CN107689252A - 核磁共振扫描控制装置、方法和核磁共振扫描仪 - Google Patents

核磁共振扫描控制装置、方法和核磁共振扫描仪 Download PDF

Info

Publication number
CN107689252A
CN107689252A CN201610628122.4A CN201610628122A CN107689252A CN 107689252 A CN107689252 A CN 107689252A CN 201610628122 A CN201610628122 A CN 201610628122A CN 107689252 A CN107689252 A CN 107689252A
Authority
CN
China
Prior art keywords
module
microcommand
algorithm
control
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610628122.4A
Other languages
English (en)
Other versions
CN107689252B (zh
Inventor
贾建章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Shenzhen Magnetic Resonance Ltd
Original Assignee
Siemens Shenzhen Magnetic Resonance Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Shenzhen Magnetic Resonance Ltd filed Critical Siemens Shenzhen Magnetic Resonance Ltd
Priority to CN201610628122.4A priority Critical patent/CN107689252B/zh
Publication of CN107689252A publication Critical patent/CN107689252A/zh
Application granted granted Critical
Publication of CN107689252B publication Critical patent/CN107689252B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/30Arrangements for executing machine instructions, e.g. instruction decode
    • G06F9/30094Condition code generation, e.g. Carry, Zero flag

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本申请提供核磁共振扫描控制装置、方法和核磁共振扫描仪。装置包括:一序列控制模块、一微指令控制模块和多个算法阵列模块,其中:序列控制模块,用于接收外部输入的针对RF发射信号或者梯度脉冲发射信号或者核磁共振MR RF接收信号的控制指令,将该控制指令发送给微指令控制模块,并对控制指令的执行过程进行控制;微指令控制模块,用于将序列控制模块发来的控制指令分解成一条或多条微指令,当微指令为算法执行指令时,根据微指令的内容调用对应的算法阵列模块进行计算。本申请使得算法资源被更充分地利用,同时节省了对FPGA、SoC或ASIC的尺寸要求。

Description

核磁共振扫描控制装置、方法和核磁共振扫描仪
技术领域
本发明申请涉及医疗设备技术领域,特别涉及MRI(Magnetic ResonanceImaging,核磁共振扫描)控制装置、方法和MRI仪。
背景技术
MRI通过对静磁场中的人体施加某种特定频率的射频脉冲,使人体中的氢质子受到激励而发生磁共振现象;停止脉冲后,质子在弛豫过程中产生MR(Magnetic Resonance,核磁共振)信号;通过对MR RF(Radio Frequency,射频)信号的接收、空间编码和图像重建等处理过程,即产生MR图像。
MRI系统的控制系统用于控制RF信号和梯度脉冲信号的输出,以及接收和处理MRRF信号,以及控制脉冲序列的执行时长。目前,对于RF信号在发送之前的处理过程、梯度脉冲信号在发送之前的处理过程,以及MR RF信号在接收之后的处理过程,各个处理过程的算法资源都是相互独立的,从而导致需要较多的算法实现逻辑资源,例如:需要较多的FPGA、SoC或ASIC等逻辑资源。
发明内容
为解决上述问题,本申请提供MRI控制装置、方法和MRI仪。
本申请实施例提供一种MRI控制装置,以提高核磁共振扫描控制过程中使用的算法资源的利用率;
本申请实施例提供一种MRI控制方法,以提高核磁共振扫描控制过程中使用的算法资源的利用率;
本申请实施例还提供一种MRI仪,以提高核磁共振扫描控制过程中使用的算法资源的利用率。
为了达到上述目的,本申请提供了如下技术方案:
一种核磁共振扫描控制装置,包括:一序列控制模块(31)、一微指令控制模块(32)和多个算法阵列模块(341~34n),每个算法阵列模块执行一种算法,不同算法阵列模块执行的算法不同,其中:
序列控制模块(31),用于接收外部输入的针对射频RF发射信号或者梯度脉冲发射信号或者核磁共振MR RF接收信号的控制指令,将该控制指令发送给微指令控制模块(32),并对控制指令的执行过程进行控制;
微指令控制模块(32),用于将序列控制模块(31)发来的控制指令分解成一条或多条微指令,当微指令为算法执行指令时,根据微指令的内容调用对应的算法阵列模块(341~34n)进行计算。
一种实施例中,所述装置进一步包括:第一存储模块(12)、存储接口(21)和第一缓存(14),其中:
第一存储模块(12),用于保存外部输入的控制指令;
所述序列控制模块(31)进一步用于,通过所述存储接口(21)从所述第一存储模块(12)读取控制指令,并将读取的控制指令放入第一缓存(14)进行缓存;且,依次从所述第一缓存(14)取出控制指令发送给微指令控制模块(32)。
一种实施例中,所述装置进一步包括:第二存储模块(11)、存储接口(21)和第二缓存(15),其中:
第二存储模块(11),用于保存预先定义的每条控制指令分解成的一条或多条微指令;
所述微指令控制模块(32)进一步用于,启动后,通过所述存储接口(21)从所述第二存储模块(11)读取每条控制指令分解成的一条或多条微指令,将读取的内容放入第二缓存(15)进行缓存;
所述微指令控制模块(32)进一步用于,通过向第二缓存(15)查询,将序列控制模块(31)发来的控制指令分解成一条或多条微指令。
一种实施例中,所述装置进一步包括寄存器模块(33)、第一多路复用器(35)和第二多路复用器(36),
且,所述微指令控制模块(32)进一步用于,将从控制指令中解析出的RF发射信号的描述参数或梯度脉冲发射信号的描述参数放入寄存器模块(33);控制第一多路复用器(35)从寄存器模块(33)中读取RF发射信号的描述参数或梯度脉冲发射信号的描述参数或算法阵列模块(341~34n)输出的中间计算结果放入对应的算法阵列模块(341~34n),控制第二多路复用器(36)将算法阵列模块(341~34n)的中间计算结果输出到寄存器模块(33)或者将算法阵列模块(341~34n)的最终计算结果输出到对应的RF发射接口(23)或梯度脉冲发射接口(22)或数模转换单元(41)。
一种实施例中,所述微指令控制模块(32)进一步用于,当分解出的微指令为开始接收MR RF接收信号的协议指令时,将该协议指令放入寄存器模块(33),控制第二多路复用器(36)从寄存器模块(33)读取该协议指令并发送给RF接收接口(24)或模数转换单元(42)。
一种实施例中,所述装置进一步包括K空间缓存(13),
所述RF接收接口(24)或模数转换单元(42)进一步用于,当接收到MR RF接收信号时,将MR RF接收信号发送到寄存器模块(33);
所述微指令控制模块(32)进一步用于,根据分解出的微指令的内容,控制第一多路复用器(35)从寄存器模块(33)中读取MR RF接收信号或算法阵列模块(341~34n)输出的针对MR RF接收信号的中间计算结果放入对应的算法阵列模块(341~34n),控制第二多路复用器(36)将算法阵列模块(341~34n)的针对MR RF接收信号的中间计算结果输出到寄存器模块(33)或者将算法阵列模块(341~34n)计算得到的K空间数据通过存储接口(21)输出到K空间缓存(13)。
一种实施例中,所述微指令控制模块(32)的时钟快于或等同于序列控制模块(31)的时钟。
一种实施例中,所述序列控制模块(31)、微指令控制模块(32)和多个算法阵列模块(341~34n)集成在现场可编程门阵列FPGA或者片上系统SoC或者专用集成电路ASIC上。
一种实施例中,当所述装置包括:RF发射接口(23)、RF接收接口(24)和梯度脉冲发射接口(22)时,所述序列控制模块(31)、微指令控制模块(32)、多个算法阵列模块(341~34n)、寄存器模块(33)、第一多路复用器(35)和第二多路复用器(36)集成在FPGA或者SoC上。
一种实施例中,当所述装置包括:RF发射接口(23)、RF接收接口(24)和梯度脉冲发射接口(22)时,所述序列控制模块(31)、微指令控制模块(32)、多个算法阵列模块(341~34n)、寄存器模块(33)、第一多路复用器(35)、第二多路复用器(36)、RF发射接口(23)、RF接收接口(24)和梯度脉冲发射接口(22)集成在ASIC上。
一种实施例中,当所述装置包括:数模转换单元(41)和模数转换单元(42)时,所述序列控制模块(31)、微指令控制模块(32)、多个算法阵列模块(341~34n)、寄存器模块(33)、第一多路复用器(35)和第二多路复用器(36)集成在FPGA或者SoC或者ASIC上
一种核磁共振扫描仪,包括:如权利要求1至11任一所述的核磁共振扫描控制装置。
一种核磁共振扫描控制方法,包括:
接收外部输入的控制指令,将该控制指令分解成一条或多条微指令,当微指令为算法执行指令时,根据微指令的内容调用对应的算法阵列进行运算,其中,算法阵列为多个,不同算法阵列执行的算法不同。
一种实施例中,所述算法阵列为:
滤波算法阵列,或者采样算法阵列,或者数控振荡器NCO算法阵列,或者快速傅里叶变换FFT算法阵列,或者数字信号处理算法阵列,或者涡流补偿ECC算法阵列,或者交叉项补偿CTC算法阵列,或者B0补偿算法阵列,或者数字下变频DDC算法阵列,或者数字上变频DUC算法阵列,或者混合器计算算法阵列,或者RF信号解调算法阵列。
一种实施例中,所述方法进一步包括:
预先定义每条控制指令分解成的一条或多条微指令并保存到第二存储模块中;
系统启动后,从所述第二存储模块中读取每条控制指令分解成的一条或多条微指令并放入第二缓存中;
且所述将该控制指令分解成一条或多条微指令包括:
向所述第二缓存查询外部输入的所述控制指令分解成的一条或多条微指令。
本申请实施例中,通过将控制指令分解成一条或多条微指令,根据微指令调用相应的算法阵列进行计算,从而使得同一算法阵列可以被在发送梯度脉冲发射信号、RF发射信号之前的处理过程和在接收MR RF接收信号之后的处理过程共同使用,或者在同一处理过程中被重复使用,使得算法资源被更充分地利用。
附图说明
图1为本申请一实施例提供的MRI控制装置的结构示意图;
图2为本申请另一实施例提供的MRI控制装置的结构示意图;
图3为本申请实施例提供的MRI控制方法的流程图。
其中,附图标记如下:
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,下面结合附图并据实施例,对本申请的技术方案进行详细说明。
如在本申请的说明书以及所附权利要求书中使用的单数形式的“一”以及“所述”也意图包括复数形式,除非本文内容明确地另行指定。
本申请实施例提供的核磁共振扫描控制装置包括:一序列控制模块、一微指令控制模块和多个算法阵列模块,每个算法阵列模块执行一种算法,不同算法阵列模块执行的算法不同,其中:
序列控制模块,用于接收外部输入的针对RF发射信号或者梯度脉冲发射信号或者核磁共振MR RF接收信号的控制指令,将该控制指令发送给微指令控制模块,并对控制指令的执行过程进行控制;
微指令控制模块,用于将序列控制模块发来的控制指令分解成一条或多条微指令,当微指令为算法执行指令时,根据微指令的内容调用对应的算法阵列模块进行计算。
一实施例中,为了加快控制指令的读取速度,所述装置进一步包括:第一存储模块、存储接口和第一缓存,其中:
第一存储模块,用于保存外部输入的控制指令;
所述序列控制模块进一步用于,通过所述存储接口从所述第一存储模块读取控制指令,并将读取的控制指令放入第一缓存进行缓存;且,依次从所述第一缓存取出控制指令发送给微指令控制模块。
一实施例中,为了加快对控制指令的分解速度,所述装置进一步包括:第二存储模块和第二缓存,其中:
第二存储模块,用于保存预先定义的每条控制指令分解成的一条或多条微指令;
所述微指令控制模块进一步用于,启动后,通过所述存储接口从所述第二存储模块读取每条控制指令分解成的一条或多条微指令,将读取的内容放入第二缓存进行缓存;
所述微指令控制模块进一步用于,通过向第二缓存查询将序列控制模块发来的控制指令分解成一条或多条微指令。
进一步地,所述装置进一步包括寄存器模块、第一多路复用器和第二多路复用器,
且,所述微指令控制模块进一步用于,将从控制指令中解析出的RF发射信号的描述参数或梯度脉冲发射信号的描述参数放入寄存器模块;控制第一多路复用器从寄存器模块中读取RF发射信号的描述参数或梯度脉冲发射信号的描述参数或算法阵列模块输出的中间计算结果放入对应的算法阵列模块,控制第二多路复用器将算法阵列模块的中间计算结果输出到寄存器模块或者将算法阵列模块的最终计算结果输出到对应的RF发射接口或梯度脉冲发射接口或数模转换单元。
进一步地,所述微指令控制模块用于,当分解出的微指令为开始接收MR RF接收信号的协议指令时,将该协议指令放入寄存器模块,控制第二多路复用器从寄存器模块读取该协议指令并发送给RF接收接口或模数转换单元。
进一步地,所述装置进一步包括K空间缓存,
所述RF接收接口或模数转换单元进一步用于,当接收到MR RF接收信号时,将MRRF接收信号发送到寄存器模块;
所述微指令控制模块进一步用于,根据分解出的微指令的内容,控制第一多路复用器从寄存器模块中读取MR RF接收信号或算法阵列模块输出的针对MR RF接收信号的中间计算结果放入对应的算法阵列模块,控制第二多路复用器将算法阵列模块的针对MR RF接收信号的中间计算结果输出到寄存器模块或者将算法阵列模块计算得到的K空间数据通过存储接口输出到K空间缓存。
为了使得控制指令的读取速度和微指令的处理速度匹配,所述微指令控制模块的时钟快于或等同于所述序列控制模块的时钟。
在具体实现中,所述序列控制模块、微指令控制模块和多个算法阵列模块集成在FPGA(Field Programmable Gate Array,现场可编程门阵列)或者SoC(System on Chip,片上系统)或者ASIC(Application Specific Integrated Circuit,专用集成电路)上。
其中,当所述装置包括:RF发射接口、RF接收接口和梯度脉冲发射接口时,所述序列控制模块、微指令控制模块、多个算法阵列模块、寄存器模块、第一多路复用器和第二多路复用器集成在FPGA或者SoC上。
其中,当所述装置包括:RF发射接口、RF接收接口和梯度脉冲发射接口时,所述序列控制模块、微指令控制模块、多个算法阵列模块、寄存器模块、第一多路复用器、第二多路复用器、RF发射接口、R接收接口和梯度脉冲发射接口集成在ASIC上。
其中,当所述装置包括:数模转换单元和模数转换单元时,所述序列控制模块、微指令控制模块、多个算法阵列模块、寄存器模块、第一多路复用器和第二多路复用器集成在FPGA或者SoC或者ASIC上
本申请实施例还提供一种核磁共振扫描仪,包括:上述任一所述的核磁共振扫描控制装置。
本申请实施例还提供一种核磁共振扫描控制方法,包括:
接收外部输入的控制指令,将该控制指令分解成一条或多条微指令,当微指令为算法执行指令时,根据微指令的内容调用对应的算法阵列进行运算,其中,算法阵列为多个,不同算法阵列执行的算法不同。
其中,所述算法阵列为:滤波算法阵列,或者采样算法阵列,或者NCO(NumericallyControlled Oscillator,数控振荡器)算法阵列,或者FFT(Fast FourierTransformation,快速傅立叶变换)算法阵列,或者DSP(Digital Signal Processing,数字信号处理)算法阵列,或者ECC(Eddy Current Compensation,涡流补偿)算法阵列,或者CTC(Cross-Term Compensation,交叉项补偿)算法阵列,或者B0补偿算法阵列,或者DDC(Digital Down Converter,数字下变频)算法阵列,或者DUC(Digital Up Converter,数字上变频)算法阵列,或者混合器计算算法阵列,或者RF信号解调算法阵列。
本申请通过将控制指令分解成一条或多条微指令,当微指令为算法执行指令时,根据微指令调用相应的算法阵列进行计算,从而使得同一算法阵列可以被在发送梯度脉冲发射信号、RF发射信号之前的处理过程和在接收MR RF接收信号之后的处理过程共同使用,或者在同一处理过程中被重复使用,使得算法资源被更充分地利用,节省了FPGA、SoC或ASIC的逻辑资源要求。
图1为本申请一实施例提供的MRI控制装置的结构示意图,其主要包括:微指令定义RAM 11、控制指令RAM 12、K空间缓存13、控制指令缓存14、微指令定义缓存15、存储接口21、梯度脉冲发射接口22、RF发射接口23、RF接收接口24、通用IO接口25、序列控制模块31、微指令控制模块32、寄存器模块33、算法阵列集合模块34、第一多路复用器35、第二多路复用器36,寄存器模块33包括一个或多个寄存器R1~Rm,m≥1,算法阵列集合模块34包含多个算法阵列模块341~34n,n≥2,其中:
微指令定义RAM 11,用于保存预先定义的每条控制指令分解成的一条或多条微指令。
实际应用中,微指令定义RAM 11也可以为微指令定义flash(闪存)。
具体如何将控制指令分解成微指令,其依据是:根据控制指令可实现的功能,将不同的功能通过不同的微指令实现。将控制指令分解成微指令的主要目的是,通过将MRI扫描过程中的梯度脉冲发射信号的发送之前的处理过程、RF发射信号的发送之前的处理过程和MR RF接收信号的接收之后的处理过程中使用的算法资源进行分解,并根据分解后的各算法资源,将控制指令分解成一条或多条微指令,以使得在同一处理过程中被反复使用的算法资源,或者在不同处理过程中都被使用的算法资源能够分解出来,以被重复使用。
控制指令RAM 12,用于保存外部输入的控制指令。
K空间缓存13,用于保存K空间数据。
控制指令缓存14,用于缓存控制指令。
微指令定义缓存15,用于缓存预先定义的每条控制指令分解成的一条或多条微指令。
存储接口21,用于作为存储器的读、写接口。
梯度脉冲发射接口22,用于将第二多路复用器36发来的梯度脉冲发射信号发射出去。
RF发射接口23,用于将第二多路复用器36发来的RF发射信号发射出去。
RF接收接口24,用于接收MR RF接收信号,并发送到寄存器模块33。
通用IO接口25,用于发送、接收通用数据。
序列控制模块31,用于:
通过存储接口21从控制指令RAM 12读取控制指令,并放入控制指令缓存14进行缓存;
从控制指令缓存14依次读取每一条控制指令,并将读取的控制指令发送给微指令控制模块32,并对控制指令的执行过程进行控制。
这里,序列控制模块31对控制指令的执行过程进行控制,例如:指定控制指令的执行时间,等等。
微指令控制模块32,用于:
在启动后,通过存储接口21从微指令定义RAM 11读取预先定义的每条控制指令分解成的一条或多条微指令,并放入微指令定义缓存15进行缓存;
接收序列控制模块31发来的控制指令,向微指令定义缓存15查询该控制指令分解成的一条或多条微指令,依次执行每条微指令,其中,执行每条微指令包括:
若控制指令携带RF发射信号的描述参数(频率、幅值、相位等)或梯度脉冲发射信号的描述参数(电流、持续时间等),则根据控制指令分解成的微指令,将从控制指令中解析出的RF发射信号的描述参数或梯度脉冲发射信号的描述参数放入寄存器模块33;若控制指令为用于指示开始接收MR RF接收信号的协议指令,则将该协议指令发送给寄存器模块33,并控制第二多路复用器36从寄存器模块33读取该协议指令并放入RF接收接口24;
根据控制指令分解成的微指令,控制第一多路复用器35从寄存器模块33读取RF发射信号的描述参数或梯度脉冲发射信号的描述参数或MR RF接收信号或算法阵列模块341~34n的中间计算结果,并放入对应的算法阵列模块进行计算,控制第二多路复用器35将算法阵列模块341~34n的中间计算结果输出到寄存器模块33或者将算法阵列模块341~34n的最终计算结果(RF发射信号、或梯度脉冲发射信号、或K空间数据)直接输出到RF发射接口23或梯度脉冲发射接口22或者经由存储接口21输出到K空间缓存13。
在实际应用中,微指令控制模块32还可用于,控制第一多路复用器35从寄存器模块33的一寄存器读取数据放入到寄存器模块33的另一寄存器。另外,微指令控制模块32也可以向寄存器模块33查询中间处理结果、最终计算结果等,以调整控制指令的执行。
本实施例中,控制指令缓存14、微指令定义缓存15、序列控制模块31、微指令控制模块32、寄存器模块33、算法阵列集合模块34、第一多路复用器35和第二多路复用器36可集成在FPGA或SoC上。
控制指令缓存14、微指令定义缓存15、梯度脉冲发射接口22、RF发射接口23、RF接收接口24、通用IO接口25、序列控制模块31、微指令控制模块32、寄存器模块33、算法阵列集合模块34、第一多路复用器35和第二多路复用器36可集成在ASIC上
图2为本申请另一实施例提供的MRI控制装置的结构示意图,其主要包括:微指令定义RAM 11、控制指令RAM 12、K空间缓存13、控制指令缓存14、微指令定义缓存15、存储接口21、通用IO接口25、序列控制模块31、微指令控制模块32、寄存器模块33、算法阵列集合模块34、第一多路复用器35、第二多路复用器36、数模转换单元41和模数转换单元42,寄存器模块33包括一个或多个寄存器R1~Rm,m≥1,算法阵列集合模块34包含多个算法阵列模块341~34n,n≥2,其中:
微指令定义RAM 11,用于保存预先定义的每条控制指令分解成的一条或多条微指令。
具体如何将控制指令分解成微指令,其依据是:根据控制指令可实现的功能,将不同的功能通过不同的微指令实现。将控制指令分解成微指令的主要目的是,通过将MRI扫描过程中的梯度脉冲发射信号的发送之前的处理过程、RF发射信号的发送之前的处理过程和MR RF接收信号的接收之后的处理过程中使用的算法资源进行分解,并根据分解后的各算法资源,将控制指令分解成一条或多条微指令,以使得在同一处理过程中被反复使用的算法资源,或者在不同处理过程中都被使用的算法资源能够分解出来,以被重复使用。
控制指令RAM 12,用于保存外部输入的控制指令。
K空间缓存13,用于保存K空间数据。
控制指令缓存14,用于缓存控制指令。
微指令定义缓存15,用于缓存预先定义的每条控制指令分解成的一条或多条微指令。
存储接口21,用于作为存储器的读、写接口。
通用IO接口25,用于发送、接收通用数据。
数模转换单元41,用于对第二多路复用器36发来的射频发射信号或者梯度脉冲发射信号进行数模转换后发射出去。
模数转换单元42,用于对接收到的MR RF接收信号进行模数转换后,发送到寄存器模块33。
序列控制模块31,用于:
通过存储接口21从控制指令RAM 12读取控制指令,并放入控制指令缓存14进行缓存;
从控制指令缓存14依次读取每一条控制指令,并将读取的控制指令发送给微指令控制模块32,并对控制指令的执行过程进行控制。
这里,序列控制模块31对控制指令的执行过程进行控制,例如:指定控制指令的执行时间,等等。
微指令控制模块32,用于:
在启动后,通过存储接口21从微指令定义RAM 11读取预先定义的每条控制指令分解成的一条或多条微指令,并放入微指令定义缓存15进行缓存;
接收序列控制模块31发来的控制指令,向微指令定义缓存15查询该控制指令分解成的一条或多条微指令,依次执行每条微指令,其中,执行每条微指令包括:
若控制指令携带RF发射信号的描述参数(频率、幅值、相位等)或梯度脉冲发射信号的描述参数(电流、持续时间等),则根据控制指令分解成的微指令,将从控制指令中解析出的RF发射信号的描述参数或梯度脉冲发射信号的描述参数放入寄存器模块33;若控制指令为用于指示开始接收MR RF接收信号的协议指令,则将该协议指令发送给寄存器模块33,并控制第二多路复用器36从寄存器模块33读取该协议指令并放入模数转换单元42;
根据控制指令分解成的微指令,控制第一多路复用器35从寄存器模块33读取RF发射信号的描述参数或梯度脉冲发射信号的描述参数或MR RF接收信号或算法阵列模块341~34n的中间计算结果,并放入对应的算法阵列模块进行计算,控制第二多路复用器36将算法阵列模块341~34n的中间计算结果输出到寄存器模块33或者将算法阵列模块341~34n的最终计算结果(RF发射信号、或梯度脉冲发射信号、或K空间数据)直接输出到数模转换接口41或者经由存储接口21输出到K空间缓存13。
在实际应用中,微指令控制模块32还可用于,控制第一多路复用器35从寄存器模块33的一寄存器读取数据放入到寄存器模块33的另一寄存器。
本实施例中,控制指令缓存14、微指令定义缓存15、序列控制模块31、微指令控制模块32、寄存器模块33、算法阵列集合模块34、第一多路复用器35、第二多路复用器36、数模转换单元41和模数转换单元42可集成在FPGA或SoC或ASIC上。
具体实现中,数模转换单元41和模数转换单元42可以阵列的方式实现,即数模转换单元41可包含多个可并行进行数模转换的数模转换模块,模数转换单元42可包含多个可并行进行模数转换的模数转换模块。
本申请中,由于一条控制指令通常会分解成多条微指令,因此,微指令控制模块32的时钟最好快于序列控制模块31的时钟,当然,在实际应用中,微指令控制模块32的时钟等同于或者慢于序列控制模块31的时钟也是可以的。
每个算法阵列模块执行一种算法,每个算法阵列模块中可包含多个算法模块,该多个算法模块可并行工作,以加快速度。算法阵列,例如:滤波算法阵列、采样算法阵列、NCO算法阵列、FFT算法阵列、DSP算法阵列、ECC算法阵列、CTC算法阵列、B0补偿算法阵列、DDC算法阵列、DUC算法阵列、混合器计算算法阵列、RF信号解调算法阵列等,DSP算法例如:MAU(Multiply-Add Unit,乘法加法单元)等。
以下给出本申请的应用示例:
首先给出MRI的信号发送过程:
步骤01:微指令定义RAM 11保存预先定义的每条控制指令分解成的一条或多条微指令。
步骤02:微指令控制模块12启动后,通过存储接口21从微指令定义RAM 11读取预先定义的每条控制指令分解成的一条或多条微指令,并放入微指令定义缓存15进行缓存。
步骤03:序列控制模块31通过存储接口21从控制指令RAM 12读取控制指令,并放入控制指令缓存14进行缓存;从控制指令缓存14依次读取每一条控制指令,并将读取的控制指令发送给微指令控制模块32。
步骤04:微指令控制模块32接收序列控制模块31发来的控制指令,向微指令定义缓存15查询该控制指令分解成的一条或多条微指令,依次执行每条微指令,其中,执行每条微指令包括:
若控制指令携带RF发射信号的描述参数或梯度脉冲发射信号的描述参数,则根据控制指令分解成的微指令,从控制指令中解析出的RF发射信号的描述参数或梯度脉冲发射信号的描述参数放入寄存器模块33;
若控制指令为对RF发射信号或梯度脉冲发射信号的处理指令,则根据控制指令分解成的微指令,控制第一多路复用器35从寄存器模块33读取RF发射信号的描述参数或梯度脉冲发射信号的描述参数或算法阵列模块341~34n的中间计算结果,并放入对应的算法阵列模块进行计算,控制第二多路复用器36将算法阵列模块341~34n的中间计算结果输出到寄存器模块33或者将算法阵列模块341~34n的最终计算结果(RF发射信号或梯度脉冲发射信号)直接输出到RF发射接口23或梯度脉冲发射接口22。
在图2所示实施例中,第二多路复用器36是将算法阵列模块341~34n的最终计算结果(RF发射信号或梯度脉冲发射信号)直接输出到数模转换单元41,由数模转换单元41进行数模转换后发送出去。
在具体处理过程中,微指令控制模块32根据微指令的内容还可能控制第一多路复用器35从寄存器模块33的一寄存器读取数据放入到寄存器模块33的另一寄存器。
以下给出MRI的信号接收过程:
步骤01:微指令控制模块32接收序列控制模块31发来的控制指令,若该控制指令为用于指示开始接收MR RF接收信号的协议指令,则将该协议指令发送给寄存器模块33,并控制第二多路复用器36从寄存器模块33读取该协议指令并放入RF接收接口24。
在图2所示实施例中,是将从寄存器模块33读取的该协议指令放入模数转换单元42。
步骤02:RF接收接口24接收到用于指示开始接收MR RF接收信号的协议指令,开始接收MR RF接收信号,并将接收到的MR RF接收信号发送到寄存器模块33。
在图2所示实施例中,是模数转换单元42接收到用于指示开始接收MR RF接收信号的协议指令,开始接收MR RF接收信号,并将接收到的MR RF接收信号发送到寄存器模块33。
步骤03:微指令控制模块32根据序列控制模块31发来的控制指令分解成的微指令,控制第一多路复用器35从寄存器模块33读取MR RF接收信号,并放入对应的算法阵列模块进行计算,控制第二多路复用器36将算法阵列模块341~34n的中间计算结果输出到寄存器模块33或者将算法阵列模块341~34n的最终计算结果(K空间数据)经由存储接口21输出到K空间缓存13。
图3为本申请实施例提供的核磁共振扫描控制方法的流程图,其具体步骤如下:
步骤301:接收外部输入的控制指令,将该控制指令分解成一条或多条微指令。
步骤302:当微指令为算法执行指令时,根据微指令的内容调用对应的算法阵列进行运算,其中,算法阵列为多个,不同算法阵列执行的算法不同。
其中,算法阵列为:滤波算法阵列,或者采样算法阵列,或者数控振荡器NCO算法阵列,或者快速傅里叶变换FFT算法阵列,或者数字信号处理算法阵列,或者ECC算法阵列,或者CTC算法阵列,或者B0补偿算法阵列,或者DDC算法阵列,或者DUC算法阵列,或者混合器计算算法阵列,或者射频信号解调算法阵列。
在具体应用中,可预先定义每条控制指令分解成的一条或多条微指令并保存到RAM中;
系统启动后,从RAM中读取每条控制指令分解成的一条或多条微指令并放入缓存中;
且步骤302中,将该控制指令分解成一条或多条微指令包括:
向缓存查询外部输入的所述控制指令分解成的一条或多条微指令。
本申请实施例的有益效果如下:
1)通过将控制指令分解成一条或多条微指令,当微指令为算法执行指令时,根据微指令调用相应的算法阵列进行计算,从而使得同一算法阵列可以被MRI扫描过程中的梯度脉冲发射信号和RF发射信号在发送之前的处理过程、MR RF接收信号在接收之后的处理过程共同调用,或者被同一处理过程重复调用,使得算法资源被更充分地利用,节省了FPGA、SoC或ASIC的逻辑资源要求。
2)当控制指令分解成的微指令发生更新时,可以及时在存储模块中进行新的定义,升级成本低。
3)算法阵列的大小可以根据FPGA、SoC或ASIC的逻辑资源和速度要求进行调整,可扩展性强。
4)控制指令的格式不受限制,只要预先定义控制指令分解成的微指令即可。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (15)

1.一种核磁共振扫描控制装置,其特征在于,包括:一序列控制模块(31)、一微指令控制模块(32)和多个算法阵列模块(341~34n),每个算法阵列模块执行一种算法,不同算法阵列模块执行的算法不同,其中:
序列控制模块(31),用于接收外部输入的针对射频RF发射信号或者梯度脉冲发射信号或者核磁共振MR RF接收信号的控制指令,将该控制指令发送给微指令控制模块(32),并对控制指令的执行过程进行控制;
微指令控制模块(32),用于将序列控制模块(31)发来的控制指令分解成一条或多条微指令,当微指令为算法执行指令时,根据微指令的内容调用对应的算法阵列模块(341~34n)进行计算。
2.根据权利要求1所述的装置,其特征在于,所述装置进一步包括:第一存储模块(12)、存储接口(21)和第一缓存(14),其中:
第一存储模块(12),用于保存外部输入的控制指令;
所述序列控制模块(31)进一步用于,通过所述存储接口(21)从所述第一存储模块(12)读取控制指令,并将读取的控制指令放入第一缓存(14)进行缓存;且,依次从所述第一缓存(14)取出控制指令发送给微指令控制模块(32)。
3.根据权利要求1所述的装置,其特征在于,所述装置进一步包括:第二存储模块(11)、存储接口(21)和第二缓存(15),其中:
第二存储模块(11),用于保存预先定义的每条控制指令分解成的一条或多条微指令;
所述微指令控制模块(32)进一步用于,启动后,通过所述存储接口(21)从所述第二存储模块(11)读取每条控制指令分解成的一条或多条微指令,将读取的内容放入第二缓存(15)进行缓存;
所述微指令控制模块(32)进一步用于,通过向第二缓存(15)查询,将序列控制模块(31)发来的控制指令分解成一条或多条微指令。
4.根据权利要求1所述的装置,其特征在于,所述装置进一步包括寄存器模块(33)、第一多路复用器(35)和第二多路复用器(36),
且,所述微指令控制模块(32)进一步用于,将从控制指令中解析出的RF发射信号的描述参数或梯度脉冲发射信号的描述参数放入寄存器模块(33);控制第一多路复用器(35)从寄存器模块(33)中读取RF发射信号的描述参数或梯度脉冲发射信号的描述参数或算法阵列模块(341~34n)输出的中间计算结果放入对应的算法阵列模块(341~34n),控制第二多路复用器(36)将算法阵列模块(341~34n)的中间计算结果输出到寄存器模块(33)或者将算法阵列模块(341~34n)的最终计算结果输出到对应的RF发射接口(23)或梯度脉冲发射接口(22)或数模转换单元(41)。
5.根据权利要求4所述的装置,其特征在于,
所述微指令控制模块(32)进一步用于,当分解出的微指令为开始接收MR RF接收信号的协议指令时,将该协议指令放入寄存器模块(33),控制第二多路复用器(36)从寄存器模块(33)读取该协议指令并发送给RF接收接口(24)或模数转换单元(42)。
6.根据权利要求5所述的装置,其特征在于,所述装置进一步包括K空间缓存(13),
所述RF接收接口(24)或模数转换单元(42)进一步用于,当接收到MR RF接收信号时,将MR RF接收信号发送到寄存器模块(33);
所述微指令控制模块(32)进一步用于,根据分解出的微指令的内容,控制第一多路复用器(35)从寄存器模块(33)中读取MR RF接收信号或算法阵列模块(341~34n)输出的针对MR RF接收信号的中间计算结果放入对应的算法阵列模块(341~34n),控制第二多路复用器(36)将算法阵列模块(341~34n)的针对MR RF接收信号的中间计算结果输出到寄存器模块(33)或者将算法阵列模块(341~34n)计算得到的K空间数据通过存储接口(21)输出到K空间缓存(13)。
7.根据权利要求1所述的装置,其特征在于,所述微指令控制模块(32)的时钟快于或等同于序列控制模块(31)的时钟。
8.根据权利要求1至7任一所述的装置,其特征在于,所述序列控制模块(31)、微指令控制模块(32)和多个算法阵列模块(341~34n)集成在现场可编程门阵列FPGA或者片上系统SoC或者专用集成电路ASIC上。
9.根据权利要求5所述的装置,其特征在于,当所述装置包括:RF发射接口(23)、RF接收接口(24)和梯度脉冲发射接口(22)时,所述序列控制模块(31)、微指令控制模块(32)、多个算法阵列模块(341~34n)、寄存器模块(33)、第一多路复用器(35)和第二多路复用器(36)集成在FPGA或者SoC上。
10.根据权利要求5所述的装置,其特征在于,当所述装置包括:RF发射接口(23)、RF接收接口(24)和梯度脉冲发射接口(22)时,所述序列控制模块(31)、微指令控制模块(32)、多个算法阵列模块(341~34n)、寄存器模块(33)、第一多路复用器(35)、第二多路复用器(36)、RF发射接口(23)、RF接收接口(24)和梯度脉冲发射接口(22)集成在ASIC上。
11.根据权利要求6所述的装置,其特征在于,当所述装置包括:数模转换单元(41)和模数转换单元(42)时,所述序列控制模块(31)、微指令控制模块(32)、多个算法阵列模块(341~34n)、寄存器模块(33)、第一多路复用器(35)和第二多路复用器(36)集成在FPGA或者SoC或者ASIC上。
12.一种核磁共振扫描仪,其特征在于,包括:如权利要求1至11任一所述的核磁共振扫描控制装置。
13.一种核磁共振扫描控制方法,其特征在于,包括:
接收外部输入的控制指令,将该控制指令分解成一条或多条微指令,当微指令为算法执行指令时,根据微指令的内容调用对应的算法阵列进行运算,其中,算法阵列为多个,不同算法阵列执行的算法不同。
14.根据权利要求13所述的方法,其特征在于,所述算法阵列为:
滤波算法阵列,或者采样算法阵列,或者数控振荡器NCO算法阵列,或者快速傅里叶变换FFT算法阵列,或者数字信号处理算法阵列,或者涡流补偿ECC算法阵列,或者交叉项补偿CTC算法阵列,或者B0补偿算法阵列,或者数字下变频DDC算法阵列,或者数字上变频DUC算法阵列,或者混合器计算算法阵列,或者RF信号解调算法阵列。
15.根据权利要求14所述的方法,其特征在于,所述方法进一步包括:
预先定义每条控制指令分解成的一条或多条微指令并保存到第二存储模块中;
系统启动后,从所述第二存储模块中读取每条控制指令分解成的一条或多条微指令并放入第二缓存中;
且所述将该控制指令分解成一条或多条微指令包括:
向所述第二缓存查询外部输入的所述控制指令分解成的一条或多条微指令。
CN201610628122.4A 2016-08-03 2016-08-03 核磁共振扫描控制装置、方法和核磁共振扫描仪 Active CN107689252B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610628122.4A CN107689252B (zh) 2016-08-03 2016-08-03 核磁共振扫描控制装置、方法和核磁共振扫描仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610628122.4A CN107689252B (zh) 2016-08-03 2016-08-03 核磁共振扫描控制装置、方法和核磁共振扫描仪

Publications (2)

Publication Number Publication Date
CN107689252A true CN107689252A (zh) 2018-02-13
CN107689252B CN107689252B (zh) 2021-07-30

Family

ID=61151298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610628122.4A Active CN107689252B (zh) 2016-08-03 2016-08-03 核磁共振扫描控制装置、方法和核磁共振扫描仪

Country Status (1)

Country Link
CN (1) CN107689252B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110245098A (zh) * 2018-03-09 2019-09-17 三星电子株式会社 自适应接口高可用性存储设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101077301A (zh) * 2006-05-26 2007-11-28 株式会社东芝 图像处理装置和磁共振成像装置
CN101345534A (zh) * 2008-06-30 2009-01-14 东软飞利浦医疗设备系统有限责任公司 一种mri射频信号的产生、发送装置及方法
CN102028469A (zh) * 2010-10-29 2011-04-27 宁波鑫高益磁材有限公司 用于磁共振成像系统的数字射频接收器及其信号处理方法
CN102370484A (zh) * 2010-08-23 2012-03-14 株式会社东芝 磁共振成像装置以及磁共振成像方法
CN103309265A (zh) * 2013-05-21 2013-09-18 北京大学 一种用于一维谱分析的小型核磁共振仪控制器
CN104486993A (zh) * 2013-06-10 2015-04-01 株式会社东芝 磁共振成像装置
US20160021219A1 (en) * 2014-07-16 2016-01-21 Neocoil, Llc Method and Apparatus for High Reliability Wireless Communications
US9846214B2 (en) * 2014-12-29 2017-12-19 Toshiba Medical Systems Corporation Magnetic resonance image reconstruction for undersampled data acquisitions
US10338177B2 (en) * 2012-11-22 2019-07-02 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus, magnetic resonance imaging method and magnetic resonance imaging system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101077301A (zh) * 2006-05-26 2007-11-28 株式会社东芝 图像处理装置和磁共振成像装置
CN101345534A (zh) * 2008-06-30 2009-01-14 东软飞利浦医疗设备系统有限责任公司 一种mri射频信号的产生、发送装置及方法
CN102370484A (zh) * 2010-08-23 2012-03-14 株式会社东芝 磁共振成像装置以及磁共振成像方法
CN102028469A (zh) * 2010-10-29 2011-04-27 宁波鑫高益磁材有限公司 用于磁共振成像系统的数字射频接收器及其信号处理方法
US10338177B2 (en) * 2012-11-22 2019-07-02 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus, magnetic resonance imaging method and magnetic resonance imaging system
CN103309265A (zh) * 2013-05-21 2013-09-18 北京大学 一种用于一维谱分析的小型核磁共振仪控制器
CN104486993A (zh) * 2013-06-10 2015-04-01 株式会社东芝 磁共振成像装置
US20160021219A1 (en) * 2014-07-16 2016-01-21 Neocoil, Llc Method and Apparatus for High Reliability Wireless Communications
US9846214B2 (en) * 2014-12-29 2017-12-19 Toshiba Medical Systems Corporation Magnetic resonance image reconstruction for undersampled data acquisitions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵聪 等: "《数字化磁共振谱仪的设计》", 《中国医疗器械杂志》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110245098A (zh) * 2018-03-09 2019-09-17 三星电子株式会社 自适应接口高可用性存储设备
US11256653B2 (en) 2018-03-09 2022-02-22 Samsung Electronics Co., Ltd. Adaptive interface high availability storage device

Also Published As

Publication number Publication date
CN107689252B (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
JP7028874B2 (ja) 医用画像に変換ベースのラーニングを実施するための方法および装置
JP5558737B2 (ja) 磁気共鳴イメージング装置
RU2007144585A (ru) Независимая коррекция влияния движения в соответствующих сигнальных каналах системы для получения магнитно-резонансных изображений
US7807474B2 (en) System and method for direct digitization of NMR signals
CN101052890A (zh) 具有单独数字转换器的rf接收线圈组件和使其同步的装置
CN105143904A (zh) 用于多信道发射机的多频带射频/磁共振成像脉冲设计
CN106680750B (zh) 磁共振匀场图像获取方法、匀场方法及磁共振系统
WO2013169368A1 (en) System and method for local sar reduction in multislice parallel transmission magnetic resonance imaging using sar hopping between excitations
CN103782184A (zh) Rf阵列线圈/天线阻抗的动态修改
CN114398803B (zh) 匀场联合仿真方法、装置、电子设备及存储介质
CN107438773A (zh) 包括rf换能器和磁场探头阵列的无线类型rf线圈装置
CN106842144A (zh) 并行多相结构数字脉压方法
JP5678163B2 (ja) 磁気共鳴イメージング装置
US10031200B2 (en) Method and apparatus for magnetic resonance imaging
CN107689252A (zh) 核磁共振扫描控制装置、方法和核磁共振扫描仪
JP2002306445A5 (zh)
CN105447818A (zh) 基于变密度频域稀疏测量的图像重构方法
Siddiqui et al. FPGA implementation of real-time SENSE reconstruction using pre-scan and Emaps sensitivities
CN106526513A (zh) 基于异构双核的磁共振接收机
CN115905817B (zh) 一种多通道非均匀场信号降噪方法、装置和存储介质
CN112014781B (zh) 一种磁共振回波信号的相位矫正方法、装置、计算机设备及计算机可读存储介质
CN106510711A (zh) 一种用于高场磁共振成像的射频发射装置及方法
JP5868108B2 (ja) 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
CN112351474A (zh) 一种快速搜索5g小区同步频点的方法、系统及存储介质
CN112488092A (zh) 基于深度神经网络的导航频段信号类型识别方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant