CN107699226B - 一种超高灵敏度上转换纳米温度探针及其制备方法 - Google Patents

一种超高灵敏度上转换纳米温度探针及其制备方法 Download PDF

Info

Publication number
CN107699226B
CN107699226B CN201710817235.3A CN201710817235A CN107699226B CN 107699226 B CN107699226 B CN 107699226B CN 201710817235 A CN201710817235 A CN 201710817235A CN 107699226 B CN107699226 B CN 107699226B
Authority
CN
China
Prior art keywords
temperature
ion
temperature probe
energy level
kmn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710817235.3A
Other languages
English (en)
Other versions
CN107699226A (zh
Inventor
崔祥水
程遥
林航
黄烽
吴清萍
徐桔
王元生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN201710817235.3A priority Critical patent/CN107699226B/zh
Publication of CN107699226A publication Critical patent/CN107699226A/zh
Application granted granted Critical
Publication of CN107699226B publication Critical patent/CN107699226B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/06Halides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

在本发明提出了一种新型的超高灵敏度的纳米荧光温度探针材料KMn0.8Yb0.19Er0.01F3,该材料为10纳米左右的立方块纳米晶。由于基质Mn2+离子与Er3+离子的电子态波函数重叠,通过交换作用,Mn2+离子的4T1能级为Er3+离子的2H11/24S3/2能级与4F9/2能级搭建了一条电子耦合通道。依靠温度对交换作用距离的调控,Er3+离子的522nm和542nm处绿光发射带与654nm处红光发射带强度比值变化显著,实现了适合生物体内温度范围的温度探测。这种上转换荧光纳米温度探针材料的监测发射峰间距较大,达到112nm,信号甄别度高,而且其绝对温度灵敏度0.0113K‑1,最高相对温度灵敏度为5.7%K‑1,远远超过了目前被研究的其它上转换荧光纳米温度探针材料。因此,这种上转换荧光纳米材料经表面功能化,可以作为一种适合生物体内温度探测的荧光纳米温度探针。

Description

一种超高灵敏度上转换纳米温度探针及其制备方法
技术领域
本发明涉及稀土掺杂上转换发光纳米材料以及温度探测技术等领域。
背景技术
生物体内的细胞活动,如细胞分裂,基因表达和新陈代谢等活动,实际上是通过吸热或者放热的化学反应实现的,通常伴随着温度变化。就此而言,实现细胞内的温度探测对揭示诸多的细胞活动,促进细胞生物学的发展以及实现在细胞水平上的疾病诊断和治疗,具有重大的意义。细胞内独特的环境使得传统的接触式测温方法无法满足测温要求。得益于无机纳米科学技术取得的巨大成就,近年来发展的纳米荧光计温学,它具有可远程观测,灵敏度和空间分辨率高,响应时间迅速等优点,成为一种优异的且最有潜力的非接触式测温手段。在诸多的荧光计温学中,目前最广泛使用的是荧光强度比测温技术,它克服了单荧光发射强度测温技术容易受到激发功率波动、探针浓度及荧光损失等因素影响的缺点,测温准确度和可靠度高。本质上,荧光强度比技术依靠稀土离子两个独立的或者电子耦合的激发态能级上电子布居的温度依赖特性,当两个激发态能级距离足够接近,两者就可以被热自由能耦合在一起,建立一个满足玻尔兹曼布居的热平衡态,温度值可以通过计算这两个热耦合能级荧光发射强度比推导出来。
对于目前广泛研究的满足玻尔兹曼布居的热耦合能级荧光发射强度比测温技术而言,稀土离子的热耦合能级间距ΔE对于测温性能至关重要。一方面,较高激发态热耦合能级上的热电子布居与ΔE成反比,较小的ΔE值有利于实现较强的热耦合性能,获得高的绝对温度灵敏度Sa,尤其有利于较低的生物应用温度范围的温度探测。另一方面,由Sr=ΔE/kT2可知,较小的ΔE值将会导致较低的相对温度灵敏度,同时使得监测发射峰的部分重叠,导致差的信号甄别度。因此,在生物应用温度探测范围内,该测温技术很难同时获得高的绝对温度灵敏度和高的相对温度灵敏度,成为该测温技术无可避免的固有缺陷。因此,在两个具有相当大能级间距且电子态相互独立的能级之间,构建一种不受玻尔兹曼布居约束的热耦合,将会是解决ΔE矛盾的有效途径,有利于促进高的绝对温度灵敏度,高的相对温度灵敏度和良好的信号甄别度。
稀土Er3+离子具有丰富的阶梯能级,是一类理想的上转换发光离子,其热耦合能级对,2H11/24S3/2能级,广泛应用于光学温度探针的研究。在本发明中,我们通过Mn2+离子的4T1能级将Er3+离子的原本电子态独立的绿光发射能级2H11/24S3/2与红光发射能级4F9/2耦合在一起,开发了一种新型的上转换荧光变色纳米温度探针材料KMn0.8Yb0.19Er0.01F3,所述材料为10纳米左右的立方块纳米晶。由于基质Mn2+离子与Er3+离子的电子态波函数重叠,通过交换作用,Mn2+离子的4T1能级为Er3+离子的2H11/24S3/2能级与4F9/2能级搭建了一条电子耦合通道。众所周知,在有效的作用范围内,交换作用效率对两个离子之间的距离极其敏感,而离子之间的工作距离可以由温度控制的晶格热膨胀或者收缩调节,从而调控激发态电子在Er3+离子的2H11/24S3/2能级与4F9/2能级之间的布居。在980nm近红外光的激发下,随着温度升高,从303K至393K,Er3+离子的4F9/2能级上的激发态电子相对布居数下降,2H11/24S3/2能级上的激发态电子相对布居数增加,因此,主峰位于654nm处红光发射峰下降,主峰位于522nm和542nm处绿光发射峰增强,发射峰间隔112纳米,具有优异的信号甄别度。从303K至393K,绿光发射与红光发射强度比与温度呈线性正相关关系,计算得出绝对温度灵敏度为0.0113K-1,最高相对温度灵敏度达到了5.7%K-1,在生物应用温度范围内,303K-343K,远远超过该类型上转换荧光纳米温度探针的最高值。因此,这种新型的纳米荧光温度探针KMn0.8Yb0.19Er0.01F3是一种极具生物应用前景的上转换荧光纳米温度探针材料。
发明内容
本发明提出一种新型的超高灵敏度的上转换纳米温度探针材料:KMn0.8Yb0.19Er0.01F3,其结构特征是,在钙钛矿结构的KMnF3材料中将20%的Mn2+离子替换成19%的Yb3+离子及1%的Er3+离子,所述材料为10纳米左右的立方块纳米晶。
本发明上转换纳米温度探针材料KMn0.8Yb0.19Er0.01F3的制备方法特征为:将0.80毫摩尔的Mn(AC)2·4H2O,0.19毫摩尔的YbCl3·6H2O以及0.01毫摩尔ErCl3·6H2O加入到100mL三颈瓶中,加入6mL油酸和12mL十八烯,搅拌使其混合均匀。在氮气流的保护下,将上述混合物加热至150℃,在此温度下保温30分钟,将金属盐完全溶解,形成澄清透明的浅黄色溶液。然后冷却至室温,将溶有4.0毫摩尔NH4F和2.0毫摩尔氢氧化钾的10毫升甲醇溶液逐滴加入上述溶液中,搅拌使其在常温下反应30分钟。将混合溶液加热至50℃,保温30分钟以除掉反应体系中的甲醇。等甲醇除净后,在氮气流的保护下,将反应体系加热至280℃,并且保温30分钟,停止加热,自然冷却到室温。向所得产物中加入15mL乙醇,使得纳米晶析出,离心分离,用环己烷和乙醇多次洗涤,得到单分散,粒径为10nm左右的KMn0.8Yb0.19Er0.01F3立方块纳米晶。
本发明上转换纳米温度探针应用于温度探测:
用波长980纳米的近红外光照射该材料,呈现出Er3+离子的两个主要上转换荧光发射带,主峰分别位于522nm,542nm的绿光发射带和654nm的红光发射带。这两个峰的荧光强度比在30℃到120℃温度范围内变化明显,绝对温度303K到393K,且其比值与温度成线性关系,计算得出的绝对温度灵敏度0.0113K-1,最高相对温度灵敏度为5.7%K-1。通过测量两个峰的荧光强度比就可以标定出材料所处环境的温度。
值得注意的是,这种纳米荧光温度探针材料的监测发射峰间距较大,达到112nm,信号甄别度高,而且其绝对温度灵敏度0.0113K-1,最高相对温度灵敏度为5.7%K-1,远远超过了目前被研究的其它上转换荧光纳米温度探针材料。此外,该材料随着温度的变化(303K-393K),颜色从红色变为绿色,在可见光区,便于远程观察;这种荧光强度比与温度呈现出的线性关系,对温度的标定而言,更加简单便捷。因此,这种上转换荧光纳米温度探针材料是一种具有巨大应用潜力的生物温度传感器。
附图说明
图1:(a)KMn0.8Yb0.19Er0.01F3纳米晶低倍率透射电子显微图。(b)单个KMn0.8Yb0.19Er0.01F3纳米晶高分辨透射电子显微图。(c)图b傅里叶变换电子衍射图。
图2:合成的KMn0.8Yb0.19Er0.01F3纳米晶XRD衍射图。
图3:温度依赖的KMn0.8Yb0.19Er0.01F3纳米晶上转换发射光谱,温度变化从303K至393K,980nm激发。
图4:Yb3+,Er3+和Mn2+离子的能级图及能量传递机理。
图5:Er3+离子的2H11/24I15/24S3/24I15/2,(2H11/24S3/2)→4I15/2,and4F9/24I15/2跃迁发射强度柱状图。
图6:实验测量值与拟合得到的上转换发射强度比FIRG/R与温度的线性关系图。
图7:计算得出的相对温度灵敏度与拟合曲线。
具体实施方式
实例1:上转换纳米温度探针材料KMn0.8Yb0.19Er0.01F3的制备
将0.80毫摩尔的Mn(AC)2·4H2O,0.19毫摩尔的YbCl3·6H2O以及0.01毫摩尔ErCl3·6H2O加入到100mL三颈瓶中,加入6mL油酸和12mL十八烯,搅拌使其混合均匀。在氮气流的保护下,将上述混合物加热至150℃,在此温度下保温30分钟,将金属盐完全溶解,形成澄清透明的浅黄色溶液。然后冷却至室温,将溶有4.0毫摩尔NH4F和2.0毫摩尔氢氧化钾的10毫升甲醇溶液逐滴加入上述溶液中,搅拌使其在常温下反应30分钟。将混合溶液加热至50℃,保温30分钟以除掉反应体系中的甲醇。等甲醇除净后,在氮气流的保护下,将反应体系加热至280℃,并且保温30分钟,停止加热,自然冷却到室温。向所得产物中加入15mL乙醇,使得纳米晶析出,离心分离,用环己烷和乙醇多次洗涤,得到单分散,粒径为10nm左右的KMn0.8Yb0.19Er0.01F3立方块纳米晶。
实例2:上转换纳米温度探针材料KMn0.8Yb0.19Er0.01F3的应用
用波长为980nm近红外光照射KMn0.8Yb0.19Er0.01F3纳米材料;用光谱仪测量其主峰在522nm,542nm绿光发射带和654nm红光发射带的发射强度;计算强度比数值;然后在图6所给的线性图中比对,就可标定出材料所处环境的温度,其温度探测范围30℃至120℃,绝对温度303K至498K。

Claims (3)

1.一种超高灵敏度上转换纳米温度探针材料KMn0.8Yb0.19Er0.01F3,其特征为:
在钙钛矿结构的KMnF3材料中将20%的Mn2+离子替换成19%的Yb3+离子及1%的Er3+离子,该材料为10纳米左右的立方块纳米晶。
2.一种权利要求1所述上转换纳米温度探针材料的制备方法,其特征为:将0.80毫摩尔的Mn(AC)2·4H2O,0.19毫摩尔的YbCl3·6H2O以及0.01毫摩尔ErCl3·6H2O加入到100mL三颈瓶中,加入6mL油酸和12mL十八烯,搅拌使其混合均匀,在氮气流的保护下,将上述混合物加热至150℃,在此温度下保温30分钟,将金属盐完全溶解,形成澄清透明的浅黄色溶液,然后冷却至室温,将溶有4.0毫摩尔NH4F和2.0毫摩尔氢氧化钾的10毫升甲醇溶液逐滴加入上述溶液中,搅拌使其在常温下反应30分钟,将混合溶液加热至50℃,保温30分钟以除掉反应体系中的甲醇,等甲醇除净后,在氮气流的保护下,将反应体系加热至280℃,并且保温30分钟,停止加热,自然冷却到室温,向所得产物中加入15mL乙醇,使得纳米晶析出,离心分离,用环己烷和乙醇多次洗涤,得到单分散,粒径为10nm左右的KMn0.8Yb0.19Er0.01F3立方块纳米晶。
3.一种权利要求1所述上转换纳米温度探针材料的应用,其特征为:用980nm的近红外光照射KMn0.8Yb0.19Er0.01F3,温度从303K升高至393K,材料的(2H11/24S3/2)→4I15/2绿光跃迁发射增强,4F9/24I15/2红光跃迁发射减弱,上转换荧光从红色变为绿色,通过测量该材料在绿光区和红光区的发射峰强度比来探测环境温度。
CN201710817235.3A 2017-09-12 2017-09-12 一种超高灵敏度上转换纳米温度探针及其制备方法 Active CN107699226B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710817235.3A CN107699226B (zh) 2017-09-12 2017-09-12 一种超高灵敏度上转换纳米温度探针及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710817235.3A CN107699226B (zh) 2017-09-12 2017-09-12 一种超高灵敏度上转换纳米温度探针及其制备方法

Publications (2)

Publication Number Publication Date
CN107699226A CN107699226A (zh) 2018-02-16
CN107699226B true CN107699226B (zh) 2019-08-20

Family

ID=61172358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710817235.3A Active CN107699226B (zh) 2017-09-12 2017-09-12 一种超高灵敏度上转换纳米温度探针及其制备方法

Country Status (1)

Country Link
CN (1) CN107699226B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896201A (zh) * 2018-05-15 2018-11-27 中国科学院福建物质结构研究所 一种高灵敏度高分辨率的生物体测温技术
CN110105948B (zh) * 2019-06-14 2021-12-10 重庆邮电大学 一种红色上转换发光材料及其制备方法
CN115368887A (zh) * 2022-07-29 2022-11-22 九江学院 一种非接触式高温温度传感纳米探针、制备方法及温度检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013022408A1 (en) * 2011-08-11 2013-02-14 National University Of Singapore Method of preparing lanthanide-doped kmnf3 nanoparticles
CN105038777A (zh) * 2015-07-09 2015-11-11 中国计量学院 一种用于调控具有单谱带上转换发光性能的Yb/Er:KMnF3纳米晶尺寸的方法
CN106905959A (zh) * 2017-01-22 2017-06-30 苏州大学 一种含锰氟化物纳米晶体的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013022408A1 (en) * 2011-08-11 2013-02-14 National University Of Singapore Method of preparing lanthanide-doped kmnf3 nanoparticles
CN105038777A (zh) * 2015-07-09 2015-11-11 中国计量学院 一种用于调控具有单谱带上转换发光性能的Yb/Er:KMnF3纳米晶尺寸的方法
CN106905959A (zh) * 2017-01-22 2017-06-30 苏州大学 一种含锰氟化物纳米晶体的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Single-Band Upconversion Emission in Lanthanide-Doped KMnF3 Nanocrystals;Juan Wang et al.;《Angew. Chem. Int. Ed.》;20111231;10369–10372 *
The use of zinc ions to control the size of Yb/Er: KMnF3 nanocrystals with single band emission;Lei Lei et al.;《CrystEngComm》;20150928;8457–8462 *
稀土掺杂荧光温度传感材料设计与合成;郑书红等;《中国学位论文全文数据库》;20150925;正文第三章第3.3部分-3.4部分 *

Also Published As

Publication number Publication date
CN107699226A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
Wang et al. A review on fluorescence intensity ratio thermometer based on rare-earth and transition metal ions doped inorganic luminescent materials
CN107699226B (zh) 一种超高灵敏度上转换纳米温度探针及其制备方法
Li et al. Highly sensitive optical ratiometric thermal sensing based on the three-photon upconversion luminescence of Y 2 O 3: Yb 3+, Er 3+ nano-thermometers
Mo et al. Luminescence of K2BaCa (PO4) 2: Ce3+, Tb3+ dual-emitting phosphor and its application as ratiometric optical thermometer
Dramićanin et al. Mn5+-activated Ca6Ba (PO4) 4O near-infrared phosphor and its application in luminescence thermometry
Zhao et al. Tailoring the heterostructure of colloidal quantum dots for ratiometric optical nanothermometry
CN102798485B (zh) 一种基于上转换荧光粉的温度传感方法
Fu et al. Dual-mode optical thermometry based on Bi3+/Sm3+ co-activated BaGd2O4 phosphor with tunable sensitivity
CN108896201A (zh) 一种高灵敏度高分辨率的生物体测温技术
Yang et al. Bi and Yb codoped Cs2Ag0. 6Na0. 4InCl6 microcrystals: visible to near-infrared fluorescence for thermometry
Yuan et al. A biological nano-thermometer based on ratiometric luminescent Er3+/Yb3+-codoped NaGd (WO4) 2 nanocrystals
Rakov et al. Optical thermometry operation within all three biological windows using Nd3+: Er3+: Y2O3 nanocomposite phosphors
Zhu et al. Lanthanide-doped lead-free double perovskite La 2 MgTiO 6 as ultra-bright multicolour LEDs and novel self-calibrating partition optical thermometer
Xie et al. Near-Infrared LuCa2ScZrGa2GeO12: Cr3+ garnet phosphor with ultra-broadband emission for NIR LED applications
Wang et al. Synthesis, optical properties and application of Y 7 O 6 F 9: Er 3+ for sensing the chip temperature of a light emitting diode
Zhou et al. Multi-parametric thermal sensing based on NIR emission of Ho (III) doped CaWO4 phosphors
Zhang et al. Photoluminescence and optical temperature measurement of Mn4+/Er3+ co-activated double perovskite phosphor through site-advantageous occupation
Wang et al. Cr3+-doped double-perovskites for near-infrared luminescent ratiometric thermometry
Liu et al. Improved optical thermometry in Er3+: Y2O3 nanocrystals by re-calcination
Alarcón-Fernández et al. Yb3+, Er3+, Tm3+ co-doped β’Gd2 (MoO4) 3 for high sensitivity luminescence thermometry spanning from 300 to 890 K
CN106701079B (zh) 一种近红外区力致发光荧光粉及其制备方法
CN106635008B (zh) 一种高灵敏度荧光温感材料及其制备方法与应用
Shi et al. Molten salt synthesis of broad-band near-infrared InBO3: Cr3+ submicron phosphor and its luminescent enhancement by lanthanide ion codoping
CN107011901A (zh) 一种多功能型上转换发光纳米晶及其制备方法
CN112812774B (zh) 一种非接触荧光测温用荧光粉及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant