CN110105948B - 一种红色上转换发光材料及其制备方法 - Google Patents
一种红色上转换发光材料及其制备方法 Download PDFInfo
- Publication number
- CN110105948B CN110105948B CN201910516199.6A CN201910516199A CN110105948B CN 110105948 B CN110105948 B CN 110105948B CN 201910516199 A CN201910516199 A CN 201910516199A CN 110105948 B CN110105948 B CN 110105948B
- Authority
- CN
- China
- Prior art keywords
- temperature
- red
- cay
- luminescent material
- conversion luminescent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 56
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 36
- 238000002360 preparation method Methods 0.000 title abstract description 10
- 239000000126 substance Substances 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims description 34
- 230000005284 excitation Effects 0.000 claims description 12
- 238000000295 emission spectrum Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 4
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 4
- 230000000694 effects Effects 0.000 abstract description 5
- 238000010532 solid phase synthesis reaction Methods 0.000 abstract description 2
- 238000000227 grinding Methods 0.000 description 22
- 229910052593 corundum Inorganic materials 0.000 description 20
- 239000010431 corundum Substances 0.000 description 20
- 230000003287 optical effect Effects 0.000 description 12
- 238000009529 body temperature measurement Methods 0.000 description 11
- VQCBHWLJZDBHOS-UHFFFAOYSA-N erbium(III) oxide Inorganic materials O=[Er]O[Er]=O VQCBHWLJZDBHOS-UHFFFAOYSA-N 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 239000004570 mortar (masonry) Substances 0.000 description 10
- 230000035945 sensitivity Effects 0.000 description 8
- 239000011575 calcium Substances 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 239000012071 phase Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- FIXNOXLJNSSSLJ-UHFFFAOYSA-N ytterbium(III) oxide Inorganic materials O=[Yb]O[Yb]=O FIXNOXLJNSSSLJ-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 238000004861 thermometry Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7767—Chalcogenides
- C09K11/7768—Chalcogenides with alkaline earth metals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K11/00—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
- G01K11/20—Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using thermoluminescent materials
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Luminescent Compositions (AREA)
Abstract
本发明公开了一种红色上转换发光材料,其特征在于,所述材料化学通式为CaY2‑x‑ yYbxEryO4,其中0<x≤0.5,0<y≤0.1。本发明还公开了所述材料的制备方法,采用高温固相法合成了CaY2‑x‑yYbxEryO4材料,制备方法简单,并且材料性能稳定,具有良好的温度响应效果。
Description
技术领域
本发明属于发光材料领域,具体涉及一种红色上转换发光材料及其制备方法。
背景技术
斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,称为反斯托克斯发光,又称上转换发光(Up-Conversion),它是一类重要的稀土发光材料。
近年来,上转换发光材料引起了人们的广泛关注。光致发光材料中,吸收两个或多个较低能量的光子后产生一个高能光子发射的发光材料被定义为上转换发光材料(简称UCPs)。这种材料的上转换现象本质是反斯托克斯效应,即辐射的能量大于所吸收的能量。上转换发光材料可以有效降低光致电离作用引起基质材料衰退,不需要严格的相位配对,而且输出波长具有一定的可调谐性。
准确、快速的温度测量在医疗、炼油、煤矿等各个领域都具有重要意义。在各种温度检测方法中,光学测温具有非接触、响应快、抗干扰能力强等优点,是一种非常有前景的测量方法。最近,稀土离子掺杂的上转换材料更是成为了研究光学测温的热点。目前,使用较多的方法是选择两个不同峰位的发光强度的比值变化来指示温度的改变程度(即荧光强度比)。这种强度比值的方法能够有效地减少来自激发光源的强度变化和周围环境的其他因素(气体扰动,空气因灰尘或者水蒸气等)引起的成分改变所带来的测量误差。
然而,目前大多数利用荧光强度比方法进行测温的上转换材料多以绿色发光为主,即利用绿光进行测温,严重影响了其在生物领域的应用。众所周知,生物组织的光学窗口处于600nm-1100nm,因此开发处于此范围内的光学测温材料不仅可以提高其在生物组织中的穿透深度,还可以提高测温的准确程度。因此,获取具有高效红光发射的上转换光学测温材料对于其在生物领域的应用具有重要意义。
CN 107523297 A公开了一种上转换红色发光粉及其制备方法,该上转换红色发光粉为稀土掺杂钙稳定氧化锆上转换红色发光粉,其化学式为ZrCa0.06YbyErzO2.06+1.5(y+z)。其是通过Ca2+离子对稀土离子Yb3+,Er3+共掺杂的氧化锆进行稳定,从其公开的制备方法来看,其采用液相共沉淀、高温煅烧以及球磨的结合的制备方法,相较于繁琐复杂。
发明内容
针对上述现有技术存在的问题,本发明的目的在于提供一种高灵敏度且可快速响应的红色上转换光学材料,并用于测温,以满足其在生物领域应用的需求。
为实现上述发明目的,本发明所公开技术方案具体为:
1、一种红色上转换发光材料,,所述材料化学通式为CaY2-x-yYbxEryO4,其中0<x≤0.5,0<y≤0.1。
进一步,所述材料在红外光激发下,可见区的发射光谱范围为500-700nm。
进一步,所述材料在红外光激发下,红外区的发射光谱范围为1400-1700nm。
进一步,所述材料在红外光激发下在661nm处的红色荧光与在564nm处的绿色荧光的发光强度比R可通过调节Yb和Er的含量在0<R≤50范围内连续调节。
进一步,所述材料为CaY1.86Yb0.1Er0.04O4,所述材料在红外光激发下,其R1与R2随温度改变而呈现规律性的变化,其中R1表示648nm处的发射峰强度与661nm处的发射峰强度的比值,R2为1476nm处的发射峰强度与1534nm处的发射峰强度的比值。
2、所述一种红色上转换发光材料制备方法,其特征在于,包括如下步骤:
1)按照化学组成CaY2-x-yYbxEryO4中各元素的化学计量比,其中0<x≤0.5,0<y≤0.1,分别称取含有Ca2+的化合物及相应的稀土氧化物,研磨并混合均匀;
2)将步骤1)所得混合物放入高温箱式炉中,在1400℃-1700℃下保温4-6小时;
3)待温度降至室温后,取出样品进行研磨,得到红色上转换发光材料。
进一步,步骤1)所述含有Ca2+的化合物为CaCO3或Ca(HCO3)2,所述相应的稀土氧化物包括Y2O3、Yb2O3以及Er2O3。
3、一种红色上转换发光材料在光学测温领域中的应用。
本发明有益效果在于:
通过采用本发明所述方案,所制备的发光材料在红外光激发下,其R1(648nm处的发射峰强度与661nm处的发射峰强度的比值)与R2(1476nm处的发射峰强度与1534nm处的发射峰强度的比值)随温度改变而呈现规律性的变化。建立了两种模式下的发射强度比值随温度变化的关系并拟合得到相关方程,这两种光学测温模式均具有良好的温度响应效果。并且本发明采用高温固相法合成了CaY2-x-yYbxEryO4材料,制备方法简单,并且材料性能稳定。
附图说明
图1为本发明实施例1-10的X-射线粉末衍射图谱;
图2为本发明实施例9中材料在980nm激发下,测得不同温度下的可见区发射光谱,并拟合出其发光强度比值与温度之间的关系方程;
图3为本发明实施例9中材料在可见区测温的绝对灵敏度SA及相对灵敏度SR;
图4为本发明实施例9中材料在980nm激发下,测得不同温度下的红外区发射光谱,并拟合出其发光强度比值与温度之间的关系方程;
图5为本发明实施例9中材料在红外区测温的绝对灵敏度SA及相对灵敏度SR。
具体实施方式
下面将结合说明书附图和具体实施例对本发明所述技术方案做进一步描述:
实施例1
按化学式CaY1.79Yb0.2Er0.01O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.8084gY2O3,0.1576gYb2O3和0.0077g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.79Yb0.2Er0.01O4。
实施例2
按化学式CaY1.78Yb0.2Er0.02O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.8039gY2O3,0.1576gYb2O3和0.0153g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.78Yb0.2Er0.02O4。
实施例3
按化学式CaY1.77Yb0.2Er0.03O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.7994gY2O3,0.1576gYb2O3和0.0230g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.77Yb0.2Er0.03O4。
实施例4
按化学式CaY1.76Yb0.2Er0.04O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.7949gY2O3,0.1576gYb2O3和0.0306g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.76Yb0.2Er0.04O4。
实施例5
按化学式CaY1.75Yb0.2Er0.05O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.7903gY2O3,0.1576gYb2O3和0.0383g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.75Yb0.2Er0.05O4。
实施例6
按化学式CaY1.74Yb0.2Er0.06O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.7858gY2O3,0.1576gYb2O3和0.0459g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.74Yb0.2Er0.06O4。
实施例7
按化学式CaY1.95Yb0.01Er0.04O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.8807g Y2O3,0.0079g Yb2O3和0.0306g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.95Yb0.01Er0.04O4。
实施例8
按化学式CaY1.91Yb0.05Er0.04O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.8626g Y2O3,0.0394g Yb2O3和0.0306g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.91Yb0.05Er0.04O4。
实施例9
按化学式CaY1.86Yb0.1Er0.04O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.8400gY2O3,0.0788gYb2O3和0.0306g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.86Yb0.1Er0.04O4。
实施例10
按化学式CaY1.66Yb0.3Er0.04O4中各元素的化学计量比,分别称取0.2002g CaCO3、0.7497gY2O3,0.2364gYb2O3和0.0306g Er2O3,置于玛瑙研钵中,充分研磨30min混合均匀后装入刚玉坩埚中,将刚玉坩埚放入箱式炉中高温焙烧反应,具体升温程序如下:用5小时的时间从室温升温到1500℃,保温4小时,随后自然冷却到室温。将样品取出研磨得到产物,其化学组成表达式为:CaY1.66Yb0.3Er0.04O4。
参见附图1,它是实施例1~10所述技术方案制备样品的X射线粉末衍射图谱,XRD测试结果显示,所制备相应材料为单相材料,没有其它杂相存在,而且结晶度较好。
进一步选取实施例9中样品,在980nm激发下,通过测得不同温度下的可见区及红外区发射光谱,并拟合出其发光强度比值与温度之间的关系方程,依次示于图2和图4中。通过发光强度比值和温度的关系,得到绝对灵敏度和相对灵敏度与温度的关系,依次示于图3和图5中,发现该材料对温度响应的灵敏度较高。
由附图2~5进一步印证了本实施例所制备的发光材料在红外光激发下,其R1(648nm处的发射峰强度与661nm处的发射峰强度的比值)与R2(1476nm处的发射峰强度与1534nm处的发射峰强度的比值)随温度改变而呈现规律性的变化。建立了两种模式下的发射强度比值随温度变化的关系并拟合得到相关方程,这两种光学测温模式均具有良好的温度响应效果。
最后说明的是,以上对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。
Claims (5)
1.一种红色上转换发光材料,其特征在于,所述材料化学通式为CaY2-x-yYbxEryO4,其中x=0.1,y=0.04;
所述材料为CaY1.86Yb0.1Er0.04O4,所述材料在红外光激发下,其R1与R2随温度改变而呈现规律性的变化,其中R1表示648nm处的发射峰强度与661nm处的发射峰强度的比值,R2为1476nm处的发射峰强度与1534nm处的发射峰强度的比值。
2.根据权利要求1所述一种红色上转换发光材料,其特征在于,所述材料在红外光激发下,可见区的发射光谱范围为500-700nm。
3.根据权利要求1所述一种红色上转换发光材料,其特征在于,所述材料在红外光激发下,红外区的发射光谱范围为1400-1700nm。
4.权利要求1~3任一项所述一种红色上转换发光材料制备方法,其特征在于,包括如下步骤:
1)按照化学组成CaY2-x-yYbxEryO4中各元素的化学计量比,其中x=0.1,y=0.04,分别称取含有Ca2+的化合物及相应的稀土氧化物,研磨并混合均匀;
2)将步骤1)所得混合物放入高温箱式炉中,在1400℃-1700℃下保温4-6小时;
3)待温度降至室温后,取出样品进行研磨,得到红色上转换发光材料。
5.根据权利要求4所述一种红色上转换发光材料制备方法,其特征在于,步骤1)所述含有Ca2+的化合物为CaCO3或Ca(HCO3)2,所述相应的稀土氧化物包括Y2O3、Yb2O3以及Er2O3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910516199.6A CN110105948B (zh) | 2019-06-14 | 2019-06-14 | 一种红色上转换发光材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910516199.6A CN110105948B (zh) | 2019-06-14 | 2019-06-14 | 一种红色上转换发光材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110105948A CN110105948A (zh) | 2019-08-09 |
CN110105948B true CN110105948B (zh) | 2021-12-10 |
Family
ID=67495071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910516199.6A Active CN110105948B (zh) | 2019-06-14 | 2019-06-14 | 一种红色上转换发光材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110105948B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107699226A (zh) * | 2017-09-12 | 2018-02-16 | 中国科学院福建物质结构研究所 | 一种超高灵敏度上转换纳米温度探针及其制备方法 |
CN107722985A (zh) * | 2017-09-15 | 2018-02-23 | 淮阴师范学院 | 一种稀土离子对共掺k3y(po4)2上转换发光材料及其制备方法 |
-
2019
- 2019-06-14 CN CN201910516199.6A patent/CN110105948B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107699226A (zh) * | 2017-09-12 | 2018-02-16 | 中国科学院福建物质结构研究所 | 一种超高灵敏度上转换纳米温度探针及其制备方法 |
CN107722985A (zh) * | 2017-09-15 | 2018-02-23 | 淮阴师范学院 | 一种稀土离子对共掺k3y(po4)2上转换发光材料及其制备方法 |
Non-Patent Citations (4)
Title |
---|
Preparation and Optical Properties of Trivalent Erbium-Doped CaY2O4 Powders Under 980 nm Excitation;Hwang, Kyu-Seog;《Journal of Nanoscience and Nanotechnology》;20190401;第19卷(第4期);2431-2434 * |
Preparation and photoluminescence properties of SrY2O4:Yb3+, Er3+ powders;Yang, Jikai;等;《Journal of Alloys and Compounds》;20080819;第474卷;424-427 * |
Pump power induced tunable upconversion emissions from Er3+/Tm3+/Yb3+ ions tri-doped SrY2O4 nanocrystalline phosphors;Pavitra, E.;等;《New Journal of Chemistry》;20140305;第38卷(第8期);1144-0546 * |
Upconversion photoluminescence properties of SrY2O4:Er3+,Yb3+ under 1550 and 980 nm excitation;SHEN Xianliang,等;《JOURNAL OF RARE EARTHS》;20160515;第34卷;458-463 * |
Also Published As
Publication number | Publication date |
---|---|
CN110105948A (zh) | 2019-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Song et al. | Photoluminescence and temperature sensing of lanthanide Eu3+ and transition metal Mn4+ dual-doped antimoniate phosphor through site-beneficial occupation | |
Zhang et al. | Investigations on upconversion luminescence of K3Y (PO4) 2: Yb3+-Er3+/Ho3+/Tm3+ phosphors for optical temperature sensing | |
Li et al. | Luminescence and optical thermometry strategy based on emission and excitation spectra of Pr3+ doped SrMoO4 phosphors | |
Zhou et al. | Photoluminescence and ratiometric optical thermometry in Mn4+/Eu3+ dual-doped phosphor via site-favorable occupation | |
Suo et al. | Thermometric and optical heating bi-functional properties of upconversion phosphor Ba 5 Gd 8 Zn 4 O 21: Yb 3+/Tm 3+ | |
Chen et al. | A ratiometric optical thermometer based on Bi3+ and Mn4+ co-doped La2MgGeO6 phosphor with high sensitivity and signal discriminability | |
Liu et al. | Investigation into the temperature sensing behavior of Yb 3+ sensitized Er 3+ doped Y 2 O 3, YAG and LaAlO 3 phosphors | |
Mao et al. | A study on temperature sensing performance based on the luminescence of Eu 3+ and Er 3+ co-doped YNbO 4 | |
Jin et al. | Optically thermometric sensitivities of Er3+/Yb3+ Co-doped hosts with different phonon energy | |
Xu et al. | A novel far-red phosphors Li2ZnTi3O8: Cr3+ for indoor plant cultivation: synthesis and luminescence properties | |
Zhang et al. | Thermometry and up-conversion luminescence of Yb 3+–Er 3+ co-doped Na 2 Ln 2 Ti 3 O 10 (Ln= Gd, La) phosphors | |
Lv et al. | Enhanced upconversion emission in Er3+/Yb3+-codoped Al2Mo3O12 microparticles via doping strategy: towards multimode visual optical thermometer | |
Dai et al. | Temperature-dependent luminescent properties of Cr3+ doped ZnGa2O4 far-red emitting phosphor | |
Wang et al. | Red emitting Ba2LaNbO6: Mn4+ phosphor for the lifetime-based optical thermometry | |
CN111378445A (zh) | 一种Cr3+掺杂的近红外宽谱发光材料的制备和应用方法 | |
Liu et al. | Optical thermometry through infrared excited green upconversion of KLa (MoO4) 2: Yb3+/Er3+ phosphor | |
Zhu et al. | Insights into anti-thermal quenching of photoluminescence from SrCaGa4O8 based on defect state and application in temperature sensing | |
CN113004892A (zh) | 基于铈、铕激活硅铝酸盐的发光材料及制备方法和应用 | |
Wang et al. | NIR-NIR upconverting optical temperature sensing based on the thermally coupled levels of Yb3+-Tm3+ codoped Bi7F11O5 nanosheets | |
Zhao et al. | Optical temperature sensing properties of a phosphor mixture of Sr2Mg3P4O15: Eu2+ and SrB4O7: Sm2+ | |
Zhang et al. | Photoluminescence and optical temperature measurement of Mn4+/Er3+ co-activated double perovskite phosphor through site-advantageous occupation | |
Gao et al. | Spectral design in Cr3+-doped NIR phosphors via crystal field modulation | |
Li et al. | Bi3+ assisted enhancement of photoluminescence and thermal sensing of Er3+/Yb3+ co-doped SrGdAlO4 phosphor with unusual stable color | |
Zhou et al. | Designing optical thermometers using down/upconversion Ca14Al10Zn6O35: Ti4+, Eu3+/Yb3+, Er3+ thermosensitive phosphors | |
Lei et al. | Eulytite-type Ba 3 Yb (PO 4) 3: Tm/Er/Ho as a high sensitivity optical thermometer over a broad temperature range |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230619 Address after: No. 333, Feiyue East Road, Changchun high tech Development Zone, Jilin Province Patentee after: CHANGCHUN YUHENG ERA PHOTOELECTRIC TECHNOLOGY CO.,LTD. Address before: 400065 Chongwen Road, Nanshan Street, Nanan District, Chongqing Patentee before: CHONGQING University OF POSTS AND TELECOMMUNICATIONS |