CN110105948B - 一种红色上转换发光材料及其制备方法 - Google Patents
一种红色上转换发光材料及其制备方法 Download PDFInfo
- Publication number
- CN110105948B CN110105948B CN201910516199.6A CN201910516199A CN110105948B CN 110105948 B CN110105948 B CN 110105948B CN 201910516199 A CN201910516199 A CN 201910516199A CN 110105948 B CN110105948 B CN 110105948B
- Authority
- CN
- China
- Prior art keywords
- temperature
- red
- cay
- conversion luminescent
- luminescent material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7767—Chalcogenides
- C09K11/7768—Chalcogenides with alkaline earth metals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/20—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using thermoluminescent materials
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Luminescent Compositions (AREA)
Abstract
本发明公开了一种红色上转换发光材料,其特征在于,所述材料化学通式为CaY2‑x‑ yYbxEryO4,其中0<x≤0.5,0<y≤0.1。本发明还公开了所述材料的制备方法,采用高温固相法合成了CaY2‑x‑yYbxEryO4材料,制备方法简单,并且材料性能稳定,具有良好的温度响应效果。
Description
技术领域
本发明属于发光材料领域,具体涉及一种红色上转换发光材料及其制备方法。
背景技术
斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,称为反斯托克斯发光,又称上转换发光(Up-Conversion),它是一类重要的稀土发光材料。
近年来,上转换发光材料引起了人们的广泛关注。光致发光材料中,吸收两个或多个较低能量的光子后产生一个高能光子发射的发光材料被定义为上转换发光材料(简称UCPs)。这种材料的上转换现象本质是反斯托克斯效应,即辐射的能量大于所吸收的能量。上转换发光材料可以有效降低光致电离作用引起基质材料衰退,不需要严格的相位配对,而且输出波长具有一定的可调谐性。
准确、快速的温度测量在医疗、炼油、煤矿等各个领域都具有重要意义。在各种温度检测方法中,光学测温具有非接触、响应快、抗干扰能力强等优点,是一种非常有前景的测量方法。最近,稀土离子掺杂的上转换材料更是成为了研究光学测温的热点。目前,使用较多的方法是选择两个不同峰位的发光强度的比值变化来指示温度的改变程度(即荧光强度比)。这种强度比值的方法能够有效地减少来自激发光源的强度变化和周围环境的其他因素(气体扰动,空气因灰尘或者水蒸气等)引起的成分改变所带来的测量误差。
然而,目前大多数利用荧光强度比方法进行测温的上转换材料多以绿色发光为主,即利用绿光进行测温,严重影响了其在生物领域的应用。众所周知,生物组织的光学窗口处于600nm-1100nm,因此开发处于此范围内的光学测温材料不仅可以提高其在生物组织中的穿透深度,还可以提高测温的准确程度。因此,获取具有高效红光发射的上转换光学测温材料对于其在生物领域的应用具有重要意义。
CN 107523297 A公开了一种上转换红色发光粉及其制备方法,该上转换红色发光粉为稀土掺杂钙稳定氧化锆上转换红色发光粉,其化学式为ZrCa0.06YbyErzO2.06+1.5(y+z)。其是通过Ca2+离子对稀土离子Yb3+,Er3+共掺杂的氧化锆进行稳定,从其公开的制备方法来看,其采用液相共沉淀、高温煅烧以及球磨的结合的制备方法,相较于繁琐复杂。
发明内容
针对上述现有技术存在的问题,本发明的目的在于提供一种高灵敏度且可快速响应的红色上转换光学材料,并用于测温,以满足其在生物领域应用的需求。
为实现上述发明目的,本发明所公开技术方案具体为:
1、一种红色上转换发光材料,,所述材料化学通式为CaY2-x-yYbxEryO4,其中0<x≤0.5,0<y≤0.1。
进一步,所述材料在红外光激发下,可见区的发射光谱范围为500-700nm。
进一步,所述材料在红外光激发下,红外区的发射光谱范围为1400-1700nm。
进一步,所述材料在红外光激发下在661nm处的红色荧光与在564nm处的绿色荧光的发光强度比R可通过调节Yb和Er的含量在0<R≤50范围内连续调节。
进一步,所述材料为CaY1.86Yb0.1Er0.04O4,所述材料在红外光激发下,其R1与R2随温度改变而呈现规律性的变化,其中R1表示648nm处的发射峰强度与661nm处的发射峰强度的比值,R2为1476nm处的发射峰强度与1534nm处的发射峰强度的比值。
2、所述一种红色上转换发光材料制备方法,其特征在于,包括如下步骤:
1)按照化学组成CaY2-x-yYbxEryO4中各元素的化学计量比,其中0<x≤0.5,0<y≤0.1,分别称取含有Ca2+的化合物及相应的稀土氧化物,研磨并混合均匀;
2)将步骤1)所得混合物放入高温箱式炉中,在1400℃-1700℃下保温4-6小时;
3)待温度降至室温后,取出样品进行研磨,得到红色上转换发光材料。
进一步,步骤1)所述含有Ca2+的化合物为CaCO3或Ca(HCO3)2,所述相应的稀土氧化物包括Y2O3、Yb2O3以及Er2O3。
3、一种红色上转换发光材料在光学测温领域中的应用。
本发明有益效果在于:
通过采用本发明所述方案,所制备的发光材料在红外光激发下,其R1(648nm处的发射峰强度与661nm处的发射峰强度的比值)与R2(1476nm处的发射峰强度与1534nm处的发射峰强度的比值)随温度改变而呈现规律性的变化。建立了两种模式下的发射强度比值随温度变化的关系并拟合得到相关方程,这两种光学测温模式均具有良好的温度响应效果。并且本发明采用高温固相法合成了CaY2-x-yYbxEryO4材料,制备方法简单,并且材料性能稳定。
附图说明
图1为本发明实施例1-10的X-射线粉末衍射图谱;
图2为本发明实施例9中材料在980nm激发下,测得不同温度下的可见区发射光谱,并拟合出其发光强度比值与温度之间的关系方程;
图3为本发明实施例9中材料在可见区测温的绝对灵敏度SA及相对灵敏度SR;
图4为本发明实施例9中材料在980nm激发下,测得不同温度下的红外区发射光谱,并拟合出其发光强度比值与温度之间的关系方程;
图5为本发明实施例9中材料在红外区测温的绝对灵敏度SA及相对灵敏度SR。
具体实施方式
下面将结合说明书附图和具体实施例对本发明所述技术方案做进一步描述:
实施例1
按化学式CaY1.79Yb0.2Er0.01O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.8084gY2O3,0.1576gYb2O3和0.0077g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.79Yb0.2Er0.01O4。
实施例2
按化学式CaY1.78Yb0.2Er0.02O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.8039gY2O3,0.1576gYb2O3和0.0153g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.78Yb0.2Er0.02O4。
实施例3
按化学式CaY1.77Yb0.2Er0.03O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.7994gY2O3,0.1576gYb2O3和0.0230g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.77Yb0.2Er0.03O4。
实施例4
按化学式CaY1.76Yb0.2Er0.04O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.7949gY2O3,0.1576gYb2O3和0.0306g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.76Yb0.2Er0.04O4。
实施例5
按化学式CaY1.75Yb0.2Er0.05O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.7903gY2O3,0.1576gYb2O3和0.0383g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.75Yb0.2Er0.05O4。
实施例6
按化学式CaY1.74Yb0.2Er0.06O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.7858gY2O3,0.1576gYb2O3和0.0459g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.74Yb0.2Er0.06O4。
实施例7
按化学式CaY1.95Yb0.01Er0.04O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.8807g Y2O3,0.0079g Yb2O3和0.0306g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.95Yb0.01Er0.04O4。
实施例8
按化学式CaY1.91Yb0.05Er0.04O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.8626g Y2O3,0.0394g Yb2O3和0.0306g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.91Yb0.05Er0.04O4。
实施例9
按化学式CaY1.86Yb0.1Er0.04O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.8400gY2O3,0.0788gYb2O3和0.0306g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.86Yb0.1Er0.04O4。
实施例10
按化学式CaY1.66Yb0.3Er0.04O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.7497gY2O3,0.2364gYb2O3和0.0306g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.66Yb0.3Er0.04O4。
参见附图1,它是实施例1~10所述技术方案制备样品的X射线粉末衍射图谱,XRD测试结果显示,所制备相应材料为单相材料,没有其它杂相存在,而且结晶度较好。
进一步选取实施例9中样品,在980nm激发下,通过测得不同温度下的可见区及红外区发射光谱,并拟合出其发光强度比值与温度之间的关系方程,依次示于图2和图4中。通过发光强度比值和温度的关系,得到绝对灵敏度和相对灵敏度与温度的关系,依次示于图3和图5中,发现该材料对温度响应的灵敏度较高。
由附图2~5进一步印证了本实施例所制备的发光材料在红外光激发下,其R1(648nm处的发射峰强度与661nm处的发射峰强度的比值)与R2(1476nm处的发射峰强度与1534nm处的发射峰强度的比值)随温度改变而呈现规律性的变化。建立了两种模式下的发射强度比值随温度变化的关系并拟合得到相关方程,这两种光学测温模式均具有良好的温度响应效果。
最后说明的是,以上对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。
Claims (5)
1.一种红色上转换发光材料,其特征在于,所述材料化学通式为CaY2-x-yYbxEryO4,其中x=0.1,y=0.04;
所述材料为CaY1.86Yb0.1Er0.04O4,所述材料在红外光激发下,其R1与R2随温度改变而呈现规律性的变化,其中R1表示648nm处的发射峰强度与661nm处的发射峰强度的比值,R2为1476nm处的发射峰强度与1534nm处的发射峰强度的比值。
2.根据权利要求1所述一种红色上转换发光材料,其特征在于,所述材料在红外光激发下,可见区的发射光谱范围为500-700nm。
3.根据权利要求1所述一种红色上转换发光材料,其特征在于,所述材料在红外光激发下,红外区的发射光谱范围为1400-1700nm。
4.权利要求1~3任一项所述一种红色上转换发光材料制备方法,其特征在于,包括如下步骤:
1)按照化学组成CaY2-x-yYbxEryO4中各元素的化学计量比,其中x=0.1,y=0.04,分别称取含有Ca2+的化合物及相应的稀土氧化物,研磨并混合均匀;
2)将步骤1)所得混合物放入高温箱式炉中,在1400℃-1700℃下保温4-6小时;
3)待温度降至室温后,取出样品进行研磨,得到红色上转换发光材料。
5.根据权利要求4所述一种红色上转换发光材料制备方法,其特征在于,步骤1)所述含有Ca2+的化合物为CaCO3或Ca(HCO3)2,所述相应的稀土氧化物包括Y2O3、Yb2O3以及Er2O3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910516199.6A CN110105948B (zh) | 2019-06-14 | 2019-06-14 | 一种红色上转换发光材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910516199.6A CN110105948B (zh) | 2019-06-14 | 2019-06-14 | 一种红色上转换发光材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110105948A CN110105948A (zh) | 2019-08-09 |
CN110105948B true CN110105948B (zh) | 2021-12-10 |
Family
ID=67495071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910516199.6A Active CN110105948B (zh) | 2019-06-14 | 2019-06-14 | 一种红色上转换发光材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110105948B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107699226A (zh) * | 2017-09-12 | 2018-02-16 | 中国科学院福建物质结构研究所 | 一种超高灵敏度上转换纳米温度探针及其制备方法 |
CN107722985A (zh) * | 2017-09-15 | 2018-02-23 | 淮阴师范学院 | 一种稀土离子对共掺k3y(po4)2上转换发光材料及其制备方法 |
-
2019
- 2019-06-14 CN CN201910516199.6A patent/CN110105948B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107699226A (zh) * | 2017-09-12 | 2018-02-16 | 中国科学院福建物质结构研究所 | 一种超高灵敏度上转换纳米温度探针及其制备方法 |
CN107722985A (zh) * | 2017-09-15 | 2018-02-23 | 淮阴师范学院 | 一种稀土离子对共掺k3y(po4)2上转换发光材料及其制备方法 |
Non-Patent Citations (4)
Title |
---|
Preparation and Optical Properties of Trivalent Erbium-Doped CaY2O4 Powders Under 980 nm Excitation;Hwang, Kyu-Seog;《Journal of Nanoscience and Nanotechnology》;20190401;第19卷(第4期);2431-2434 * |
Preparation and photoluminescence properties of SrY2O4:Yb3+, Er3+ powders;Yang, Jikai;等;《Journal of Alloys and Compounds》;20080819;第474卷;424-427 * |
Pump power induced tunable upconversion emissions from Er3+/Tm3+/Yb3+ ions tri-doped SrY2O4 nanocrystalline phosphors;Pavitra, E.;等;《New Journal of Chemistry》;20140305;第38卷(第8期);1144-0546 * |
Upconversion photoluminescence properties of SrY2O4:Er3+,Yb3+ under 1550 and 980 nm excitation;SHEN Xianliang,等;《JOURNAL OF RARE EARTHS》;20160515;第34卷;458-463 * |
Also Published As
Publication number | Publication date |
---|---|
CN110105948A (zh) | 2019-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Investigations on upconversion luminescence of K3Y (PO4) 2: Yb3+-Er3+/Ho3+/Tm3+ phosphors for optical temperature sensing | |
Song et al. | Photoluminescence and temperature sensing of lanthanide Eu3+ and transition metal Mn4+ dual-doped antimoniate phosphor through site-beneficial occupation | |
Chen et al. | A ratiometric optical thermometer based on Bi3+ and Mn4+ co-doped La2MgGeO6 phosphor with high sensitivity and signal discriminability | |
Suo et al. | Thermometric and optical heating bi-functional properties of upconversion phosphor Ba 5 Gd 8 Zn 4 O 21: Yb 3+/Tm 3+ | |
Li et al. | Luminescence and optical thermometry strategy based on emission and excitation spectra of Pr3+ doped SrMoO4 phosphors | |
Zhou et al. | Photoluminescence and ratiometric optical thermometry in Mn4+/Eu3+ dual-doped phosphor via site-favorable occupation | |
Liu et al. | Investigation into the temperature sensing behavior of Yb 3+ sensitized Er 3+ doped Y 2 O 3, YAG and LaAlO 3 phosphors | |
Ren et al. | Photoluminescence properties of Ba2LaSbO6: Mn4+ deep-red-emitting phosphor for plant growth LEDs | |
Zhang et al. | Thermometry and up-conversion luminescence of Yb 3+–Er 3+ co-doped Na 2 Ln 2 Ti 3 O 10 (Ln= Gd, La) phosphors | |
CN113004892B (zh) | 基于铈、铕激活硅铝酸盐的发光材料及制备方法和应用 | |
Guo et al. | Improving and broadening luminescence in Gd 2− x Al x GaSbO 7: Cr 3+ phosphors for NIR LED applications | |
Chen et al. | Effect of Li+ ion concentration on upconversion emission and temperature sensing behavior of La2O3: Er3+ phosphors | |
Zhu et al. | Insights into anti-thermal quenching of photoluminescence from SrCaGa4O8 based on defect state and application in temperature sensing | |
Zhou et al. | Luminescent properties of Eu3+-doped NaLaCaWO6 red phosphors and temperature sensing derived from the excited state of charge transfer band | |
Zhao et al. | Optical temperature sensing properties of a phosphor mixture of Sr2Mg3P4O15: Eu2+ and SrB4O7: Sm2+ | |
Wang et al. | Red emitting Ba2LaNbO6: Mn4+ phosphor for the lifetime-based optical thermometry | |
Wang et al. | Temperature-dependent luminescence properties of Dy3+, Tm3+ single-/co-doped YNbO4 phosphors | |
Zhou et al. | Designing optical thermometers using down/upconversion Ca14Al10Zn6O35: Ti4+, Eu3+/Yb3+, Er3+ thermosensitive phosphors | |
Zhao et al. | Broadening and enhancing emission of Cr3+ simultaneously by co-doping Yb3+ in Ga1. 4In0. 6SnO5 | |
Cheng et al. | Multifunctional near-infrared Zn2TiO4: Cr3+ phosphors for luminescence, thermometry, and plant cultivation | |
Lü et al. | Multifunctional Pr3+ single doped CaLaMgTaO6: Crystal structure, thermal behavior and applications | |
Zhang et al. | Influence of dysprosium concentration on sensitivity of luminescent thermometers of phosphors Ca9Tb (PO4) 5 (SiO4) F2 | |
Jin et al. | Color tunable warm white emitting whitlockite-type phosphor applied in optical thermometry | |
Zhou et al. | A novel ultra-broadband red LaGeSbO6: Mn4+ phosphor with excellent responsiveness to phytochrome PFR for plant growth | |
Ma et al. | Widened and enhanced near-infrared luminescence of Y2-xScxGaSbO7: Cr3+ phosphors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230619 Address after: No. 333, Feiyue East Road, Changchun high tech Development Zone, Jilin Province Patentee after: CHANGCHUN YUHENG ERA PHOTOELECTRIC TECHNOLOGY CO.,LTD. Address before: 400065 Chongwen Road, Nanshan Street, Nanan District, Chongqing Patentee before: CHONGQING University OF POSTS AND TELECOMMUNICATIONS |
|
TR01 | Transfer of patent right |