CN107703760B - 基于rbf与gdhp的天然气吸收塔脱硫过程控制方法 - Google Patents
基于rbf与gdhp的天然气吸收塔脱硫过程控制方法 Download PDFInfo
- Publication number
- CN107703760B CN107703760B CN201711117435.4A CN201711117435A CN107703760B CN 107703760 B CN107703760 B CN 107703760B CN 201711117435 A CN201711117435 A CN 201711117435A CN 107703760 B CN107703760 B CN 107703760B
- Authority
- CN
- China
- Prior art keywords
- desulfurization process
- absorption tower
- control
- natural gas
- rbf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 82
- 238000000034 method Methods 0.000 title claims abstract description 66
- 238000006477 desulfuration reaction Methods 0.000 title claims abstract description 59
- 230000023556 desulfurization Effects 0.000 title claims abstract description 59
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 47
- 239000003345 natural gas Substances 0.000 title claims abstract description 41
- 238000004886 process control Methods 0.000 title claims abstract description 18
- 230000008569 process Effects 0.000 claims abstract description 39
- 238000013528 artificial neural network Methods 0.000 claims abstract description 17
- 230000006870 function Effects 0.000 claims description 26
- 238000012549 training Methods 0.000 claims description 23
- 238000011156 evaluation Methods 0.000 claims description 19
- 210000002569 neuron Anatomy 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 4
- -1 alcohol amine Chemical class 0.000 claims description 4
- 230000004044 response Effects 0.000 abstract description 3
- 238000013178 mathematical model Methods 0.000 abstract description 2
- 238000004088 simulation Methods 0.000 abstract description 2
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000002364 input neuron Anatomy 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711117435.4A CN107703760B (zh) | 2017-11-13 | 2017-11-13 | 基于rbf与gdhp的天然气吸收塔脱硫过程控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711117435.4A CN107703760B (zh) | 2017-11-13 | 2017-11-13 | 基于rbf与gdhp的天然气吸收塔脱硫过程控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107703760A CN107703760A (zh) | 2018-02-16 |
CN107703760B true CN107703760B (zh) | 2020-11-27 |
Family
ID=61179303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711117435.4A Active CN107703760B (zh) | 2017-11-13 | 2017-11-13 | 基于rbf与gdhp的天然气吸收塔脱硫过程控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107703760B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109143872A (zh) * | 2018-11-19 | 2019-01-04 | 重庆科技学院 | 一种基于事件触发gdhp的连续搅拌反应釜过程控制方法 |
CN109932909A (zh) * | 2019-03-27 | 2019-06-25 | 江苏方天电力技术有限公司 | 火电机组脱硫系统的大系统耦合多变量优化匹配控制方法 |
CN111013370A (zh) * | 2019-11-08 | 2020-04-17 | 中国大唐集团科学技术研究院有限公司火力发电技术研究院 | 一种基于深度神经网络的湿法脱硫浆液供给量预测方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009058229A1 (en) * | 2007-10-30 | 2009-05-07 | Saudi Arabian Oil Company | Desulfurization of whole crude oil by solvent extraction and hydrotreating |
CN104636600A (zh) * | 2014-12-31 | 2015-05-20 | 中国石油化工股份有限公司中原油田普光分公司 | 基于极限学习机的高含硫天然气净化工艺建模、优化方法 |
CN104656441A (zh) * | 2014-12-29 | 2015-05-27 | 重庆科技学院 | 基于无迹卡尔曼神经网络的天然气净化工艺建模优化方法 |
CN104696080A (zh) * | 2014-10-31 | 2015-06-10 | 重庆邮电大学 | 基于观测器的电子节气门智能双积分滑模控制方法 |
CN105139078A (zh) * | 2004-10-20 | 2015-12-09 | 艾默生过程管理电力和水力解决方案有限公司 | 提供负载调度和污染控制优化的方法及装置 |
CN106777866A (zh) * | 2016-11-14 | 2017-05-31 | 重庆科技学院 | 面向节能降耗的高含硫天然气净化工艺建模与优化方法 |
CN106777465A (zh) * | 2016-11-14 | 2017-05-31 | 重庆科技学院 | 高含硫天然气净化工艺动态演化建模与节能优化方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013023216A1 (en) * | 2011-08-11 | 2013-02-14 | Arizona Board Of Regents On Behalf Of The University Of Arizona | High sulfur content copolymers and composite materials and electrochemical cells and optical elements using them |
-
2017
- 2017-11-13 CN CN201711117435.4A patent/CN107703760B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105139078A (zh) * | 2004-10-20 | 2015-12-09 | 艾默生过程管理电力和水力解决方案有限公司 | 提供负载调度和污染控制优化的方法及装置 |
WO2009058229A1 (en) * | 2007-10-30 | 2009-05-07 | Saudi Arabian Oil Company | Desulfurization of whole crude oil by solvent extraction and hydrotreating |
CN104696080A (zh) * | 2014-10-31 | 2015-06-10 | 重庆邮电大学 | 基于观测器的电子节气门智能双积分滑模控制方法 |
CN104656441A (zh) * | 2014-12-29 | 2015-05-27 | 重庆科技学院 | 基于无迹卡尔曼神经网络的天然气净化工艺建模优化方法 |
CN104636600A (zh) * | 2014-12-31 | 2015-05-20 | 中国石油化工股份有限公司中原油田普光分公司 | 基于极限学习机的高含硫天然气净化工艺建模、优化方法 |
CN106777866A (zh) * | 2016-11-14 | 2017-05-31 | 重庆科技学院 | 面向节能降耗的高含硫天然气净化工艺建模与优化方法 |
CN106777465A (zh) * | 2016-11-14 | 2017-05-31 | 重庆科技学院 | 高含硫天然气净化工艺动态演化建模与节能优化方法 |
Non-Patent Citations (4)
Title |
---|
Energy Consumption Optimization of High Sulfur Natural Gas Purification Plant Based on Back Propagation Neural Network and Genetic Algorithms;LiminMa,等;《Energy Procedia》;20170531;第105卷;第5166-5171页 * |
基于大数据的高含硫天然气脱硫工艺优化;辜小花,等;《天然气工业》;20160930;第36卷(第9期);第107-114页 * |
基于神经网络的非线性系统自适应优化控制研究;罗艳红;《中国博士学位论文全文数据库信息科技辑》;20110630(第06(2011)期);第I140-1页 * |
某天然气脱硫装置适应性分析与动态特性研究;邓骥;《中国优秀硕士学位论文全文数据库工程科技I辑》;20150831(第08(2015)期);第B019-368页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107703760A (zh) | 2018-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112085277B (zh) | 一种基于机器学习的scr脱硝系统预测模型优化方法 | |
CN109143872A (zh) | 一种基于事件触发gdhp的连续搅拌反应釜过程控制方法 | |
CN106249724B (zh) | 一种高炉多元铁水质量预测控制方法及系统 | |
CN107703760B (zh) | 基于rbf与gdhp的天然气吸收塔脱硫过程控制方法 | |
CN106777866A (zh) | 面向节能降耗的高含硫天然气净化工艺建模与优化方法 | |
CN102693451A (zh) | 基于多参数的氨法烟气脱硫效率预测方法 | |
CN113077039B (zh) | 基于任务驱动rbf神经网络的出水总氮tn软测量方法 | |
CN109224815A (zh) | 一种基于多变量约束区间预测控制的氨法脱硫优化控制方法 | |
CN111158237A (zh) | 基于神经网络的工业炉炉温多步预测控制方法 | |
CN112836884A (zh) | 基于Copula-DBiLSTM的综合能源系统多元负荷精确预测方法 | |
CN112613237A (zh) | 一种基于LSTM的CFB机组NOx排放浓度的预测方法 | |
CN112742187A (zh) | 一种脱硫系统中pH值的控制方法及装置 | |
CN113964884A (zh) | 基于深度强化学习的电网有功频率的调控方法 | |
CN102393645A (zh) | 一种高速电液比例调速系统的控制方法 | |
CN107831666B (zh) | 基于rbf与addhp的天然气吸收塔脱硫过程控制方法 | |
CN107885084B (zh) | 基于rbf与adhdp的天然气吸收塔脱硫过程控制方法 | |
CN106802983B (zh) | 一种基于优化的bp神经网络的沼气产量建模计算方法及装置 | |
CN107908108B (zh) | 基于ukf与gdhp的天然气吸收塔脱硫过程控制方法 | |
CN111797363B (zh) | 基于数据的污水处理系统自学习轨迹跟踪方法 | |
CN107885083B (zh) | 基于ukf与adhdp的天然气吸收塔脱硫过程控制方法 | |
CN107831665B (zh) | 基于ukf与addhp的天然气吸收塔脱硫过程控制方法 | |
CN116700003A (zh) | 使用流程工业历史数据构建强化学习环境的方法及系统 | |
Anuradha et al. | Direct inverse neural network control of a continuous stirred tank reactor (CSTR) | |
CN114924489B (zh) | 一种适用于流程工业预测控制的模型自主学习方法 | |
CN113741182B (zh) | 一种基于广义值迭代的污水处理过程控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20180216 Assignee: Guangxi Chunmeng Intelligent Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2023980053984 Denomination of invention: Control method for natural gas absorption tower desulfurization process based on RBF and GDHP Granted publication date: 20201127 License type: Common License Record date: 20231227 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20180216 Assignee: Foshan shangxiaoyun Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2024980003005 Denomination of invention: Control method for natural gas absorption tower desulfurization process based on RBF and GDHP Granted publication date: 20201127 License type: Common License Record date: 20240322 Application publication date: 20180216 Assignee: FOSHAN YAOYE TECHNOLOGY Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2024980003003 Denomination of invention: Control method for natural gas absorption tower desulfurization process based on RBF and GDHP Granted publication date: 20201127 License type: Common License Record date: 20240322 Application publication date: 20180216 Assignee: Foshan helixing Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2024980003002 Denomination of invention: Control method for natural gas absorption tower desulfurization process based on RBF and GDHP Granted publication date: 20201127 License type: Common License Record date: 20240322 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20180216 Assignee: Foshan qianshun Technology Co.,Ltd. Assignor: Chongqing University of Science & Technology Contract record no.: X2024980004523 Denomination of invention: Control method for natural gas absorption tower desulfurization process based on RBF and GDHP Granted publication date: 20201127 License type: Common License Record date: 20240419 |
|
EE01 | Entry into force of recordation of patent licensing contract |