CN107698261B - 一种3d打印陶瓷材料 - Google Patents

一种3d打印陶瓷材料 Download PDF

Info

Publication number
CN107698261B
CN107698261B CN201710614835.XA CN201710614835A CN107698261B CN 107698261 B CN107698261 B CN 107698261B CN 201710614835 A CN201710614835 A CN 201710614835A CN 107698261 B CN107698261 B CN 107698261B
Authority
CN
China
Prior art keywords
ceramic
layer
printing
ceramic material
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710614835.XA
Other languages
English (en)
Other versions
CN107698261A (zh
Inventor
余娟丽
张天翔
张神赐
赵英民
李淑琴
裴雨辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Research Institute of Materials and Processing Technology
Original Assignee
Aerospace Research Institute of Materials and Processing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Research Institute of Materials and Processing Technology filed Critical Aerospace Research Institute of Materials and Processing Technology
Priority to CN201710614835.XA priority Critical patent/CN107698261B/zh
Publication of CN107698261A publication Critical patent/CN107698261A/zh
Application granted granted Critical
Publication of CN107698261B publication Critical patent/CN107698261B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提出一种3D打印陶瓷材料,由3D打印工艺形成宏观陶瓷层状结构,每层陶瓷层中具有微观层状结构,在微观层与微观层的界面之间和陶瓷层界面之间为棒状陶瓷晶层。本发明通过3D打印技术制备高性能层状陶瓷材料,首先通过3D打印形成宏观层状结构,然后采用逐层冷冻控制,在每一宏观层中形成微观的薄层结构,同时使层界面之间由于水结晶形成锯齿状微冰晶结构,促进坯体层间紧密结合,确保了层状陶瓷良好的烧结性,这种层状结构可大幅提升陶瓷材料力学性能,并充分发挥层状陶瓷独特的能量耗散结构优势,克服陶瓷突发断裂的致命缺点,大大提高陶瓷材料使用可靠性。

Description

一种3D打印陶瓷材料
技术领域
本发明涉及一种3D打印陶瓷材料,属于陶瓷制备技术领域。
背景技术
陶瓷材料具有耐高温、耐磨损、耐腐烛的特点,并且强度高、膨胀系数低、导热性好,在高温下使用较塑料和金属材料更有潜力和优势。但是,其缺点也是显而易见的,陶瓷材料的脆性较大、韧性较低,这些缺点对于陶瓷材料的进一步发展以及在工程中的大规模应用是个很大的瓶颈。陶瓷材料的脆性直观的表现为在外加负荷下无先兆的、爆发式的断裂,间接的表现为抗机械冲击性差和温度急变性差。因此,增加陶瓷材料的韧性,提高陶瓷材料的使用可靠性是结构陶瓷广泛应用的关键。
目前,通过添加增韧相来提高陶瓷材料的韧性和强度主要有以下四种方法:(1)颗粒弥散增韧;(2)相变增韧;(3)长纤维增韧;(4)晶须增韧。研究表明,这些方法有一定的增韧效果,但不能解决陶瓷材料的致命缺点即突然断裂。更重要的是,这些方法的制备工艺和对实验以及使用条件的要求比较严格,因此在实际的工程应用方面存在一定难度。
层状复合陶瓷材料相比于其它的增韧方式,其独特的结构使陶瓷材料克服了非层状陶瓷脆性大的缺陷,在保持组成相物质的综合机械性能的同时,大幅度提高了材料的断裂韧性,可以应用于安全系数较高的领域,使陶瓷材料的应用领域得到了扩展,层状复合陶瓷不仅有效的改善了存在于普通陶瓷中的断裂韧性较低的缺点,而且,层状陶瓷在制备工艺上的优势也是显而易见的。它的生产周期较短、易于推广并且操作简单。所以对其设计具有较大的自由度,可以综合考虑层内设计和层间设计,通过材料选择和结构设计两方面来对材料性能进行优化。
目前,层状陶瓷复合材料的成型方式包括:(1)坯料铺放压制成型;(2)预制层叠放成型;(3)基体层通过涂覆夹层材料的浆料后再经过层压成型;(4)原材料间的浆料之间相互沉积后成型。其中预制层叠放成型又主要包括轧膜成型和流延成型两种。
陶瓷3D打印具有逐层打印成型的特点,相比于传统陶瓷制造工艺的最大优势在于制作精度高、制作周期短、可实现个性化制作、制作材料的多样性以及制作成本相对较低。目前常见的3D打印方法主要有:薄材叠加制造(Laminated Objected Manufacturing,LOM)、熔融沉积造型(Fused Deposition Modeling,FDM)、光固化成型(Stereo-Lithography,SLA)、选择性激光焰化(Selective Laser Melting,SLM)、选择性激光烧结(Selective Laser Sintering,SLS)、三维打印法(3D Printing,3DP)等,而这些各具特色的3D打印技术难以适应多种材料,往往需要针对于某一种特性的陶瓷性能,研制出一种对应的3D打印技术,成本较高,而且成型制备的陶瓷件力学性能不理想。目前,国内外高性能陶瓷的直接3D快速成型工艺均尚未成熟。专利(CN104108131A)介绍了一种陶瓷材料的3D打印成型方法,将3D打印设备的工作平台置于冷冻空间中,在冷冻平台上喷射具有冷冻胶凝性质的浆料,从而得到3D打印的陶瓷坯体。该技术方法存在制件精度低,材料性能均匀性差,表面粗糙度过大,力学性能不理想等缺陷。
发明内容
本发明的目的在于克服现有技术不足,提供了一种具有整体成型性及可控性好、工艺简单、力学性能高的3D打印陶瓷材料。
本发明的技术解决方案:一种3D打印陶瓷材料,由3D打印工艺形成宏观陶瓷层状结构,解冻后再采用逐层缓慢冷冻控制,可以在宏观层结构中通过逐层冷冻控制过程形成微观的层状结构,同时在这些层界面之间由于水结晶形成锯齿状微冰晶结构,在后续烧结中,形成的Si3N4棒状晶能在微冰晶结构留下的微孔中生长,在微观层间形成Si3N4陶瓷棒晶相互交织的层间结构,从而促进坯体层间紧密结合。
所述的3D打印陶瓷材料由陶瓷浆料进行连续逐层打印、解冻、再经逐层缓慢冷冻控制、干燥后烧结而成,所述的陶瓷浆料以硅溶胶为液相,添加陶瓷粉体和小分子多元羟基醇类有机物,所述的小分子多元羟基醇类有机物为陶瓷浆料中液相水的质量的0.5~3%。
所述的小分子多元羟基醇类有机物的分子量为小于10000。
本发明通过添加小分子多元羟基醇类有机物,辅以低温冷冻凝胶,实现对冷冻过程冰晶形貌的优化控制,使冰晶呈微晶形式,可以减少水分除去留下的孔对最终陶瓷材料力学性能及可靠性的影响。
本发明对小分子多元羟基醇类有机物的种类没有特殊限制,如常见的丙三醇、乙二醇等。小分子多元羟基醇类有机物的添加量不能太多,否则会对最终陶瓷材料的致密度造成影响;添加量也不能太少,否则在后续冷冻凝胶工艺中无法发挥抑制结冰膨胀作用,与冷冻凝胶工艺起不到控制冰晶生长的协同作用。本发明给出了小分子多元羟基醇类有机物的优选添加量,使其既不影响致密度又能发挥协同作用;相同条件下,小分子多元羟基醇类有机物的添加量在上述范围内变化时,对最终陶瓷制品的综合性能略有影响,开始时随着小分子多元羟基醇类有机物的添加量增加,综合性能略有提高,在添加量到达1%左右(1±0.2%)时,综合性能最优,随后,随着添加量增加,综合性能略有下降。
所述的逐层缓慢控制冷冻工艺为对由3D打印工艺形成的宏观陶瓷层状结构解冻后从一端开始逐层进行冷冻,冷冻工艺采用方式一或方式二,
方式一,将解冻后的宏观陶瓷层状结构置于冷冻容器中,从冷冻容器底端缓慢注入冷冻介质,对宏观陶瓷层状结构进行逐层冷冻(≤-80℃)固化成型,每层冷冻厚度≤1μm,即每一次注入的冷冻介质的高度≤1μm,冷冻保温时间不少于0.5分钟;
方式二,按照冷冻方向,使解冻后的宏观陶瓷层状结构持续缓慢进入到冷冻介质中(≤-80℃),进入速度为不大于1μm/3min,进行逐层冷冻固化成型。
本发明采用逐层缓慢控制冷冻,再结合小分子多元羟基醇类有机物对陶瓷浆料冷冻凝胶过程中的冰晶尺寸和形状进行调控,可以在微观结构上使逐层冷冻过程中形成的冷冻层与冷冻层微观界面之间由于水结晶形成锯齿状微冰晶结构,在后续烧结中,形成的陶瓷棒状晶能在微冰晶结构留下的微孔中生长,在层间微观界面中形成陶瓷棒状晶相互交织的层间结构,从而促进坯体层间微观紧密结合以及层状材料良好的烧结性能。
所述的陶瓷浆料中可添加微量增加陶瓷浆料塑性的有机物,如聚乙烯醇、聚丙烯酸酯或羧甲基纤维素等,但不以此为限,只要是能起到上述作用,又不会对对3D成型工艺和最终制品造成不利影响的有机物,其用量为陶瓷浆料中液相水的质量的0.5~2%,优选为1±0.2%。
本发明的陶瓷粉体可以为常规使用的陶瓷微粉体,如氮化硅微粉、碳化硅微粉、氧化铝微粉、二氧化硅微粉等,同时包括少量烧结助剂。
优选以下陶瓷浆料,在烧结中最终会形成Si3N4陶瓷材料:
由碱性硅溶胶、氮化硅粉、少量烧结助剂以及分散剂、增加陶瓷浆料塑性的有机物(羧甲基纤维素等)以及小分子醇类有机物组成浆料,增加陶瓷浆料塑性的有机物和小分子醇类有机物的添加量均优选1±0.2%,然后高速球磨机中球磨混料均匀,得到适宜于3D打印的氮化硅陶瓷浆料。
本发明中硅溶胶可以通过市售获得,固含量一般为15~30%。氮化硅粉体、氧化铝粉体、氧化钡粉等陶瓷粉体的粒径及纯度等要求为本领域公知技术,本领域技术人员可以根据具体要求选择。
所述的陶瓷浆料中可以根据实际生产需要添加少量的分散剂,分散剂使粉体更好的分散在溶胶中,可以采用聚丙烯酸铵或四甲基氢氧化铵,也可采用对3D成型工艺和最终制品无不利影响的其他种类分散剂,添加量为陶瓷浆料中固体总质量的0.5~3%。
所述的陶瓷浆料进行连续逐层打印,在陶瓷浆料打印过程中,每一层的打印始终在-10℃~-20℃的工作平台上保持“浅”冷冻状态,保证陶瓷浆液中的水被冻结用于进行打印维形,得到陶瓷层状结构。
所述的陶瓷层状结构在25~40℃的温度下保温5~10min进行快速解冻,使初坯中冻结的水相重新还原为液相。
本发明中其他3D打印的内容,如模型建立、模型分层处理以及3D打印用的铺设陶瓷浆料的设备等为本领域公知技术。
本发明干燥为本领域公知技术,陶瓷坯体可以在常压下干燥,干燥温度没有严格的限制,可以在常温下干燥,也可以根据需要在200℃以下任选温度,干燥时间为2~48小时,根据干燥温度和陶瓷坯体的干燥程度进行选择,保证坯体彻底干燥。
本发明坯体的烧结为本领域公知技术,可采用无压烧结、气氛压力烧结或热压烧结,烧结气氛为氮气。
本发明与现有技术相比的有益效果:
(1)本发明通过3D打印技术制备高性能陶瓷材料,首先通过3D打印形成宏观层状结构初坯,然后采用逐层冷冻控制,在每一宏观层中再形成微观的薄层(≤1μm)结构,同时使层界面之间由于水结晶形成锯齿状微冰晶结构,以促进坯体层间紧密结合,确保层状陶瓷良好的烧结性,通过冷冻控制使这种层状结构陶瓷材料力学性能得到大幅提升,并充分发挥层状陶瓷独特的能量耗散结构优势,克服陶瓷突发断裂的致命缺点,大大提高陶瓷材料使用可靠性;
(2)本发明结合了3D打印技术高效简单的特点,容易实现高性能陶瓷产品的产业化应用;同时利用了3D打印技术逐层打印的特点进行层状陶瓷材料结构设计,实现高性能陶瓷材料高效低成本制备;
(3)本发明能整体成型层状陶瓷坯体,工艺简单、可控性好、层间结合性好、烧结无脱层现象。
附图说明
图1为本发明制备流程图;
图2a、b为本发明实施例1得到的陶瓷材料微观结构。
具体实施方式
下面结合具体实例及附图对本发明进行详细说明。
本发明如图1所示,采用硅溶胶作为配制浆料的液相配制适合3D打印的陶瓷浆料,然后进行逐层打印,借助3D打印精细控制陶瓷层厚,逐层打印过程中,每一层的打印始终在-10℃~-20℃条件的工作平台上保持“浅”冷冻状态,保证陶瓷浆液中的水被冻结用于进行打印维形;整体打印完成后,对打印成型的初坯进行快速解冻,使初坯中冻结的水相重新还原为液相,紧接着对打印体整体进行“深”冷冻(≤-80℃),控制冷冻温度和冷冻速率实现逐层冷冻控制,使成型的陶瓷坯体中形成具有一定方向性的薄层(≤1μm)结构;同时利用冷冻控制实现了层间精细锯齿状结构精密结合,确保陶瓷良好的烧结性能,最终制备得到高性能层状陶瓷材料。
实施例1
3D打印Si3N4陶瓷材料
制备过程如图1所示,通过以下步骤实现:
1、陶瓷浆料制备
由碱性硅溶胶、氮化硅粉、少量烧结助剂、增加陶瓷浆料塑性的羧甲基纤维素以及丙三醇组成陶瓷浆料,羧甲基纤维和丙三醇用量分别为陶瓷浆料中液相水的质量的1%,并加陶瓷浆料中固体总质量1%的四甲基氢氧化铵作为分散剂,高速球磨机中球磨混料5h。
2、3D打印
陶瓷浆料脱气后装入3D打印装置进行连续逐层打印,每一层是打印在-15℃条件的工作平台上,使浆料打印过程保持“浅”冷冻,用于陶瓷浆液的打印维形。
3、逐层冷冻
对打印成型的初坯进行快速解冻,使初坯中冻结的水相重新还原为液相,紧接着对打印体整体进行“深”冷冻(≤-80℃),控制冷冻温度和冷冻速率以升降的方式按照冷冻方向逐步缓慢推进-80℃的冷冻装置中,推进速度为1μm/3min,实现逐层冷冻控制,实现打印件的整体固化成型,形成具有一定强度的陶瓷坯体。
4、坯体干燥,烧结,得到微观结构为层状的Si3N4材料。
如图2a、b的微观结构可以看出,该材料较为致密,层间结合性好,材料中具有较为明显的薄层结构,微观层间形成Si3N4陶瓷棒状晶层,从而促进材料微观层间的紧密结合以及材料良好的烧结性能。
实施例2
3D打印Si3N4陶瓷材料
配制陶瓷浆料,陶瓷浆料由碱性硅溶胶、氮化硅粉、少量烧结助剂、增加陶瓷浆料塑性的聚乙烯醇以及乙二醇组成陶瓷浆料,聚乙烯醇和乙二醇用量分别为陶瓷浆料中液相水的质量的0.5%、0.5%,并加陶瓷浆料中固体总质量1%的四甲基氢氧化铵作为分散剂,高速球磨机中球磨混料5h。连续逐层打印得到陶瓷初坯,每一层打印在-20℃条件的工作平台上,解冻后,将其放入低温环境中,从低温环境底端缓慢注入冷冻介质,对陶瓷初坯进行逐层冷冻(≤-80℃)固化成型,每一次注入的冷冻介质的高度为1μm,每层冷冻厚度为1μm,冷冻保温时间为1分钟。再经坯体干燥,烧结,得到微观结构为层状的Si3N4材料。其余同实施例1。
本实例得到的微观结构与如图2a、b的微观结构类似,材料较为致密,材料中具有较为明显的薄层结构,微观层间形成Si3N4陶瓷棒状晶层。
实施例3
3D打印Si3N4陶瓷材料
配制陶瓷浆料,陶瓷浆料由碱性硅溶胶、氮化硅粉、少量烧结助剂、增加陶瓷浆料塑性的羧甲基纤维素以及丙三醇组成陶瓷浆料,羧甲基纤维和丙三醇用量分别为陶瓷浆料中液相水的质量的2%、3%,并加陶瓷浆料中固体总质量1%的四甲基氢氧化铵作为分散剂,高速球磨机中球磨混料5h。连续逐层打印得到陶瓷初坯,每一层打印在-10℃条件的工作平台上,解冻后,将其放入低温环境中,从低温环境底端缓慢注入冷冻介质,对陶瓷初坯进行逐层冷冻(≤-80℃)固化成型,每一次注入的冷冻介质的高度为1μm,每层冷冻厚度为1μm,冷冻保温时间为1分钟。再经坯体干燥,烧结,得到微观结构为层状的Si3N4材料。其余同实施例1。
本实例得到的微观结构与如图2a、b的微观结构类似,材料较为致密,材料中具有较为明显的薄层结构,微观层间形成Si3N4陶瓷棒状晶层。
本发明未详细说明部分为本领域技术人员公知技术。

Claims (9)

1.一种3D打印陶瓷材料,其特征在于:由3D打印工艺形成宏观的陶瓷层状结构,在3D打印形成的每一层宏观的陶瓷层中具有微观层状结构,在微观层与微观层的界面之间以及3D打印的宏观陶瓷层界面之间为棒状陶瓷晶层;
所述的3D打印陶瓷材料由陶瓷浆料在-10℃~-20℃温度下连续逐层打印得到陶瓷层状结构,陶瓷层状结构解冻后进行逐层缓慢控制冷冻成型得到微观层状结构,所述的逐层缓慢控制冷冻成型为对解冻后的陶瓷层状结构从一端开始逐层进行冷冻固化成型,得到每一层厚度≤1μm的微观层状结构。
2.根据权利要求1所述的一种3D打印陶瓷材料,其特征在于:所述的微观层状结构再经干燥、烧结后得到层界面之间为棒状陶瓷晶层的3D打印层状陶瓷材料。
3.根据权利要求2所述的一种3D打印陶瓷材料,其特征在于:所述的冷冻工艺采用方式一或方式二,
方式一,将解冻后的陶瓷层状结构置于冷冻容器中,从冷冻容器底端注入冷冻介质,对陶瓷层状结构在≤-80℃下进行逐层冷冻固化成型,每层冷冻厚度≤1μm,冷冻保温时间为不少于0.5分钟;
方式二,按照冷冻方向,使解冻后的陶瓷层状结构持续进入到≤-80℃的冷冻介质中,进入速度不大于1μm/3min,进行逐层冷冻固化成型。
4.根据权利要求2所述的一种3D打印陶瓷材料,其特征在于:所述的陶瓷浆料以硅溶胶为液相,添加陶瓷粉体和小分子多元羟基醇类有机物,所述的小分子多元羟基醇类有机物为陶瓷浆料中液相水的质量的0.5~3%,所述的小分子多元羟基醇类有机物的分子量小于10000。
5.根据权利要求2或4所述的一种3D打印陶瓷材料,其特征在于:所述的陶瓷浆料中添加微量增加陶瓷浆料塑性的有机物,用量为陶瓷浆料中液相水的质量的0.5~2%。
6.根据权利要求5所述的一种3D打印陶瓷材料,其特征在于:所述的陶瓷浆料中添加少量的分散剂,添加量为陶瓷浆料中固体总质量的0.5~3%。
7.根据权利要求2所述的一种3D打印陶瓷材料,其特征在于:所述的解冻工艺为,陶瓷层状结构在25~40℃的温度下保温5~10min。
8.根据权利要求4所述的一种3D打印陶瓷材料,其特征在于:所述的小分子多元羟基醇类有机物为陶瓷浆料中液相水的质量的1±0.2%。
9.根据权利要求5所述的一种3D打印陶瓷材料,其特征在于:所述的增加陶瓷浆料塑性的有机物用量为陶瓷浆料中液相水的质量的1±0.2%。
CN201710614835.XA 2017-07-26 2017-07-26 一种3d打印陶瓷材料 Active CN107698261B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710614835.XA CN107698261B (zh) 2017-07-26 2017-07-26 一种3d打印陶瓷材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710614835.XA CN107698261B (zh) 2017-07-26 2017-07-26 一种3d打印陶瓷材料

Publications (2)

Publication Number Publication Date
CN107698261A CN107698261A (zh) 2018-02-16
CN107698261B true CN107698261B (zh) 2019-11-22

Family

ID=61170535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710614835.XA Active CN107698261B (zh) 2017-07-26 2017-07-26 一种3d打印陶瓷材料

Country Status (1)

Country Link
CN (1) CN107698261B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109394394B (zh) * 2018-12-17 2020-10-23 中国科学院上海硅酸盐研究所 仿热狗结构生物活性支架及其制备方法和应用
CN111943688B (zh) * 2020-08-21 2022-04-26 航天特种材料及工艺技术研究所 一种3d冷冻打印方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919852A (en) * 1988-06-30 1990-04-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Lightweight ceramic insulation and method
CN104108131B (zh) * 2014-07-04 2017-02-22 航天特种材料及工艺技术研究所 一种陶瓷材料的3d打印成型方法
CN106003363B (zh) * 2016-05-20 2018-09-11 西安工业大学 一种生物陶瓷坯体的3d打印方法

Also Published As

Publication number Publication date
CN107698261A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
CN107698260B (zh) 一种陶瓷3d打印成型的方法
CN105698542B (zh) 一种抗锂电池高温腐蚀层状匣钵及其制备方法
CN107698261B (zh) 一种3d打印陶瓷材料
CN108975936B (zh) 一种石墨陶瓷复合型及其制备方法
US11851376B2 (en) Aqueous gelcasting method for ceramic products
CN108842081B (zh) 一种真空气压浸渗制备Al/SiC-C-SiC复合材料的制备方法
CN110228996A (zh) 一种基于浆料直写成型的陶瓷型芯制备方法
CN107696233B (zh) 一种陶瓷3d打印设备
CN104496484A (zh) 一种制备Si3N4/BAS复合陶瓷材料的方法
CN109650902A (zh) 一种高韧性仿生结构石墨烯基陶瓷复合材料的制备方法
CN109336562B (zh) 一种氧化铝基陶瓷复合材料的制备方法
US3816572A (en) Ceramic articles
CN106083205B (zh) 一种通过化学气相渗透提高整体式氧化铝基陶瓷铸型高温强度的方法
CN104496523B (zh) 一种陶瓷泡沫固化成型的方法
CN101229979A (zh) 绝热万能砖及其制造方法
CN104529442A (zh) 一种功能梯度压电材料无压浸渗制备工艺
CN107759240A (zh) 一种Si3 N4 /BAS复相陶瓷材料的制备方法
CN107698262A (zh) 一种陶瓷材料
CN108640660B (zh) 一种制备泡沫氧化铝和泡沫铝/氧化铝复合材料的方法
CN111943688B (zh) 一种3d冷冻打印方法
CN114941964B (zh) 一种梯度连接的三维预应力陶瓷复合装甲及其制备方法
CN107698263A (zh) 一种陶瓷材料的制备方法
CN107986811A (zh) 一种低温凝固结合定向退火所得的多孔材料及其制备方法
CN101298386A (zh) 一种氧化锆多孔陶瓷的制备方法
CN113020544A (zh) 一种钛合金铸字用陶瓷型芯的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant