.如权利要求1至3所述的三相法制备烧结钕铁硼磁体的方法,其特征在于,步骤7)中烧结温度为1050℃至1100℃,烧结时间为6小时至10小时。
8.一种钕铁硼磁体,其特征在于,该钕铁硼磁体是由权利要求1至7任一所述的三相法制备烧结钕铁硼磁体的方法制备而成。
CN201610640874.2A 2016-08-08 2016-08-08 三相法制备烧结钕铁硼磁体的方法及该钕铁硼磁体 Pending CN107705953A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610640874.2A CN107705953A (zh) 2016-08-08 2016-08-08 三相法制备烧结钕铁硼磁体的方法及该钕铁硼磁体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610640874.2A CN107705953A (zh) 2016-08-08 2016-08-08 三相法制备烧结钕铁硼磁体的方法及该钕铁硼磁体

Publications (1)

Publication Number Publication Date
CN107705953A true CN107705953A (zh) 2018-02-16

Family

ID=61168464

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610640874.2A Pending CN107705953A (zh) 2016-08-08 2016-08-08 三相法制备烧结钕铁硼磁体的方法及该钕铁硼磁体

Country Status (1)

Country Link
CN (1) CN107705953A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853857A (zh) * 2019-11-28 2020-02-28 厦门钨业股份有限公司 含Ho和/或Gd的合金、稀土永磁体、原料、制备方法、用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127505A (ja) * 1986-11-17 1988-05-31 Taiyo Yuden Co Ltd 磁石及びその製造方法
CN101090013A (zh) * 2007-05-10 2007-12-19 浙江大学 纳米铜改性制备高矫顽力、高耐腐蚀性磁体方法
CN101499346A (zh) * 2008-01-30 2009-08-05 浙江大学 一种高工作温度和高耐蚀性烧结钕铁硼永磁体
CN102220538A (zh) * 2011-05-17 2011-10-19 南京理工大学 一种提高内禀矫顽力和耐腐蚀性能的烧结钕铁硼制备方法
CN103794323A (zh) * 2014-01-18 2014-05-14 浙江大学 一种应用高丰度稀土生产的商用稀土永磁体及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127505A (ja) * 1986-11-17 1988-05-31 Taiyo Yuden Co Ltd 磁石及びその製造方法
CN101090013A (zh) * 2007-05-10 2007-12-19 浙江大学 纳米铜改性制备高矫顽力、高耐腐蚀性磁体方法
CN101499346A (zh) * 2008-01-30 2009-08-05 浙江大学 一种高工作温度和高耐蚀性烧结钕铁硼永磁体
CN102220538A (zh) * 2011-05-17 2011-10-19 南京理工大学 一种提高内禀矫顽力和耐腐蚀性能的烧结钕铁硼制备方法
CN103794323A (zh) * 2014-01-18 2014-05-14 浙江大学 一种应用高丰度稀土生产的商用稀土永磁体及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853857A (zh) * 2019-11-28 2020-02-28 厦门钨业股份有限公司 含Ho和/或Gd的合金、稀土永磁体、原料、制备方法、用途
CN110853857B (zh) * 2019-11-28 2021-08-27 厦门钨业股份有限公司 含Ho和/或Gd的合金、稀土永磁体、原料、制备方法、用途

Similar Documents

Publication Publication Date Title
CN102568807B (zh) 纳米Cu粉掺杂制备高矫顽力SmCoFeCuZr高温永磁体的方法
CN105575577B (zh) 烧结富铈稀土永磁材料及其制备方法
CN103474225B (zh) 一种镝铈掺杂的钕铁硼磁体的制备方法
CN104576028A (zh) 富铈各向异性纳米晶稀土永磁体的制备方法
CN104599801A (zh) 一种稀土永磁材料及其制备方法
CN104064301B (zh) 一种钕铁硼磁体及其制备方法
CN103680919B (zh) 一种高矫顽力高强韧高耐蚀烧结钕铁硼永磁体的制备方法
CN107887091A (zh) 一种含镝钕铁硼磁体及其制备的方法
CN104575902A (zh) 一种添加铈的钕铁硼磁体及其制备方法
CN104575901A (zh) 一种添加铽粉的钕铁硼磁体及其制备方法
CN108269665A (zh) 一种钕铁硼磁体及其制备方法
CN107742564A (zh) 一种高镝辅合金添加制备低成本钕铁硼磁体的方法
CN105931784B (zh) 一种耐腐蚀含铈稀土永磁材料及其制备方法
CN105118655A (zh) 一种纳米锌粉晶界改性制备高矫顽力磁体的方法
CN110957089A (zh) 一种钐钴永磁材料的制备方法
CN104952580B (zh) 一种耐腐蚀烧结钕铁硼磁体及其制备方法
JP2011014631A (ja) R−t−b系希土類永久磁石およびモーター、自動車、発電機、風力発電装置
CN105206417B (zh) 一种主相晶粒间强去磁耦合烧结钕铁硼的制备方法
CN103667920B (zh) 一种Nd-Fe-B系稀土永磁合金的制备方法
CN105761925A (zh) 一种钬铁镓共晶掺杂制备高性能钕铁硼磁体的方法
CN102361371A (zh) 一种高速电机用钕铁硼磁体的制备方法
CN109509628B (zh) 一种烧结钕铁硼复合粉料的制备方法
CN103680789B (zh) 一种烧结用Nd-Fe-B系稀土永磁合金粉末及烧结工艺
CN107705953A (zh) 三相法制备烧结钕铁硼磁体的方法及该钕铁硼磁体
CN100559518C (zh) 用锆取代铌的钕铁硼永磁材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180216

RJ01 Rejection of invention patent application after publication