CN107703760B - 基于rbf与gdhp的天然气吸收塔脱硫过程控制方法 - Google Patents

基于rbf与gdhp的天然气吸收塔脱硫过程控制方法 Download PDF

Info

Publication number
CN107703760B
CN107703760B CN201711117435.4A CN201711117435A CN107703760B CN 107703760 B CN107703760 B CN 107703760B CN 201711117435 A CN201711117435 A CN 201711117435A CN 107703760 B CN107703760 B CN 107703760B
Authority
CN
China
Prior art keywords
desulfurization process
absorption tower
control
natural gas
rbf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711117435.4A
Other languages
English (en)
Other versions
CN107703760A (zh
Inventor
汪波
刘华超
周伟
甘丽群
李晓亮
易军
李太福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Science and Technology
Original Assignee
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Science and Technology filed Critical Chongqing University of Science and Technology
Priority to CN201711117435.4A priority Critical patent/CN107703760B/zh
Publication of CN107703760A publication Critical patent/CN107703760A/zh
Application granted granted Critical
Publication of CN107703760B publication Critical patent/CN107703760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明提供了一种基于RBF与GDHP的天然气吸收塔脱硫过程控制方法。利用BP神经网络对吸收塔脱硫过程建模并以该模型为被控对象进行吸收塔脱硫过程控制仿真实验,根据控制误差和性能指标函数不断更新优化权值,得到新的控制信号,直到实现脱硫过程的最优控制。吸收塔脱硫过程复杂,表现不确定性、非线性、强耦合性、动态性等特点,难以建立精确的数学模型,控制难度较大。针对目前吸收塔脱硫过程控制方法控制精度低,时滞大、不稳定等问题提出一种基于RBF和GDHP的吸收塔脱硫过程控制方法,不仅保证了控制系统的稳定性和控制精度,还降低了响应时间,真正实现了吸收塔脱硫过程的实时控制。

Description

基于RBF与GDHP的天然气吸收塔脱硫过程控制方法
技术领域
本发明涉及天然气吸收塔脱硫过程控制技术,具体涉及一种基于RBF与全局二次启发式动态规划(GDHP)结合的天然气吸收塔脱硫过程控制方法。
背景技术
天然气作为一种优质、清洁的能源和化工原料,使用方便并且拥有较高的综合经济效益。我国拥有丰富的天然气资源,但是约30%左右的天然气中含有大量硫元素,其中H2S含量大于1%的天然气储量占到总储量的1/4。H2S的存在不仅会造成设备和管道的腐蚀、危害人体健康,其燃烧产物也会污染环境。因此,在天然气脱硫过程中,H2S含量控制显得尤为重要。
天然气脱硫吸收塔是天然气净化装置的重要组成部分,直接影响天然气净化效果。天然气原料气进入吸收塔与塔内甲基二乙醇胺(MDEA)溶液充分接触发生反应,从而达到脱硫的目的,整个过程同时发生物理化学反应和相位反应,涉及物质转化和能量传递,受各种不确定因素影响较大,表现不确定性、非线性、强耦合性、动态性等特点,难以建立精确的数学模型,从而给吸收塔脱硫过程的控制带来了极大困难。
现有的控制技术多为PID单回路控制或简单串级控制,控制系统自动化程度不高且过多的依赖专家经验调节控制参数,具有较大的滞后性,控制精度较低,控制系统的稳定性也难以保证,难以达到实时精确控制。
发明内容
本申请通过提供一种基于RBF与GDHP的天然气吸收塔脱硫过程控制方法,以解决目前天然气吸收塔脱硫过程控制技术中存在的控制精度低,时滞大,控制系统不稳定等问题,保证天然气脱硫效果。
为解决上述技术问题,本申请采用以下技术方案予以实现:
一种基于RBF与GDHP的天然气吸收塔脱硫过程控制方法,其特征在于包括如下步骤:
步骤1:通过分析吸收塔脱硫工艺过程,确定影响天然气脱硫效果的主要因素为酸性天然气处理量和醇胺溶液循环量,分别用u1和u2表示,由此构成控制信号u(k)=[u1,u2];
步骤2:确定脱硫过程模型输入样本数据输出样本数据,采用BP神经网络建立天然气吸收塔脱硫过程模型;
步骤3:设定控制目标值
Figure GDA0002646527150000021
运用RBF神经网络设计GDHP方法中的评价网络和执行网络,并分别通过执行网络和评价网络获得控制信号u(k)=[u1,u2]和代价函数J(k)及其对系统状态x(k)的偏导
Figure GDA0002646527150000022
建立RBF-GDHP的天然气吸收塔脱硫过程控制方法;
步骤4:将步骤3所得控制信号u(k)=[u1,u2]和当前时刻系统状态x(k)=[x1,x2]作为吸收塔脱硫过程模型输入,从而得到系统输出x(k+1)。
步骤5:计算控制误差E(k),若小于期望误差,结束训练,否则返回步骤3。
作为进一步说明,所述步骤3具体按照以下步骤进行:
步骤3-1:根据控制误差E(k),采用RBF神经网络更新评价网络和执行网络权值;
步骤3-2:计算控制信号u(k);
步骤3-3:计算评价网络输出J(k+1)和λ(k+1)。
作为进一步说明,步骤5中,控制误差E(k)计算公式为:
E(k)=α1||E1(k)||+(1-α2||E2(k)||)
其中,
Figure GDA0002646527150000031
Figure GDA0002646527150000032
函数U(k)是效用函数,为控制信号u(k)和代价函数J(k)的函数。
与现有技术相比,本申请提供的技术方案,具有的技术效果或优点是:在吸收塔脱硫过程控制中,该方法控制精度高,收敛速度快,能够提高控制系统稳定性和控制精度,降低控制系统响应时间,保证天然气脱硫效果。
附图说明
图1本发明原理框图;
图2天然气吸收塔脱硫过程模型示意图;
图3-6为天然气吸收塔脱硫过程模型测试结果示意图;
图3 H2S含量预测示意图;
图4 H2S含量预测相对误差示意图;
图5 CO2含量预测示意图;
图6 CO2含量预测相对误差示意图;
图7 RBF-GDHP控制结构示意图。
具体实施方式
本申请提供一种基于RBF与GDHP的天然气吸收塔脱硫过程控制方法,发明原理框图如图1所示。参考现有技术手段,本申请提供的技术方案,具有的技术效果或优点是:该方法采用智能算法用于天然气吸收塔脱硫过程控制,具有较高的控制精度,能够降低控制系统响应时间,能够实时自动调整控制参数,提高控制系统稳定性,真正达到了实时控制的目的。
为了更好的理解上述技术方案,下面将结合说明书附图2-7以及具体的实施方式,对上述技术方案进行详细的说明。
首先进入步骤1:选取酸性天然气处理量和吸收酸性气体所用的醇胺溶液循环量两个参数构成控制信号u(k)=[u1,u2]。
步骤2:运用BP神经网络,分别以input1~inputn和x1~xn作为输入输出样本进行训练、检验,从而建立吸收塔脱硫过程模型。其中,input=[x1,x2,u1,u2],x(k)=[x1,x2],n表示样本数量,u1,u2分别表示单位时间内原料天然气处理量和醇胺溶液循环量,x1,x2分别表示天然气净化气中H2S含量(mg/m3)和CO2含量(%)。
在本实施例中,建立如图2所示的吸收塔脱硫过程模型,输入层神经元个数为4,输出层神经元个数为2;根据经验,隐含层节点选择为
Figure GDA0002646527150000041
(x为输入层节点,y为输出层节点,a=1,2,...9),通过依次试验选择建模测试精度最高的隐含层节点为10;隐含层传递函数为tansig函数,输出层传递函数为purelin函数;期望误差最小值为0.0001,修正权值的学习效率为0.05。建模样本数据为普光气田实际生产数据,共计500组,随机选取80%的样本数据用作模型训练,剩余20%的样本用作模型测试。
设吸收塔脱硫过程模型输入为P,输入神经元个数为r,隐含层神经元个数为s1,对应的激活函数为h1,隐含层输出为a1;输出层神经元个数为s2,对应的激活函数为h2,输出为a2,目标矢量为T。
步骤2中建立吸收塔脱硫过程模型具体包括如下步骤:
步骤2-1:初始化,设迭代次数g初值为0,同时赋给W1,W2,B1,B2一个(0,1)区间的随机值;
步骤2-2:随机输入样本Pj
步骤2-3:对输入样本Pj,前向计算BP神经网络每层神经元的输入和输出;
隐含层第i个神经元的输出为:
Figure GDA0002646527150000051
输出层第s个神经元的输出为:
Figure GDA0002646527150000052
步骤2-4:根据期望输出T和实际输出a2(g),计算误差E(g);
定义误差函数为:
Figure GDA0002646527150000053
步骤2-5:判断误差E(g)是否满足要求,如不满足,则进入步骤2-6,如满足,则进入步骤2-8;
步骤2-6:判断迭代次数g+1是否大于最大迭代次数,如大于,则进入步骤2-8,否则,进入步骤2-7;
步骤2-7:计算权值修正量ΔW,并修正权值。
①输出层权值变化
对从第i个输入到第k个输出的权值,有:
Figure GDA0002646527150000054
其中,δki=(tk-a2k)·h2′=ek·h2′,ek=tk-a2k
Figure GDA0002646527150000055
②隐含层权值变化
对从第j个输入到第i个输出的权值,有:
Figure GDA0002646527150000056
Figure GDA0002646527150000061
其中,
Figure GDA0002646527150000062
同理可得:
Δb1i=η·δij
式中,η为学习效率;令g=g+1,跳转至步骤3;
步骤2-8:判断是否完成所有的训练样本,如果是,则完成建模,否则,继续跳转至步骤2-2;
通过上述过程,可得到BP神经网络预测效果如图3,5所示,对应的预测误差如图4,6所示。通过分析图3-6分析,BP神经网络训练建立吸收塔脱硫过程模型具有较高的精度,能够精确预测系统的输出,为天然气脱硫过程控制方法的研究奠定基础。
步骤3:设定控制目标值
Figure GDA0002646527150000063
运用RBF神经网络设计GDHP方法中的评价网络和执行网络,并分别通过执行网络和评价网络获得控制信号u(k)=[u1,u2]和代价函数J(k)及其对系统状态x(k)的偏导
Figure GDA0002646527150000064
建立RBF-GDHP的天然气吸收塔脱硫过程控制方法,其控制结构如图7所示:Action-RBF为执行网络,输入输出分别为系统状态x(k)和控制信号u(k);Controlled Object为模型网络,输入为系统状态x(k)和控制信号u(k),输出为系统下一时刻状态x(k+1);Critic-RBF为评价网络,输入为x(k+1)和u(k+1),输出为性能指标函数J(k+1)及其对系统状态的偏导
Figure GDA0002646527150000065
执行网络和评价网络的训练分别以控制误差E(k)和性能指标函数J(k)及其对系统状态x(k)的偏导函数λ(k)最小化为目标,虚线表示网络权值调整路径。
在本实施例中,步骤5中控制误差E(k)计算公式为:
E(k)=α1||E1(k)||+(1-α2||E2(k)||)
其中,
Figure GDA0002646527150000071
Figure GDA0002646527150000072
在本实施例中,执行网络和评价网络的训练过程如下:
(1)执行网络训练:
执行网络由RBF神经网络设计,设置
Figure GDA0002646527150000073
为执行网络输入矢量,m1为执行网络输入变量个数,a=[1,2,…n1],n1为执行网络训练次数。
Figure GDA0002646527150000074
为第n1次训练隐层M与输出I之间的权值矢量,u(l)=[ua1(l),ua2(l),…,uap(l)]为第n1次训练执行网络的实际输出。其中,l表示每次训练的迭代次数。
(2)评价网络训练:
评价网络同样由RBF神经网络设计完成,其训练过程与执行网络相同。设置
Figure GDA0002646527150000075
为评价网络输入矢量,m2表示评价网络输入变量个数,c=[1,2,…n1],n1为评价网络训练次数。
Figure GDA0002646527150000081
为第n1次训练隐层M与输出I之间的权值矢量,J(l)为第n1次训练评价网络的实际输出。
作为进一步说明,执行网络和评价网络的训练过程相似且同时进行,具体包括以下过程:
①初始化,设迭代次数n1初值为0,赋给WMI(0)一个(0,1)区间的随机值;
②输入Xa/Xc
③对输入Xa/Xc,前向计算RBF神经网络每层神经元的输入信号和输出信号;
④根据控制误差计算公式计算误差E(k);
⑤判断控制误差E(k)是否满足控制要求,如不满足,则进入⑥,如满足,则进入⑨;
⑥判断迭代次数n1+1是否大于最大迭代次数,如大于,则进入⑨,否则,进入⑦;
⑦对输入Xa/Xc反向计算每层神经元的局部梯度δ;
⑧计算权值修正量ΔW,并修正权值,计算公式为:ΔWij=η·δij·Aj,Wij(n1+1)=Wij(n1)+ΔWij(n1)式中,η为学习效率;令n1=n1+1,跳转至③;
⑨训练完成。
(3)计算执行网络输出:
执行网络隐含层输出为:
Figure GDA0002646527150000082
其中,
Figure GDA0002646527150000083
为期望的控制目标,作为执行网络隐含层神经元的中心,b1为Xat
Figure GDA0002646527150000091
之间的偏差。
执行网络输出层输出为:u(k)=Wa*Aj,即为所求控制信号,其中,Wa为执行网络权值。
(4)计算评价网络输出:
评价网络隐含层输出为:
Figure GDA0002646527150000092
其中,
Figure GDA0002646527150000093
表示评价网络隐含层神经元的中心,根据训练经验设定,b2为Xcs
Figure GDA0002646527150000094
之间的偏差。
评价网络输出层输出为:
J(k+1)=Wc*Cj
Figure GDA0002646527150000095
其中,Wc为评价网络权值。
步骤4:将步骤3所得控制信号u(k)=[u1,u2]和当前时刻系统状态x(k)=[x1,x2]作为吸收塔脱硫过程模型输入,从而得到系统输出x(k+1)。
步骤5:计算控制误差E(k),若小于期望误差,结束训练,否则返回步骤3。
本发明提供了一种基于RBF与GDHP的吸收塔脱硫过程控制方法。首先,利用BP神经网络训练吸收塔脱硫实际生产数据,建立吸收塔脱硫过程模型,从而绕开了脱硫过程机理上的细节性问题,解决了因脱硫过程复杂而导致的建模困难的问题,为天然气脱硫过程控制方法的研究奠定基础。然后,以建立的模型为被控对象进行仿真实验研究,采用GDHP方法对吸收塔脱硫过程进行控制并采用RBF神经网络更新优化GDHP评价网络和执行网络权值权值,建立基于RBF-GDHP的吸收塔脱硫过程控制方法。该方法摆脱了长期以来对专家经验的过度依赖,解决了现有吸收塔脱硫过程控制技术存在的控制精度低,时滞大,控制系统不稳定等问题,真正达到了吸收塔脱硫过程实时精确控制的目的,也为解决类似工业控制问题提供了一种新的思路,体现了人工智能算法在工业中的强大功能。
应当指出的是,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改性、添加或替换,也应属于本发明的保护范围。

Claims (3)

1.基于RBF与GDHP的天然气吸收塔脱硫过程控制方法,其特征在于包括如下步骤:
步骤1:通过分析天然气吸收塔脱硫工艺过程,确定影响天然气脱硫效果的主要因素为酸性天然气处理量和醇胺溶液循环量,分别用u1和u2表示,由此构成控制信号u(k)=[u1,u2];
步骤2:确定脱硫过程模型输入样本数据输出样本数据,采用输入层神经元个数为4,隐含层节点为10,输出层神经元个数为2,隐含层传递函数为tansig函数,输出层传递函数为purelin函数,期望误差最小值为0.0001,修正权值的学习效率为0.05的BP神经网络建立天然气吸收塔脱硫过程模型;
步骤3:设定控制目标值
Figure FDA0002646527140000011
运用RBF神经网络设计GDHP方法中的评价网络和执行网络,并分别通过执行网络和评价网络获得控制信号u(k)=[u1,u2]和性能指标函数J(k)及其对系统状态x(k)的偏导
Figure FDA0002646527140000012
建立RBF-GDHP的天然气吸收塔脱硫过程控制方法;
步骤4:将步骤3所得控制信号u(k)=[u1,u2]和当前时刻系统状态x(k)=[x1,x2]作为吸收塔脱硫过程模型输入,从而得到系统输出x(k+1);
步骤5:计算控制误差E(k),若小于期望误差,结束训练,否则返回步骤3。
2.根据权利要求1所述的基于RBF与GDHP的天然气吸收塔脱硫过程控制方法,其特征在于步骤3中的RBF-GDHP控制方法包括以下步骤:
步骤3-1:根据控制误差E(k),采用RBF神经网络更新评价网络和执行网络权值;
步骤3-2:计算控制信号u(k);
步骤3-3:计算评价网络输出J(k+1)和λ(k+1)。
3.根据权利要求1所述的基于RBF与GDHP的天然气吸收塔脱硫过程控制方法,其特征在于:
步骤5中控制误差E(k)计算公式为:
E(k)=α1||E1(k)||+(1-α2||E2(k)||)
其中,
Figure FDA0002646527140000021
Figure FDA0002646527140000022
函数U(k)是效用函数,为控制信号u(k)和代价函数J(k)的函数。
CN201711117435.4A 2017-11-13 2017-11-13 基于rbf与gdhp的天然气吸收塔脱硫过程控制方法 Active CN107703760B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711117435.4A CN107703760B (zh) 2017-11-13 2017-11-13 基于rbf与gdhp的天然气吸收塔脱硫过程控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711117435.4A CN107703760B (zh) 2017-11-13 2017-11-13 基于rbf与gdhp的天然气吸收塔脱硫过程控制方法

Publications (2)

Publication Number Publication Date
CN107703760A CN107703760A (zh) 2018-02-16
CN107703760B true CN107703760B (zh) 2020-11-27

Family

ID=61179303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711117435.4A Active CN107703760B (zh) 2017-11-13 2017-11-13 基于rbf与gdhp的天然气吸收塔脱硫过程控制方法

Country Status (1)

Country Link
CN (1) CN107703760B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109143872A (zh) * 2018-11-19 2019-01-04 重庆科技学院 一种基于事件触发gdhp的连续搅拌反应釜过程控制方法
CN109932909A (zh) * 2019-03-27 2019-06-25 江苏方天电力技术有限公司 火电机组脱硫系统的大系统耦合多变量优化匹配控制方法
CN111013370A (zh) * 2019-11-08 2020-04-17 中国大唐集团科学技术研究院有限公司火力发电技术研究院 一种基于深度神经网络的湿法脱硫浆液供给量预测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009058229A1 (en) * 2007-10-30 2009-05-07 Saudi Arabian Oil Company Desulfurization of whole crude oil by solvent extraction and hydrotreating
CN104636600A (zh) * 2014-12-31 2015-05-20 中国石油化工股份有限公司中原油田普光分公司 基于极限学习机的高含硫天然气净化工艺建模、优化方法
CN104656441A (zh) * 2014-12-29 2015-05-27 重庆科技学院 基于无迹卡尔曼神经网络的天然气净化工艺建模优化方法
CN104696080A (zh) * 2014-10-31 2015-06-10 重庆邮电大学 基于观测器的电子节气门智能双积分滑模控制方法
CN105139078A (zh) * 2004-10-20 2015-12-09 艾默生过程管理电力和水力解决方案有限公司 提供负载调度和污染控制优化的方法及装置
CN106777866A (zh) * 2016-11-14 2017-05-31 重庆科技学院 面向节能降耗的高含硫天然气净化工艺建模与优化方法
CN106777465A (zh) * 2016-11-14 2017-05-31 重庆科技学院 高含硫天然气净化工艺动态演化建模与节能优化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013023216A1 (en) * 2011-08-11 2013-02-14 Arizona Board Of Regents On Behalf Of The University Of Arizona High sulfur content copolymers and composite materials and electrochemical cells and optical elements using them

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105139078A (zh) * 2004-10-20 2015-12-09 艾默生过程管理电力和水力解决方案有限公司 提供负载调度和污染控制优化的方法及装置
WO2009058229A1 (en) * 2007-10-30 2009-05-07 Saudi Arabian Oil Company Desulfurization of whole crude oil by solvent extraction and hydrotreating
CN104696080A (zh) * 2014-10-31 2015-06-10 重庆邮电大学 基于观测器的电子节气门智能双积分滑模控制方法
CN104656441A (zh) * 2014-12-29 2015-05-27 重庆科技学院 基于无迹卡尔曼神经网络的天然气净化工艺建模优化方法
CN104636600A (zh) * 2014-12-31 2015-05-20 中国石油化工股份有限公司中原油田普光分公司 基于极限学习机的高含硫天然气净化工艺建模、优化方法
CN106777866A (zh) * 2016-11-14 2017-05-31 重庆科技学院 面向节能降耗的高含硫天然气净化工艺建模与优化方法
CN106777465A (zh) * 2016-11-14 2017-05-31 重庆科技学院 高含硫天然气净化工艺动态演化建模与节能优化方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Energy Consumption Optimization of High Sulfur Natural Gas Purification Plant Based on Back Propagation Neural Network and Genetic Algorithms;LiminMa,等;《Energy Procedia》;20170531;第105卷;第5166-5171页 *
基于大数据的高含硫天然气脱硫工艺优化;辜小花,等;《天然气工业》;20160930;第36卷(第9期);第107-114页 *
基于神经网络的非线性系统自适应优化控制研究;罗艳红;《中国博士学位论文全文数据库信息科技辑》;20110630(第06(2011)期);第I140-1页 *
某天然气脱硫装置适应性分析与动态特性研究;邓骥;《中国优秀硕士学位论文全文数据库工程科技I辑》;20150831(第08(2015)期);第B019-368页 *

Also Published As

Publication number Publication date
CN107703760A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
CN112085277B (zh) 一种基于机器学习的scr脱硝系统预测模型优化方法
CN109143872A (zh) 一种基于事件触发gdhp的连续搅拌反应釜过程控制方法
CN106249724B (zh) 一种高炉多元铁水质量预测控制方法及系统
CN107703760B (zh) 基于rbf与gdhp的天然气吸收塔脱硫过程控制方法
CN106777866A (zh) 面向节能降耗的高含硫天然气净化工艺建模与优化方法
CN102693451A (zh) 基于多参数的氨法烟气脱硫效率预测方法
CN113077039B (zh) 基于任务驱动rbf神经网络的出水总氮tn软测量方法
CN109224815A (zh) 一种基于多变量约束区间预测控制的氨法脱硫优化控制方法
CN111158237A (zh) 基于神经网络的工业炉炉温多步预测控制方法
CN112836884A (zh) 基于Copula-DBiLSTM的综合能源系统多元负荷精确预测方法
CN112613237A (zh) 一种基于LSTM的CFB机组NOx排放浓度的预测方法
CN112742187A (zh) 一种脱硫系统中pH值的控制方法及装置
CN113964884A (zh) 基于深度强化学习的电网有功频率的调控方法
CN102393645A (zh) 一种高速电液比例调速系统的控制方法
CN107831666B (zh) 基于rbf与addhp的天然气吸收塔脱硫过程控制方法
CN107885084B (zh) 基于rbf与adhdp的天然气吸收塔脱硫过程控制方法
CN106802983B (zh) 一种基于优化的bp神经网络的沼气产量建模计算方法及装置
CN107908108B (zh) 基于ukf与gdhp的天然气吸收塔脱硫过程控制方法
CN111797363B (zh) 基于数据的污水处理系统自学习轨迹跟踪方法
CN107885083B (zh) 基于ukf与adhdp的天然气吸收塔脱硫过程控制方法
CN107831665B (zh) 基于ukf与addhp的天然气吸收塔脱硫过程控制方法
CN116700003A (zh) 使用流程工业历史数据构建强化学习环境的方法及系统
Anuradha et al. Direct inverse neural network control of a continuous stirred tank reactor (CSTR)
CN114924489B (zh) 一种适用于流程工业预测控制的模型自主学习方法
CN113741182B (zh) 一种基于广义值迭代的污水处理过程控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180216

Assignee: Guangxi Chunmeng Intelligent Technology Co.,Ltd.

Assignor: Chongqing University of Science & Technology

Contract record no.: X2023980053984

Denomination of invention: Control method for natural gas absorption tower desulfurization process based on RBF and GDHP

Granted publication date: 20201127

License type: Common License

Record date: 20231227

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180216

Assignee: Foshan shangxiaoyun Technology Co.,Ltd.

Assignor: Chongqing University of Science & Technology

Contract record no.: X2024980003005

Denomination of invention: Control method for natural gas absorption tower desulfurization process based on RBF and GDHP

Granted publication date: 20201127

License type: Common License

Record date: 20240322

Application publication date: 20180216

Assignee: FOSHAN YAOYE TECHNOLOGY Co.,Ltd.

Assignor: Chongqing University of Science & Technology

Contract record no.: X2024980003003

Denomination of invention: Control method for natural gas absorption tower desulfurization process based on RBF and GDHP

Granted publication date: 20201127

License type: Common License

Record date: 20240322

Application publication date: 20180216

Assignee: Foshan helixing Technology Co.,Ltd.

Assignor: Chongqing University of Science & Technology

Contract record no.: X2024980003002

Denomination of invention: Control method for natural gas absorption tower desulfurization process based on RBF and GDHP

Granted publication date: 20201127

License type: Common License

Record date: 20240322

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180216

Assignee: Foshan qianshun Technology Co.,Ltd.

Assignor: Chongqing University of Science & Technology

Contract record no.: X2024980004523

Denomination of invention: Control method for natural gas absorption tower desulfurization process based on RBF and GDHP

Granted publication date: 20201127

License type: Common License

Record date: 20240419

EE01 Entry into force of recordation of patent licensing contract