CN107690710A - 用于InSb纳米颗粒的溶液方法和用于红外探测器的应用 - Google Patents

用于InSb纳米颗粒的溶液方法和用于红外探测器的应用 Download PDF

Info

Publication number
CN107690710A
CN107690710A CN201680031258.5A CN201680031258A CN107690710A CN 107690710 A CN107690710 A CN 107690710A CN 201680031258 A CN201680031258 A CN 201680031258A CN 107690710 A CN107690710 A CN 107690710A
Authority
CN
China
Prior art keywords
indium antimonide
nano particle
particle
antimony
insb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680031258.5A
Other languages
English (en)
Inventor
R·D·得士穆克
R·胡克
Y·佐保
P·米希凯维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of CN107690710A publication Critical patent/CN107690710A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • H01L31/03845Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material comprising semiconductor nanoparticles embedded in a semiconductor matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Luminescent Compositions (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及合成InSb纳米颗粒的方法,稳定它们的方法和提供探测红外光的光电探测器的方法。

Description

用于InSb纳米颗粒的溶液方法和用于红外探测器的应用
本发明涉及用于合成InSb纳米颗粒的方法,稳定它们的方法以及提供探测红外光的光电探测器的方法。
现有技术
红外辐射由波长比可见光长的电磁波组成。红外辐射位于0.75μm(1.65eV)至1000μm(1200eV)的波长区域内。红外辐射可以进一步分类为:a)从0.75到1.4μm的近红外(NIR),b)从1.4到3μm的短波长红外(SWIR),c)从3到8μm的中波长红外(MWIR),d)从8到15μm的长波长红外(LWIR),和e)15到1000μm的远红外(Byrnes,James(2009).Unexploded OrdnanceDetection and Mitigation.Springer.第21–22页.ISBN 978-1-4020-9252-7)。关注点主要集中在3-5μm和8-12μm的两个大气窗口的波长上,因为这些波段的大气透射最高,在T=300K时物体的发射率最大值在~10μm的波长下。
已经制备了基于诸如PbS、PbSe、HgSbTe、InSb、InAsSb、PbSnTe、InGaAs的材料的各种红外探测器以及基于诸如Cu、Zn、Au和Ge等的掺杂剂的探测器(A.Rogalski等,Progressin Quantum Electronics 27(2003)59–210)。红外探测的众多应用包括夜视、热成像、人体探测、遥感、辐射温度计、火焰探测器、湿度/气体分析仪、光纤通信等。
一些商业探测器基于不希望的有害元素,如铅、汞或砷。这些半导体的制备需要昂贵的单晶生长技术或气相沉积或外延方法,随后进行集中的后处理步骤。进一步的晶格匹配的化合物半导体外延具有与基于硅的集成电路便利地单片集成有关的问题。
溶液处理的半导体可以容易地克服这些挑战。溶液处理进一步提供了低成本、大面积的半导体沉积以及与刚性以及柔性基底的兼容性。铅硫族化合物如PbS和PbSe的有毒纳米颗粒的合成已经在文献中报道。Sargent等人报道了基于PbS的溶液处理的红外光电探测器,这样的红外光电探测器在其归一化探测率(即探测器灵敏度的优值)方面优于在室温下运行的最佳外延生长器件(Nature,2006,442,180-183)。
相比之下,只有少数研究文章报道了InSb(锑化铟)纳米颗粒的溶液处理,工艺现状还处于起步阶段。InSb具有0.18eV(300K)的直接和窄带隙以及高达78000cm2/V.s的高迁移率的优点。与基于汞和铅的半导体相比,InSb也是无毒的。Yarema等人报道了在三辛胺和三辛基膦存在下使用三[双(三甲基甲硅烷基)-氨基]铟In[N(SiMe3)2]3和三(二甲氨基)锑Sb[NMe2]3的InSb量子点的合成(Chem.Mater.2013,25,1788-1792)。In[N(SiMe3)2]3中的铟前体不可商购,并且使用单独的合成步骤来制备,从而增加了合成的总体复杂性和成本。锑前体Sb[NMe2]3有市售,然而,对于大型商业应用而言,其也相当昂贵且不太有用。Liu等人也报道了在三乙基硼氢化锂(LiEt3BH)(也称为)存在下使InCl3和Sb[N(Si(Me)3)2]3在油胺中反应合成InSb量子点。在该反应中,锑前体Sb[N(Si(Me)3)2]3无市售,并且必须用另外的合成步骤来制备,从而增加总的复杂性、降低的收率和更高的合成成本(J.Am.Chem.Soc.2012,134,20258-20261)。在另一个报道中,InSb纳米线被电沉积在阳极氧化铝,AAO膜的孔中(Nanoscale Research Letters 2013,8:69)。先前报道的InSb纳米颗粒在强配位胺如乙二胺、二亚乙基三胺或四亚乙基五胺的存在下也遭受另外金属相的形成(反应化学所需的过量的In:Sb=4:1)。用盐酸蚀刻纳米颗粒以去除过量的金属。酸处理可以是相当有害的,因为它可能无意地改变InSb纳米颗粒的表面化学,这可能导致任何器件中的差的电子性能。(Can.J.Chem 2001,79,127-130,De Lezaeta,Mater.Res.Soc.Synop.Proc 2005,848,FF3.34,189)。
发明简述
本发明的第一个实施方案是用于制备锑化铟纳米颗粒的方法,其特征在于,在溶剂中混合铟源、锑源和选自硼氢化物和氢化铝的还原剂。
在本发明的另一方面中,提供了通通过四氟硼酸酸根、六氟磷酸酸根或六氯锑酸根阴离子稳定的InSb纳米颗粒,以及用于制备这样的稳定化的InSb纳米颗粒的方法。
本发明的第二实施方案涉及包含如上文和下文所公开的InSb纳米颗粒的油墨,所述InSb纳米颗粒分散在包含一种或多种溶剂的液相中。
本发明最后涉及包括InSb纳米颗粒的改进的半导体电子器件以及制造这些器件的方法。在这方面,公开了用于红外辐射的检测器,其包括InSb纳米颗粒层。
发明详述
这种用于制备锑化铟纳米颗粒(InSb NP)的方法避免了使用复杂前体进行合成,并且仍然能够获得单相InSb纳米颗粒,从而避免了如先前报道的那样需要使用任何酸来蚀刻掉杂质。本申请还示出了能够探测可见光和红外辐射的光电探测器的基于溶液的制备。
除了红外探测器之外,根据本发明的基于InSb NP的器件还可用于其它应用,如使用磁阻或霍尔效应的磁场传感器,超快晶体管如快速双极晶体管,能够在非常高的频率如200GHz(由Intel报道)下运行的场效应晶体管等等。这里报道的InSb油墨也可以用于如上的应用。
根据本发明的方法提供了使用商业金属盐合成InSb纳米颗粒的低成本方法。制备的纳米颗粒具有结晶性质,为此使用术语纳米晶体。它们优选是单晶的。
铟源优选为选自但不限于以下的铟盐:氯化铟、碘化铟、氟化铟、溴化铟、乙酸铟、乙酰丙酮铟、甲醇铟、丙醇铟、硝酸铟和其他铟有机配合物。
锑源优选为锑盐,更优选氧化态锑(+III),其可以选自但不限于以下:氯化锑、碘化锑、氟化锑、溴化锑、乙酸锑、乙酰丙酮锑、甲醇锑、丙醇锑、硝酸锑和其他锑有机配合物。
溶剂中可以选自但不限于以下:水、乙二醇、丙二醇、二甘醇二甲醚、三甘醇二甲醚、三甘醇、油胺、己胺、三辛胺、十六烷、十八碳烯、二辛基醚、苄基醚、四氯乙烯、二氯苯、十六烷、十八烷等或以上任何的混合物。在某个实施方案中,溶剂优选包含小于10重量%的胺,更优选小于5重量%的胺,最优选不含胺。
还原剂可从选自但不限于以下:硼氢化钠、硼氢化锂、硼氢化钾、四丁基硼氢化铵、四乙基硼氢化铵、甲基三辛基硼氢化铵、三乙基硼氢化钠、三乙基硼氢化钾、三乙基硼氢化锂、氢化铝锂、三叔丁氧基氢化铝锂等或以上任何的混合物。
用于纳米颗粒的配体或表面活性剂可以选自但不限于油胺、丁胺、己胺、辛胺、乙二胺、乙二胺四乙酸、聚亚乙基亚胺、己硫醇、1,2-乙二硫醇,十二硫醇,三辛基膦(TOP),三丁基膦(TBP)、三辛基氧化膦(TOPO)、油酸、聚乙烯吡咯烷酮(PVP)、十六烷基三甲基溴化铵、柠檬酸钠、十六烷基三甲基溴化铵、四氟硼酸盐(使用例如三乙基氧鎓四氟硼酸盐Et3OBF4、亚硝鎓四氟硼酸盐(NOBF4)和重氮四氟硼酸盐等提供)或以上任何的混合物。
为了改善新的电子器件的性能,为InSb NP提供了小尺寸的电子传导配体。这里提出了一种与四氟硼酸盐(BF4 -)的配体交换技术,所述四氟硼酸盐(BF4 -)能够避免对NP表面的损坏。Helms和同事证实了Meerwein盐(Et3OBF4)在从胺钝化的纳米晶体上剥离脂族配体的效用(J.Am.Chem.Soc.,2011,133(4),第998–1006页)。通过使用用于本发明的InSb NP的该试剂,实际上所有的天然配体都可以被去除并被吸附的BF4 -和任选地被颗粒表面上的另外的溶剂分子如DMF分子替代。BF4 -型配体最适合官能化InSb纳米颗粒以获得稳定的分散并改善器件特性。
令人惊讶的是,已经发现了替代天然的,主要是基于碳的配体的简便途径。在本发明的这个方面,提供了通过用包含相应无机离子的液体介质处理这些NP来制备由包括四氟硼酸根、六氟磷酸根或六氯锑酸根的无机离子稳定的InSb纳米颗粒的方法。使用无机离子的处理方法以纳米颗粒表面基本上被这些无机离子覆盖的方式进行。之前的配体优选在该过程中被去除。四氟硼酸根、六氟磷酸根或六氯锑酸根以含有这样的阴离子的溶液的形式提供,所述阴离子可以通过以下方式提供:溶解相应的盐溶解,来自相应的酸和转化这种试剂。可用和有用的阳离子包括三烷基氧鎓、亚硝鎓、H+、铵、单/二/三/季烷基铵、烷基吡啶鎓(如1-丁基-4-甲基吡啶鎓)、烷基咪唑鎓(如1-乙基-3-甲基咪唑鎓)和金属阳离子。在三烷基氧鎓中,烷基优选地且独立地表示具有1至15个碳原子的直链或支链烷基,更优选具有1至7个碳原子的直链烷基,并且最优选甲基或乙基。吡啶鎓和咪唑鎓的烷基取代基优选为具有1至7个碳原子的直链或支链烷基。特别优选的试剂是三甲基氧鎓或三乙基氧鎓。三乙基氧鎓四氟硼酸盐被广泛称为Meerwein盐。
InSb纳米颗粒可以通过在纳米颗粒合成期间添加各种p型或n型掺杂剂来掺杂。p型掺杂剂包括但不限于Be、Zn、Cd、Cu、Cr等,n型掺杂剂包括但不限于Si、Sn、Mg、Se、S、Te等。改变InSb纳米颗粒上的配体类型也可能产生p型或n型掺杂。InSb纳米颗粒中In与Sb的非化学计量组成也可导致p或n型掺杂。还可以通过调节上述掺杂途径的任一种中的掺杂剂的量来控制杂质掺杂水平。因此,可以合成实现p-n结、p-i-n结和其他可能的半导体器件配置的构型的本征p型和n型InSb油墨,从而与简单的光导(金属-半导体-金属型器件)相比改善光电探测。
本申请的另一个实施方案是包含用于溶液处理的分散的InSb纳米颗粒的油墨,以制备诸如InSb光电探测器的半导体器件。根据本发明的油墨优选是可印刷油墨。这种油墨适用于例如喷墨印刷或其他普通印刷技术(柔版印刷、凹版印刷、平版印刷)。在另一个优选的实施方案中,该油墨适用于旋转涂布或除了印刷之外的其它常用涂布技术。
基于InSb的油墨可以通过喷涂、喷墨印刷、浸涂、刮刀涂布或迈耶棒涂布、凹版印刷、柔版印刷,平版印刷、狭缝涂布和滴涂等沉积在任何类型的基底上。基底可以是绝缘体、半导体或导体。取决于制造关注的最终器件所需的处理步骤的顺序,油墨可以沉积在诸如塑料的柔性基底或诸如玻璃、金属箔、半导体(例如硅、锗、砷化镓等)的刚性基底或甚至半成品器件上。
纳米颗粒油墨优选包含选自但不限于以下的添加剂中的一种或多种:分散剂如表面活性剂或增稠剂、粘度调节剂、表面活性剂等。
颗粒制备过程和随后的反应混合物后处理可以作为分批反应或以连续反应方式进行。连续反应方式包括例如在连续搅拌釜反应器、级联搅拌反应器、环流或错流反应器、流管或微反应器中的反应。根据需要,反应混合物任选地通过不相容相之间的离心、沉降、经固相过滤、层析或分离(例如萃取)进行后处理。
附图简述
图1显示了使用根据实施例1制备的InSb纳米颗粒的Cu Kαx射线源的X射线衍射光谱。
图2显示了宽带AM1.5光(100mW/cm2)下实施例6的InSb光电探测器的光响应。
图3显示了在900nm波长的单色光下实施例6的InSb光电探测器的光响应。
以下实例将说明本发明而不是限制它。技术人员将能够认识到在说明书中没有明确提及的发明的实际细节,通过本领域的一般知识来概括这些细节,并且应用它们作为与本发明的技术问题有关的任何特定问题或任务的解决方案。
实施例
材料:氯化锑(III)(SbCl3,>99.99%)、氯化铟(III)(InCl3,99.999%)、聚乙烯吡咯烷酮(PVP,平均分子量10,000)、三甘醇(TEG,>99.0%)、三乙基硼氢化锂(在THF中1M)、硼氢化钠(NaBH4,99%)和三乙基氧鎓四氟硼酸盐(Et3OBF4,>97.0%)购自Sigma-Aldrich。乙酸锑(III)(Sb(CH3COO)3,97%)购自Alfa Aesar。乙腈(99.8%)和异丙醇(IPA,99.8%)购自EMD Chemicals。油胺(80-90%)购自Acros Organics。乙二醇(EG,99.0%)购自VWR。使用Millipore超纯水,电阻率>18.0MΩ-cm。所有的化学品都按原样使用。
程序:锑和铟盐和LiAlHEt3在<5ppm的氧和湿度水平的手套箱中处理。所有其他化学品都是在空气中添加的。所有反应均在Schlenk生产线上在恒定搅拌下使用标准无空气技术进行。
实施例1.使用LiAlHEt3还原剂合成纳米颗粒:
22.1mg InCl3、28.9mg Sb(CH3COO)3和20ml油胺在圆底烧瓶中在真空下加热至110℃并在该温度下脱气15分钟。此时,反应混合物是混浊且淡黄色的。然后在氮下将反应物加热至265℃。接着将1.2ml三乙基硼氢化锂溶液逐滴注入烧瓶中。加入三乙基硼氢化锂后,混合物立即变成不透明的黑褐色。使反应在265℃下进行16小时后,可以获得单相InSb纳米颗粒。接着去除加热,并使纳米颗粒溶液冷却至室温。
所得到的颗粒通过X射线衍射检查(图1)。测量的光谱与参考峰值一致。
实施例2.使用NaBH4还原剂合成纳米颗粒:
将33.2mg InCl3、34.2mg SbCl3、0.1g PVP和20ml乙二醇加热至110℃并在此温度下在圆底烧瓶中保持15分钟。最初将反应混合物置于真空下,但在100℃左右剧烈沸腾时转换为氮。此时,混合物是无色的溶液。然后在氮下将反应物加热至150℃,此时溶液呈淡黄色且澄清。将1ml超纯水添加到单独的小瓶中的0.0681g NaBH4中,其在一分钟内溶解并导致轻微释放气泡。然后立即将NaBH4溶液逐滴注入反应混合物中,立即产生深黑色溶液。使反应在150℃下进行16小时后,可以获得单相InSb纳米颗粒。接着去除加热,并使纳米颗粒溶液冷却至室温。
实施例3.使用NaBH4还原剂合成纳米颗粒:
将221mg InCl3、228mg SbCl3、0.1g PVP和50ml三甘醇在真空下加热至110℃并在该温度下脱气15分钟。此时在反应过程中,混合物是澄清的橙黄色溶液。接下来,将反应混合物在氮下加热至165℃,产生深橙色澄清溶液。在另一个小瓶中,将20ml三甘醇添加到0.455g NaBH4中,声处理混合物,然后搅拌30分钟。在声处理/搅拌之后,将混浊的半透明白色NaBH4悬浮液逐滴注入到反应混合物中,其立即变成不透明的黑色。然后将反应混合物的温度升至200℃。在16小时的反应时间之后,可以获得单相InSb纳米颗粒。接下来,去除加热,使纳米颗粒溶液冷却至室温。
实施例4.配体交换方案和油墨制备:
将4.5g Et3OBF4溶解在50ml异丙醇和50ml乙腈中以制备总浓度为0.25M的Et3OBF4的配体储备溶液。收集反应混合物(来自实施例1、2或3),以10,000rpm按原样离心5分钟。倒出上清液,使用声处理将固体再分散在10ml Et3OBF4储备溶液中。接下来,将得到的纳米颗粒分散体以8000rpm再次离心5分钟。倒出上清液,并将固体再分散在10ml乙腈中。得到的油墨稳定并且没有聚结物,并用于沉积InSb纳米颗粒的膜。
实施例5.InSb膜制备/表征:
将实施例4中制备的油墨滴涂在玻璃基底上以制备0.1-10μm厚的InSb层。接下来,在氮环境中在400℃下加热膜10秒以改善膜的电子特性。
实施例6
光电探测器器件构造/测试:
两个平行的金属电极通过涂覆商业银色油墨或溅射图案化的金层而沉积在InSb膜上。电极间隔2mm,长度为10mm。图2显示了InSb光电探测器在黑暗与光照中(AM 1.5,宽带光)的电流与电压的曲线。很明显,在光照暴露下的电流值比在黑暗中的电流值高,表现出可观的光响应。图3显示该装置在暴露于单色红外光源(在这种情况下为900nm)时是光响应的。
本发明的实施例和本发明的变型的进一步组合由以下权利要求公开。

Claims (15)

1.用于制备锑化铟纳米颗粒的方法,其特征在于,在溶剂中混合铟源、锑源和选自硼氢化物和氢化铝的还原剂。
2.根据权利要求1的用于制备锑化铟纳米颗粒的方法,其特征在于,所述溶剂包含低于10重量%的胺。
3.根据权利要求1或2的用于制备锑化铟纳米颗粒的方法,其特征在于,所述还原剂选自四氢硼酸盐或三烷基氢硼酸盐。
4.根据权利要求1至3中一项或多项的用于制备锑化铟纳米颗粒的方法,其特征在于,所述纳米颗粒为单相纳米晶体。
5.根据权利要求1至4中一项或多项的用于制备锑化铟纳米颗粒的方法,其特征在于,所述锑源为锑(III)盐。
6.根据权利要求1至5中一项或多项的用于制备锑化铟纳米颗粒的方法,其特征在于,所述铟源和锑源首先在溶剂中混合,并将还原剂添加到得到的混合物中。
7.根据权利要求1至6中一项或多项的用于制备锑化铟纳米颗粒的方法,其特征在于,所述溶剂包含10重量%或更多的胺,并且所述还原剂是三烷基硼氢化物。
8.根据前述权利要求的用于制备锑化铟纳米颗粒的方法,其特征在于,将所述铟源和锑源混合并加热至100℃或更高。
9.根据权利要求1至8中一项或多项的用于制备锑化铟纳米颗粒的方法,其特征在于,通过使纳米颗粒表面与上述配体接触,通过四氟硼酸酸根、六氟磷酸酸根或六氯锑酸根阴离子稳定颗粒。
10.半导体电子器件,其包括锑化铟纳米颗粒层。
11.根据权利要求10的半导体电子器件,其特征在于,所述器件是用于红外辐射的探测器。
12.提供半导体器件的方法,包括以下步骤:
a)在基底上沉积铟纳米颗粒层,
b)为所述层提供电极,
c)任选地加热所述纳米颗粒层。
13.锑化铟纳米颗粒,其通过四氟硼酸根、六氟磷酸根或六氯锑酸根阴离子稳定。
14.用于制备通过四氟硼酸根、六氟磷酸根或六氯锑酸根阴离子稳定的锑化铟纳米颗粒的方法,其特征在于,分别使用四氟硼酸根、六氟磷酸根或六氯锑酸根阴离子处理这样的InSb纳米颗粒。
15.油墨,其包含分散在包含一种或多种溶剂的液相中的根据权利要求12的InSb纳米颗粒。
CN201680031258.5A 2015-05-29 2016-05-06 用于InSb纳米颗粒的溶液方法和用于红外探测器的应用 Pending CN107690710A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562168319P 2015-05-29 2015-05-29
US62/168,319 2015-05-29
PCT/EP2016/000746 WO2016192832A1 (en) 2015-05-29 2016-05-06 Solution process for insb nanoparticles and application for ir detectors

Publications (1)

Publication Number Publication Date
CN107690710A true CN107690710A (zh) 2018-02-13

Family

ID=56081442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680031258.5A Pending CN107690710A (zh) 2015-05-29 2016-05-06 用于InSb纳米颗粒的溶液方法和用于红外探测器的应用

Country Status (6)

Country Link
US (1) US20180163070A1 (zh)
EP (1) EP3303224A1 (zh)
JP (1) JP2018525517A (zh)
KR (1) KR20180014021A (zh)
CN (1) CN107690710A (zh)
WO (1) WO2016192832A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190935A (ja) * 2017-05-11 2018-11-29 シャープ株式会社 量子ドット型赤外線検出器
WO2023171405A1 (ja) * 2022-03-07 2023-09-14 富士フイルム株式会社 半導体膜、光検出素子、イメージセンサ、分散液および半導体膜の製造方法
WO2023171404A1 (ja) * 2022-03-07 2023-09-14 富士フイルム株式会社 半導体膜、光検出素子、イメージセンサおよび半導体量子ドットの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036752A (zh) * 2008-04-09 2011-04-27 开普敦大学 制备稳定的氧封端半导体纳米粒子的方法
CN102154705A (zh) * 2011-03-15 2011-08-17 上海大学 一种锑化铟纳米晶体的制备方法
CN102675963A (zh) * 2011-10-25 2012-09-19 无锡尚宝生物科技有限公司 一种纳米颗粒导电墨水的连续制备方法
US20150141704A1 (en) * 2012-03-30 2015-05-21 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Method for the production of aliphatic alcohols and/or their ethers, in particular, 1-octanol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007112088A2 (en) * 2006-03-24 2007-10-04 Qd Vision, Inc. Hyperspectral imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036752A (zh) * 2008-04-09 2011-04-27 开普敦大学 制备稳定的氧封端半导体纳米粒子的方法
CN102154705A (zh) * 2011-03-15 2011-08-17 上海大学 一种锑化铟纳米晶体的制备方法
CN102675963A (zh) * 2011-10-25 2012-09-19 无锡尚宝生物科技有限公司 一种纳米颗粒导电墨水的连续制备方法
US20150141704A1 (en) * 2012-03-30 2015-05-21 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Method for the production of aliphatic alcohols and/or their ethers, in particular, 1-octanol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WENYONG LIU ET AL.: "Colloidal InSb Nanocrystals", 《JOURANAL OF THE MERICAN CHEMICAL SOCIETY》 *

Also Published As

Publication number Publication date
WO2016192832A1 (en) 2016-12-08
KR20180014021A (ko) 2018-02-07
JP2018525517A (ja) 2018-09-06
EP3303224A1 (en) 2018-04-11
US20180163070A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
Hamdeh et al. Solution-processed BiI3 thin films for photovoltaic applications: improved carrier collection via solvent annealing
US9755101B2 (en) Group 13 selenide nanoparticles
CA2706380C (en) Preparation of nanoparticle material
Xia et al. Generalized water-processed metal chalcogenide complexes: synthesis and applications
Schlecht et al. Nanocrystalline tin as a preparative tool: synthesis of unprotected nanoparticles of SnTe and SnSe and a new route to (PhSe) 4Sn
CN107690710A (zh) 用于InSb纳米颗粒的溶液方法和用于红外探测器的应用
Shi et al. Phosphate-free synthesis, optical absorption and photoelectric properties of Cu 2 ZnGeS 4 and Cu 2 ZnGeSe 4 uniform nanocrystals
TWI534087B (zh) 硒化銅奈米粒子的製備
Yang et al. Synthesis, characterization, and photodetector application of alkali metal bismuth chalcogenide nanocrystals
Das et al. A facile method to synthesize CZTS quantum dots for solar cell applications
Patel et al. X-ray diffraction analysis of hexagonal klockmannite CuSe nanoparticles for photodetectors under UV light
Shuklov et al. Controlled aging of PbS colloidal quantum dots under mild conditions
Karmakar et al. Accessing photoresponsive copper selenide nanomaterials and thin films through tetranuclear Cu (I) pyridylselenolate cluster
KR101874238B1 (ko) 공융용매를 이용한 구리 칼코게나이드 화합물 제조방법
Luo et al. Micron-Scale Photodetectors Based on One-Dimensional Single-Crystalline Sb2–x Sn x Se3 Microrods: Simultaneously Improving Responsivity and Extending Spectral Response Region
Chatterjee et al. Solution-processed insb quantum dot photodiodes for short-wave infrared sensing
Mangham et al. Synthesis of iron pyrite nanocrystals utilizing trioctylphosphine oxide (TOPO) for photovoltaic devices
Tan et al. Molecular ink-derived chalcogenide thin films: Solution-phase mechanisms and solar energy conversion applications
Gupta et al. Eliminating secondary phases: Understanding kesterite phase evolution of Cu2ZnSnS4 thin films grown from ethanol based solutions with high photosensitivity
Vartak et al. Solution and solid-state characterization of PbSe precursors
CN115477947B (zh) 一种汞基硫属化合物量子点及其制备方法、传感器
Chen et al. SYNTHESIS OF CHALCOPYRITE CuInSe 2 (CIS) NANOSHEETS USING VITAMIN C AS AN ADJUVANT AND PHOTOELECTRIC PROPERTIES OF CIS THIN FILMS.
Kaur et al. Recent Advances in Earth Abundant and Environmentally Green Semiconducting Chalcogenide Nanomaterials for Photovoltaics Applications
Hwang A Molecular Precursor Solid-State Route to Inorganic Nanoparticles
Vartak Characterization of Solution-Processed Metal Chalcogenide Precursor, Thin Film, and Nanocomposite for Thermoelectricity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180213