CN107683106A - 使用神经及神经机械指纹的无钥匙进出控制 - Google Patents

使用神经及神经机械指纹的无钥匙进出控制 Download PDF

Info

Publication number
CN107683106A
CN107683106A CN201680018318.XA CN201680018318A CN107683106A CN 107683106 A CN107683106 A CN 107683106A CN 201680018318 A CN201680018318 A CN 201680018318A CN 107683106 A CN107683106 A CN 107683106A
Authority
CN
China
Prior art keywords
user
nfp
signal
disengaging
percentage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680018318.XA
Other languages
English (en)
Other versions
CN107683106B (zh
Inventor
马丁·齐齐
修·沙奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ari Deal Communications Co Ltd
Aerendir Mobile Inc
Original Assignee
Ari Deal Communications Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ari Deal Communications Co Ltd filed Critical Ari Deal Communications Co Ltd
Publication of CN107683106A publication Critical patent/CN107683106A/zh
Application granted granted Critical
Publication of CN107683106B publication Critical patent/CN107683106B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/34User authentication involving the use of external additional devices, e.g. dongles or smart cards
    • G06F21/35User authentication involving the use of external additional devices, e.g. dongles or smart cards communicating wirelessly
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C13/00Voting apparatus
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/20Individual registration on entry or exit involving the use of a pass
    • G07C9/22Individual registration on entry or exit involving the use of a pass in combination with an identity check of the pass holder
    • G07C9/25Individual registration on entry or exit involving the use of a pass in combination with an identity check of the pass holder using biometric data, e.g. fingerprints, iris scans or voice recognition
    • G07C9/257Individual registration on entry or exit involving the use of a pass in combination with an identity check of the pass holder using biometric data, e.g. fingerprints, iris scans or voice recognition electronically
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/20Individual registration on entry or exit involving the use of a pass
    • G07C9/22Individual registration on entry or exit involving the use of a pass in combination with an identity check of the pass holder
    • G07C9/25Individual registration on entry or exit involving the use of a pass in combination with an identity check of the pass holder using biometric data, e.g. fingerprints, iris scans or voice recognition
    • G07C9/26Individual registration on entry or exit involving the use of a pass in combination with an identity check of the pass holder using biometric data, e.g. fingerprints, iris scans or voice recognition using a biometric sensor integrated in the pass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/15Biometric patterns based on physiological signals, e.g. heartbeat, blood flow

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Lock And Its Accessories (AREA)
  • Collating Specific Patterns (AREA)
  • Facsimiles In General (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Selective Calling Equipment (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

根据一个实施例,揭示一种进出控制系统。所述进出控制系统包括进出控制面板,所述进出控制面板包含:可触摸表面;多维触摸传感器,其在所述可触摸表面下方;及处理器,其耦合到所述多维触摸传感器。所述多维触摸传感器捕获包含微运动信号分量的多维运动信号,所述微运动信号分量表示触摸所述多维触摸传感器的用户的神经机械微运动。所述处理器执行所述多维运动信号的信号处理以获得所述微运动信号分量;及从所述微运动信号分量提取预定特征的唯一值以形成唯一地识别所述用户的神经指纹NFP。所述NFP可用作用来控制进入住宅、办公室、建筑物或通常通过进出控制保护的其它不动产的守门员。

Description

使用神经及神经机械指纹的无钥匙进出控制
相关申请案的交叉参考
本专利合作条约(PCT)专利申请案主张由发明者马丁·紫紫(Martin Zizi)等人在2015年2月04日申请、标题为“使用神经机械指纹的本地用户认证(LOCAL USERAUTHENTICATION WITH NEURO-MECHANICAL FINGERPRINTS)”的第62/112,153号美国临时专利申请案及发明者马丁·紫紫(Martin Zizi)等人的标题为“使用神经及神经机械指纹的无钥匙进出控制(KEYLESS ACCESS CONTROL WITH NEURO AND NEURO-MECHANICALFINGERPRINTS)”的第15/013,810号非临时专利申请案的权益。
技术领域
本实施例大体上涉及用户识别及进出控制。
背景技术
经由因特网的广域网连接使许多电子装置(例如计算机及移动智能电话)与远程服务器及远程存储装置互连,使得可提供云端计算机服务。更多的电子装置随着无线电发射器/接收器添加到其而随时准备经由因特网互连。
由用户对一些电子装置及数据库的存取通常通过登录名称及口令进行。随着更多便携式电子装置被使用(例如膝上型计算机及移动智能电话),在高度移动运算环境中,人们及装置的正确认证对确定经授权使用及降低有关数据误传的风险变得十分重要。举例来说,随着更多移动健康电子装置被引入,由移动健康装置捕获的健康数据的隐私变得十分重要。随着更多银行业务及付款是使用移动电子装置而进行,经授权使用变得十分重要。
通常由远程服务器执行对使用本地电子装置的用户的认证。由所述本地电子装置执行的软件应用程序通常保存所述用户的登录名称及口令以使电子装置及其软件应用程序更容易使用。保护所述用户的电子装置的本地存取已对在电子装置丢失或失窃时保护所述用户及他/她的登录名称及口令变得越来越重要。随着电子装置现在被用来进行如信用卡交易的付款的情况下,对用户的电子装置的本地存取的保护已变得甚至更重要。
现参考图1,说明各种已知的行为识别方法及解剖识别方法。行为识别方法与用户的行为或他/她的习惯有关。已知的解剖识别方法与用户的物理特征有关,例如指纹、眼睛虹膜扫描、静脉、面部扫描及DNA。
使用生物统计以更好地认证用户以便对移动电子装置提供更多保护。生物统计一直追求基于解剖的方法(即,物理特征,例如指纹、眼睛虹膜扫描、静脉、面部扫描、DNA等)及习惯(行为)方法(打字或敲键、手写签名、语音或语调变化)。举例来说,使用所述用户的解剖方面(例如指纹)以本地认证用户且限制对所述电子装置的存取。作为另一实例,可结合图像分析使用手形态或静脉位置以本地认证用户且限制对所述电子装置的存取。
也可使用用户的行为方面以更佳地认证用户以便对移动电子装置提供更多保护。行为方面涉及用户的独特习惯、品味及行为的个人档案。举例来说,用户签名的方式是可用来验证用户的身份的独特行为方面。
然而,用户识别的已知解剖及已知行为方面都并非万无一失。举例来说,用于比较的已知用户数据可从服务器失窃且在用户未知的情况下被使用。通常需要额外硬件以从用户捕获生物统计,这导致成本增加。在已知添加硬件的情况下,风险可增大,其中用户可被另一用户强迫来不情愿地捕获生物统计数据。行为方面可为略微侵入性的且引发隐私问题。通常,使用软件执行对行为方面的感测,其需要系统保持开启,从而消耗通常存储于可再充电电池中的能量。此外,使用行为方面的生物统计通常需要增加维护远程集中式数据库的费用。
发明内容
将具有用户的已知解剖及/或已知行为方面的生物统计用于识别具有一些缺点。
需要一种用户认证解决方案,所述用户认证解决方案是容易使用的、非集中式的,因此其可在本地使用;对掠夺者大致上是故障安全的、针对电池应用消耗低电力、且通过保护用户的数据来尊重用户的隐私使得其可容易被采用。
本文中所揭示的用户认证解决方案在非集中式移动环境中提供故障安全认证,同时保护用户的隐私及数据。本文中所揭示的用户认证解决方案采用不同形式的抗篡改生物统计。
本文中所揭示的用户认证解决方案可采用3D传感器及信号处理来捕获表示转译成明确定义的微运动的用户的神经肌肉微功能的信号(“微运动信号”)。接着使用信号处理算法及特征提取来捕获微运动信号中的唯一信号特征。可使用与用户的神经肌肉微运动相关联的这些唯一信号特征以唯一地识别用户,其有点类似于指纹。因此,与用户的神经肌肉微运动相关联的这些唯一信号特征在本文中被称为“神经机械指纹”(NFP)。神经机械指纹可在移动电子装置处(例如膝上型计算机或智能电话)或在其它类型的电子装置处用于本地用户认证。使用由传感器捕获且通过算法提取的用户的NFP,避免了剖析及存储用户的习惯或模式化行为。
通过本文中的附图及详细描述揭示采用传感器及信号处理算法来产生及再生经授权用户的神经机械指纹(NFP)的用户认证解决方案的实施例。
1.一种进出控制系统,其包括:进出控制面板,其包含:可触摸表面;所述可触摸表面下方的多维触摸传感器,所述多维触摸传感器用来捕获包含微运动信号分量的多维运动信号,所述微运动信号分量表示触摸所述多维触摸传感器的用户的神经机械微运动;处理器,其耦合到所述多维触摸传感器;其中所述处理器经配置以执行所述多维运动信号的信号处理以获得所述微运动信号分量;且其中响应于与所述用户相关联的用户校准参数,所述处理器经进一步配置以从所述微运动信号分量提取预定特征的唯一值以形成唯一地识别触摸所述多维触摸传感器的所述用户的神经指纹(NFP)。2.根据技术方案1所述的进出控制系统,其进一步包括:进出控制服务器,其经耦合而与所述进出控制面板的所述处理器安全地通信,所述进出控制服务器包含存储装置,所述存储装置存储分别与所述进出控制系统的N个经授权用户相关联的N个用户校准参数的数据库,其中所述进出控制服务器经配置以结合所述N个用户校准参数中的每一者评估所述用户的所述NFP以确定匹配百分比是否大于或等于进出授予等级,且其中所述进出控制服务器经进一步配置以响应于所述匹配百分比大于或等于所述进出授予等级,授予对安全结构或区域的进出。3.根据技术方案2所述的进出控制系统,其中所述安全结构或区域是建筑物,所述进出控制面板耦合到所述建筑物的壁,且所述服务器短暂地解锁所述建筑物的门以通过所述门暂时授予对所述建筑物的进出。4.根据技术方案2所述的进出控制系统,其中所述安全结构或区域是由围栏门控,且所述服务器短暂地解锁门以通过所述门暂时授予对所述安全结构或区域的进出。5.根据技术方案1所述的进出控制系统,其中所述进出控制面板进一步包含:存储装置,其耦合到所述处理器,所述存储装置存储分别与所述进出控制系统的N个经授权用户相关联的N个用户校准参数;其中所述处理器经进一步配置以结合所述N个用户校准参数中的每一者评估所述用户的所述NFP以确定匹配百分比是否大于或等于进出授予等级,且其中所述处理器经进一步配置以响应于所述匹配百分比大于或等于所述进出授予等级,授予对安全结构或区域的进出。6.根据技术方案5所述的进出控制系统,其中所述安全结构或区域是建筑物,所述进出控制面板耦合到所述建筑物的壁,且所述处理器短暂地解锁门以通过所述门暂时授予对所述建筑物的进出。7.根据技术方案5所述的进出控制系统,其中所述安全结构或区域是由围栏门控,且所述处理器短暂地解锁门以通过所述门暂时授予对所述安全结构或区域的进出。8.根据技术方案5所述的进出控制系统,其中所述多维触摸传感器是三维触摸传感器;且所述多维运动信号是三维运动信号。
9.一种解锁门而无需物理钥匙的方法,所述方法包括:在门把手处感测用户的身体部分的多维运动以产生多维运动信号;响应于所述多维运动信号,产生所述用户独有的神经机械指纹NFP;从存储装置读取与一或多个经授权用户相关联的经授权用户校准参数的一或多个集;响应于所述经授权用户校准参数集,评估所述用户的所述NFP以确定最大匹配百分比;响应于所述最大匹配百分比,通过比较所述最大匹配百分比与经授权用户百分比来确定所述用户是否为经授权用户;及响应于所述最大匹配百分比大于或等于所述经授权用户百分比,为所述用户解锁门锁。10.根据技术方案9所述的方法,其中所述门锁的所述解锁包含使死栓从门口侧的开口撤回到所述门中。11.根据技术方案9所述的方法,其中所述门锁的所述解锁包含释放门闩的锁扣使得所述用户可旋转所述门把手以打开门。12.根据技术方案9所述的方法,其中所述门把手是门手柄,且所述门锁的所述解锁包含释放门闩的锁扣使得所述用户可上提所述门手柄以打开门。13.根据技术方案9所述的方法,其中所述门把手是门手柄,且所述门锁的所述解锁包含释放门闩的锁扣使得所述用户可按下按钮以打开门。14.根据技术方案9所述的方法,其中在所述门把手处使用多维触摸传感器感测所述用户的所述身体部分的所述多维运动。15.根据技术方案9所述的方法,其中在所述门把手处感测所述用户的所述身体部分的至少二维运动以产生至少二维运动信号。
16.一种用于在线服务的方法,所述方法包括:显示在线服务的网页;接收与用户相关联的用户名称;从所述用户接收令牌,所述接收到的令牌与唯一地识别所述用户的神经机械指纹相关联;及响应于所述接收到的令牌,允许所述用户存取所述在线服务。17.根据技术方案16所述的方法,其中所述在线服务是用来在存取与所述用户相关联的电子医疗记录之前认证所述用户的保健服务;且所述在线服务允许所述经认证用户发送及接收与所述经认证用户相关联的电子医疗记录、电子医疗记录的部分或医疗数据。18.根据技术方案17所述的方法,其中所述电子医疗记录是具有标准化格式的通用健康记录。19.根据技术方案16所述的方法,其中所述在线服务是政府在线服务;且与所述神经机械指纹相关联的所述令牌是经加戳记以提供所述用户的当前明确识别的日期及时间。20.根据技术方案19所述的方法,其中所述在线服务是在线投票服务。21.根据技术方案19所述的方法,其中所述在线服务是在线测试服务。22.根据技术方案16所述的方法,其进一步包括:响应于所述用户的所述名称,从存储装置查阅用户校准参数;响应于所述令牌及所述用户校准参数,产生数字;响应于所述经产生数字,确定匹配百分比;响应于所述匹配百分比,通过比较所述匹配百分比与经授权用户百分比来确定所述用户是否为经授权用户;及响应于所述匹配百分比大于或等于所述经授权用户百分比,允许所述用户进出所述在线服务。23.根据技术方案22所述的方法,其中响应于日期及时间戳的预期范围内的日期及时间戳,进一步产生所述经产生数字。24.根据技术方案22所述的方法,其中使用加密代码对所述令牌加密且所述数字的所述产生进一步包括:在产生所述数字之前,响应于所述加密代码对所述令牌解密。25.根据技术方案23所述的方法,其中响应于日期及时间戳的预期范围内的日期及时间戳,进一步产生所述经产生数字。26.根据技术方案24所述的方法,其中所述令牌的所述解密是进一步响应于日期及时间戳的预期范围内的所述令牌的日期及时间戳。27.根据技术方案22所述的方法,其进一步包括:在接收所述令牌之前,将所述用户校准参数存储于所述存储装置中。
28.一种无线进出系统,其包括:无线遥控钥匙,其包含:手持外壳;传感器,其安装于所述外壳中,所述传感器用来感测所述用户的微运动且产生微运动信号;神经机械指纹(NFP)认证控制器,其安装于所述外壳中且耦合到所述传感器,所述NFP认证控制器用来接收所述微运动信号、产生NFP,且对照经存储NFP用户校准评估所述NFP以确定匹配百分比,并响应于所述匹配百分比授权进出;无线电发射器,其耦合到所述NFP认证控制器以接收进出控制信号,所述无线电发射器包含用来响应于所述进出控制信号本地发射授权信号的天线;及电力供应器,其安装于所述外壳中,所述电力供应器选择性地耦合到所述传感器、所述NFP认证控制器及所述无线电发射器以从所述无线电发射器无线地发射所述授权信号。29.根据技术方案28所述的无线进出系统,其进一步包括:无线基站,其具有与所述无线遥控钥匙的所述无线电发射器无线地通信的无线电接收器,所述无线基站用来响应于由所述遥控钥匙产生的经授权NFP控制电子门锁以解锁门并授予进出。30.根据技术方案29所述的无线进出系统,其中所述无线基站控制对运载工具的进出;且所述无线基站响应于由所述遥控钥匙产生的所述经授权NFP进一步控制所述运载工具的操作。31.根据技术方案30所述的无线进出系统,其中所述运载工具是汽车且所述受控制操作是所述汽车响应于由所述遥控钥匙产生的所述经授权NFP的发动操作。32.根据技术方案31所述的无线进出系统,其中所述发动操作是点燃引擎、松开紧急剎车、将变速器接合到行驶、或启用节流器以控制所述汽车的速度。33.根据技术方案28所述的无线进出系统,其进一步包括:无线基站,其具有与所述无线遥控钥匙的所述无线电发射器无线地通信的无线电接收器,所述无线基站用来响应于由所述遥控钥匙产生的经授权NFP控制运载工具的操作。34.根据技术方案29所述的无线进出系统,其中所述无线基站通过控制门锁来控制对建筑物的进出;且所述无线基站响应于由所述遥控钥匙产生的所述经授权NFP进一步控制所述建筑物内的一或多个可控制装置的操作。35.根据技术方案29所述的无线进出系统,其中所述一或多个可控制装置包含以下装置中的一或多者:用于供暖的恒温器、通风及空调(HVAC)系统;娱乐系统;照明系统;灌溉系统;摄像机监控系统;及具有其相关联运动传感器及安全或警报装置的安全系统。
36.一种进出系统,其包括:基站,其包含:外壳;三维运动传感器,其安装于所述外壳中,所述三维运动传感器用来感测用户的微运动且产生微运动信号;及神经机械指纹(NFP)认证控制器,其安装于所述外壳中且耦合到所述三维运动传感器,所述NFP认证控制器用来接收所述微运动信号、产生NFP,且对照经存储NFP用户校准评估所述NFP以确定匹配百分比,并响应于所述匹配百分比授权进出;及电子门锁,其电耦合到所述NFP认证控制器,其中所述无线基站响应于所述经授权NFP及所述匹配百分比,通过控制所述电子门锁来控制对建筑物的进出。37.根据技术方案36所述的进出系统,其中所述基站响应于所述经授权NFP及所述匹配百分比,控制所述电子门锁以解锁门并授予对所述建筑物的进出。38.根据技术方案36所述的进出系统,其进一步包括:一或多个可控制装置,其在所述建筑物内电耦合到所述NFP认证控制器,其中所述无线基站响应于所述经授权NFP及所述匹配百分比,进一步控制所述一或多个可控制装置的操作。39.根据技术方案38所述的进出系统,其中所述一或多个可控制装置包含以下装置中的一或多者:用于供暖的恒温器、通风及空调(HVAC)系统;娱乐系统;照明系统;灌溉系统;摄像机监控系统;及具有其相关联运动传感器及安全或警报装置的安全系统。40.根据技术方案36所述的进出系统,其中所述基站进一步包含:无线电接收器,其耦合到所述NFP认证控制器,所述无线电接收器包含用来本地接收授权信号的天线。41.根据技术方案40所述的进出系统,其中所述基站进一步包含:备用电力供应器,其安装于所述外壳中,所述备用电力供应器选择性地耦合到所述传感器、所述NFP认证控制器及所述无线电接收器以在交流电(AC)电源断电期间无线地接收所述授权信号。42.根据技术方案40所述的进出系统,其进一步包括:无线遥控钥匙,其包含:手持外壳;传感器,其安装于所述外壳中,所述传感器用来感测所述用户的微运动且产生微运动信号;神经机械指纹(NFP)认证控制器,其安装于所述手持外壳中且耦合到所述传感器,所述NFP认证控制器用来接收所述微运动信号、产生NFP,且对照经存储NFP用户校准评估所述NFP以确定匹配百分比,并响应于所述匹配百分比授权进出;无线电发射器,其耦合到所述NFP认证控制器以接收进出控制信号,所述无线电发射器包含用来响应于所述进出控制信号本地传输授权信号的天线;及电力供应器,其安装于所述手持外壳中,所述电力供应器选择性地耦合到所述传感器、所述NFP认证控制器及所述无线电发射器以将所述授权信号从所述基站的所述无线电发射器无线地发射到所述无线电接收器。
43.一种用于进出建筑物的方法,所述方法包括:在可触摸表面处接收用户的触摸;响应于所述用户的所述触摸,使用三维运动传感器产生微运动信号;响应于所述微运动信号,使用神经机械指纹(NFP)认证控制器产生NFP;对照经存储NFP用户校准评估所述NFP以确定匹配百分比;及响应于所述匹配百分比大于或等于预定匹配百分比,授权对所述建筑物的进出。44.根据技术方案43所述的方法,其进一步包括:响应于所述匹配百分比小于所述预定匹配百分比,拒绝对所述建筑物的进出。45.根据技术方案43所述的方法,其进一步包括:响应于授权对所述建筑物的所述进出,控制电子门锁以解锁门并授予对所述建筑物的进出。46.根据技术方案45所述的方法,其中所述可触摸表面、所述三维传感器及所述NFP认证控制器安装于具有无线电发射器的遥控钥匙的手持外壳中,且所述方法进一步包括:使用无线电接收器,从所述遥控钥匙的所述无线电发射器接收表示所述NFP的无线信号。
47.一种检测用户的不清醒度的方法,所述方法包括:使用多维传感器及神经机械指纹(NFP)控制器,产生不受药品或酒精的影响的用户的第一经授权NFP;将所述第一经授权NFP存储到存储装置中;使用所述多维传感器及所述NFP控制器,产生所述用户的第二经授权NFP;从所述存储装置重新调用所述第一NFP;及使用所述NFP控制器,比较所述用户的所述第一NFP与所述第二NFP以得到大于预定百分比的差以确定所述用户是受药品或酒精的影响。48.根据技术方案47所述的方法,其进一步包括:响应于所述第一NFP与所述第二NFP的所述差大于所述预定百分比,停用运载工具的操作。49.根据技术方案48所述的方法,其中所述多维传感器是在所述运载工具的方向盘中。50.根据技术方案48所述的方法,其中所述多维传感器是在与所述运载工具相关联的无线遥控钥匙中。51.根据技术方案48所述的方法,其中所述多维传感器是用来发动所述运载工具的按钮。52.根据技术方案48所述的方法,其中停用所述运载工具的发动操作。53.根据技术方案48所述的方法,其中停用所述变速器到行驶的换档。54.根据技术方案48所述的方法,其中停用紧急剎车的松开。55.根据技术方案48所述的方法,其中所述多维传感器至少是二维传感器。
56.一种投票方法,所述方法包括:接收与用户相关联的名称及地址;响应于所述用户的所述名称及所述地址,从数据库查阅用户校准参数;多维地感测所述用户的身体部分的运动以产生多维运动信号;响应于所述多维运动信号,产生所述用户独有的神经机械指纹(NFP);响应于所述用户校准参数,评估所述用户的所述NFP以确定最大匹配百分比;响应于所述匹配百分比,通过比较所述最大匹配百分比与经授权投票者百分比来确定所述用户是否为经授权投票者;及响应于所述最大匹配百分比大于或等于所述经授权投票者百分比,允许所述用户投票。57.根据技术方案56所述的方法,其进一步包括:在接收与所述用户相关联的所述名称及所述地址之前,产生所述用户校准参数;使经授权投票者的所述用户名称及街道地址与所述用户校准参数相关联;及将与所述用户名称及街道地址相关联的所述用户校准参数存储到数据库中,而无需将所述NFP存储到所述数据库中。58.根据技术方案56所述的方法,其中使用多维传感器感测所述身体部分的所述运动。59.根据技术方案58所述的方法,其中所述多维传感器至少是二维运动传感器且所述多维运动信号至少是二维运动信号。
附图说明
图1是说明各种行为及生理识别方法的背景图。
图2A到2D说明庞加莱(Poincare)相位散点图的实例,其展示从不同用户捕获的重力校正三维加速度计数据。
图3A是说明使用服务器及存储局域网的存储装置(云存储设备)以经由因特网进行用户的远程认证的图。
图3B是说明在本地电子装置处进行用户的本地认证的图。
图4是说明可结合NFP认证用来提供多因素认证的认证技术的图表。
图5是用来比较各种生物统计识别技术与NFP认证的图表。
图6是震颤类型以及相关联频率及条件的表格。
图7是电子装置的实例的功能框图,所述电子装置包含用来从用户捕获微运动信号的传感器及用来响应于所述微运动信号控制存取的NFP认证系统。
图8A到8C是具有用来从手指或从手感测微运动的不同传感器的NFP认证系统。
图9是用来展示大幅运动与微运动之间的差异的在用户的手处测量的加速度的波形图。
图10A是说明装置定向及世界定向的图。
图10B是说明用来将数据集中的3D数据样本从装置定向转换到世界定向的本征向量的使用的图。
图11A是用来滤除所要震颤的频率范围外的信号以捕获微运动信号的带通滤波器的功能框图。
图11B是用来实现图11A的带通滤波器的相同结果的高通滤波器及低通滤波器的功能框图。
图12A是用来过滤重力影响的重力高通滤波器的功能框图。
图12B是说明对数据集中的数据样本进行坐标转换以将重心移动到三个轴的原点以便消除重力影响的图。
图13A是来自3D加速度计的三维加速度数据信号的原始未经过滤样本集的波形图。
图13B是3D微运动信号在图13A中所展示的原始信号波形的预处理、带通滤波及重力补偿之后的波形图。
图14A是NFP认证控制器的功能框图。
图14B是图14A中所展示的NFP认证分类器的功能框图。
图15是由图14A中所展示的认证控制器进行的存取及重新校准控制的图表。
图16是与震颤相关联的微运动信号的功率谱密度的绘图。
图17A是通过对图13B中所展示的微运动波形执行CEPSTRUM分析产生的CEPSTRUM波形的绘图。
图17B是图17A中所展示的CEPSTRUM波形的绘图的部分的放大图。
图18A到18B说明基于两个不同用户的频率的对于单轴的不同NFP的实例。
图19A到19B说明基于两个不同用户的时间的对于单轴的不同NFP的实例。
图20说明可用作NFP分类器模型以从NFP及经授权用户校准参数确定匹配百分比的隐马尔可夫(Markov)模型。
图21说明支持NFP认证以操作运载工具的电子钥匙及起动按钮。
图22说明运载工具的其它组件,其可用来在控制所述运载工具的操作中支持NFP认证。
图23A到23D说明支持NFP认证的进出控制机构的图。
图24说明具有NFP认证能力的住宅控制/自动化系统的图。
具体实施方式
在实施例的下文详细描述中,陈述众多特定细节以提供透彻理解。然而,所属领域的技术人员将显而易见的是,可在无这些特定细节的情况下实践实施例。在其它例子中,尚未详细地描述众所周知的法、程序、组件及电路以免不必要地使实施例的方面变得模糊。
实施例包含用于形成并利用神经机械指纹(NFP)来识别并认证用户的方法、设备及系统。
序论
某些用户运动是习惯性的或是用户的运动谱系(motion repertoire)的部分。用户给文件签名例如是用户随行为习惯形成的情境运动。通常分析的签名运动是用户使用书写工具所做的大幅运动或大幅度运动。举例来说,从签名的大运动,可例如使用眼睛确定书写者是左撇子还是右撇子。
虽然这些大运动可为有用的,但也存在用户在签名、做其它运动或仅在休息而不做运动时所做的微运动(极小运动)。这些微运动是神经衍生的或基于神经的且对于眼睛是不可见的。用户的这些微运动是归因于每个人的唯一神经肌肉解剖且也可在本文中被称为神经衍生的微运动。这些微运动也与从一个人的运动皮层直到他/她的手的运动控制过程有关。使用一或多个传感器、信号处理算法及/或滤波器,可捕获包含用户的神经衍生的微运动的电子信号(“运动信号”及“微运动信号”)。特别感兴趣的是表示用户在运动信号内的微运动的微运动电子信号。
用户的微运动与人体的神经系统中的脑或别处中的运动活动的皮层及皮层下控制有关。如同机械滤波器,一个人的特定肌肉骨骼解剖可影响用户的微运动且对包含用户的微运动的运动信号有贡献。从用户捕获的运动信号也可反映包含脑及存在于用户的人体中的本体感受器的本体感受控制回路的部分。
在针对表示用户的微运动的微运动信号适当地分析运动信号时,所得数据可产生可用作未写好的签名的唯一且稳定的生理识别符,更具体来说神经识别符。这些唯一识别符是用户的神经机械指纹。神经机械指纹在本文中也可被称为NeuroFingerPrint(NFP)。
可由各种电子传感器捕获用户的运动,包含用户的大幅运动及用户的微运动。举例来说,可使用电子触摸传感器或电子加速度计来捕获用户的大幅运动及微运动。由杰夫·克莱因(Geoff Klein)在2012年1月5日申请、以引用方式并入本文中的第13/823,107号美国专利申请案描述加速度计可如何用来在用户操作电子装置时悄悄地捕获所述用户的随时间变化的运动数据及产生可用来辨识用户的运动谱系。第13/823,107号美国专利申请案利用谱系或运动习惯。本文中所揭示的实施例既不建立运动谱系也不依赖于运动谱系。本文中所揭示的实施例提取与神经系统的质量控制机构有关的信号。第13/823,107号美国专利申请案忽视本文中所揭示的实施例感兴趣的所述用户的神经衍生的微运动。此外,在产生神经机械指纹中,大幅运动信号经抑制或经滤除以捕获微运动信号分量。在使用三维加速度计来捕获用户的微运动时,大幅运动信号需要从微运动信号数据滤除。在第13/823,107号美国专利申请案中也忽视归因于重力引起的向量。在使用三维加速度计时,在产生微运动信号中补偿或滤除重力。
现参考图2A到2D,展示针对四个不同用户的三维庞加莱相位散点图的实例。每一三维庞加莱相位散点图展示重力校正三维加速度计数据的图案200A到200D。
在相同时间周期内使用相同电子装置在用户用其手做大幅运动的情况下获得原始加速度计数据。所述电子装置具有用来捕获三维X、Y及Z中的原始加速度计数据的三维加速度计传感器。
对原始加速度计数据执行信号处理以过滤或抑制不想要的信号,校正重力且提取表示用户的手或手指的神经衍生的微运动的信号(微运动信号)。在对用户的取样时间周期内可将微运动信号的三维x(t)、y(t)、z(t)进一步处理成相位(t)、y(t)、z(t)并以三维庞加莱相位散点图绘制。如果取样时间周期较短,那么可以数字形式将从用户的神经肌肉微运动的样本感测的运动信号x(t)、y(t)、z(t)存储到存储装置中以表示神经机械指纹(NFP)。微运动信号的数字形式可在存储之前使用加密算法及加密密钥进行加密以便对其进行保护而使未经授权人员不可对其进行未经授权存取。
如可在图2A到2C中容易看出,从用户的神经衍生的运动产生的庞加莱相位散点图中的每一者中的图案200A到200D大致上是不同的。举例来说,每一图案200A到200D的质心202A到202D是不同的。对于每一用户来说,每一图案200A到200D的其它特性也不同。因此,神经衍生的运动的图案是每一用户独有的且可用来唯一地识别用户。
经产生庞加莱相位绘图中的唯一图案200A到200D及NFP通常是稳定的。因此,通常每当用户触摸或移动传感器时,唯一图案200A到200D及NFP可在取样时间周期内经重复地感测且接着使用算法与经初始校准NFP进行比较以认证用户的身份。然而,如果存在进展中的神经肌肉疾病,那么用户的唯一图案200A到200D是不太稳定的。如果情况如此,那么神经算法可经周期性地重新校准以补偿疾病进展。举例来说,患神经肌肉疾病的老年人可容易取决于关于对NFP的初始校准的漂移截频而每周重新校准神经算法。作为另一实例,正在使用运动改变药物进行治疗的用户也可周期性地重新校准NFP神经算法。对于多数用户来说,在初始校准之后重新校准NFP神经算法将是罕见的。
对微运动的运动信号的分析采用神经算法来获得用户的神经机械指纹(NFP)。因此,此神经算法在本文中可被称为NFP神经算法。
NFP神经算法
NFP神经算法不是使用神经网络训练、分类器或深度学习的算法。所述NFP神经算法是具体地收集、隔离并分析来自人类神经系统的信号及其与连接到神经系统的身体部分的互动的算法,例如肌肉系统、腺细胞及/或皮肤。对分析微运动信号感兴趣的活动包含源于我们的神经系统的运动控制、感官输入及与每一人的解剖及神经系统唯一有关的压力反应。
考虑例如移动他或她的手的用户。举例来说,运动算法可记录随时间变化的物理运动且分析其速度、距离、方向及力。神经算法在不使用脑扫描仪执行脑扫描的情况下从电子信号(例如包含微运动信号的运动信号)收集、隔离并分析与手运动有关的随时间变化的神经活动。
虽然可针对微运动使用电子加速度计分析身体部分的运动学运动,但可例如使用电子触摸传感器(例如触摸垫)来分析一或多个手指对所述触摸传感器的触摸。可使用所述触摸传感器来产生表示在手指触摸所述触摸传感器时随时间变化的微运动的微运动信号。触摸传感器可产生表示手指相对于所述触摸传感器的X及Y位置以及表示施加于所述触摸传感器的压力的Z位置的三维信号。微运动可被包含作为三维位置信号中的每一者的部分。使用触摸传感器,重力通常不是需要校正的因素。
通过专注于微运动信号而非大幅运动信号,触摸传感器可结合神经算法用来更佳地模仿机器中的人类认知接口。此可改进人机接口。举例来说,考虑丈夫与妻子之间或关系密切的人之间的人类认知接口。在丈夫触摸他妻子的手臂时,妻子常常可仅从那个触摸的感觉辨识是她丈夫在触摸她,这是因为她熟悉他的触摸。如果触摸感觉是独特的,那么人通常可仅从那个独特感觉辨识是什么在触摸他/她。
触摸辨识
使用触摸传感器来感测并捕获微运动且使用神经算法来分析NFP的技术在本文中可被称为触摸辨识。包含用来认证及/或识别用户的触摸辨识的系统在本文中可被称为触摸辨识系统。关于图1,使用NeuroFingerPrint的触摸辨识是生理用户识别符。触摸辨识不是解剖用户识别符。触摸辨识不是行为用户识别符。与为用户的固定属性的解剖识别方法相反,生理识别方法与用户的功能体有关。行为识别方法与用户的运动或他/她的习惯有关。
在用户认证中使用触摸传感器及神经算法具有固有优点。用于用户认证的用户接口可是直观的且如果根本无需任何训练,那么与仅具有最少训练的人类用户的自发行为有关。用户认证过程的用户体验可为顺畅的。用户无需执行除通常与用户电子装置的使用相关联的用户认证任务之外的任何特定用户认证任务。举例来说,在校准之后,用户仅需握持他/她的智能电话,例如来打电话,使得加速度计及神经算法执行用户认证过程。
可由触摸传感器及NFP神经算法非直观地捕获NeuroFingerPrint。NeuroFingerPrint可与其它用户运动隔离。因此,也可使用用来捕获敲键或按键的一或多触摸传感器来捕获用户的微运动且响应于其产生微运动信号及NeuroFingerPrint。举例来说,用户可仅需选择一或多个按钮(例如,拨电话号码以打电话、键入个人识别号码、选择功能按钮或电源按钮)使得下方的一或多个触摸传感器及神经算法执行用户认证过程。
举例来说,在用户体验无任何改变的情况下,可通过NeuroFingerPrint(NFP)神经算法产生NFP,同时键入用户的个人识别号码(PIN)。替代地,例如可通过NeuroFingerPrint(NFP)神经算法产生NFP,同时按下电源按钮或功能按钮(例如,主页按钮)。在此情况下,可将所述NeuroFingerPrint(NFP)用于用户认证而无需PIN号码。替代地,在用户接口改变较少或无用户接口改变的情况下,NeuroFingerPrint(NFP)可结合PIN号码使用以进行用户认证。
在用户接口改变较少或无改变的情况下,也可使用与小键盘或按钮相关联的一或多个触摸传感器以随着用户按下或选择所述小键盘或所述按钮的键捕获微运动并产生微运动信号。可使用支持NFP捕获的小键盘或按钮以控制进入及/或离开办公室、建筑物或其它不动产,例如住宅、企业、政府办公室或其它安全设施。
此外,可将与神经算法组合的触摸传感器有利地内建到物理电子钥匙中,接着可无线地使用所述物理电子钥匙以解锁门,起动汽车引擎,或获得对服务器或其它信息技术系统的存取。
本地及远程用户认证
现参考图3A到3B。图3A说明用户的远程认证。图3B说明用户的本地认证。
触摸辨识促进在本地电子装置处进行用户的本地认证,例如图3B中所展示。NFP用户认证无需使用大远程数据库。NFP用户认证系统可自含于所述本地电子装置内,例如移动智能电话。如远程认证可能要求:用于用户认证的数据无需存储于存储区域网络的存储装置(“云端”)中且无需经由因特网从所述存储装置存取。如远程认证可能要求:用于用户认证的登录ID及口令无需经由因特网发送到服务器以认证用户。触摸辨识是非集中式的且可自含于所述本地电子装置内。
在远程认证用户的情况下,例如图3A中所展示,用户向因特网开放且可经受与其相关联的风险。在本地认证的情况下,例如图3B中所展示,用户可在用户认证期间与因特网隔绝以增加安全性。替代地,表示本地用户认证的令牌可由本地电子装置产生且从本地电子装置有线地及/或无线地发送到本地服务器或经由路由器、交换机及通信系统的因特网云端远程地发送到远程服务器,例如图3B中所展示。
虽然触摸辨识促进本地认证,但触摸辨识可容易与远程认证技术或另一本地认证技术组合以提供额外安全级别。
多因素认证及NeuroFingerPrint
现参考图4,用户认证系统可采用多个因素来认证用户。多因素认证组合两种或两种以上认证技术。以前,多因素认证不是用户友好的因此其被避免。用户友好的认证方法反之通常是优选的,但导致折衷保护性。
如本文中所提及,触摸辨识或使用加速度计的辨识可与远程认证技术或另一本地认证技术组合使得多因素认证是更用户友好的。
触摸辨识可与口令、个人识别号码、图案或用户知道或记住的其它事物组合。替代地,触摸辨识可与令牌、智能卡、移动令牌、OTP令牌或用户具有的某个其它用户认证装置组合。替代地,触摸辨识可与解剖或行为用户生物统计组合。举例来说,基于神经的触摸辨识可容易与指纹辨识组合以提供用户友好的多因素认证系统。
银行产业对在需要用户认证时避免对用户造成额外负担特别感兴趣。此外,银行产业对提供可靠用户认证且难以规避的高性能用户认证系统感兴趣。基于神经的触摸辨识可容易与对用户造成最小负担的其它认证技术组合。此外,本文中所揭示的基于神经的触摸辨识可大致上是可靠的且极难规避。
生物统计识别技术的比较
现参考图5,说明各种生物统计识别技术的比较矩阵的图表。使用相对等级来比较使用NFP的用户认证与其它生物统计用户识别技术。所述相对等级是基于七个分级准则。每一准则可针对每一生物统计识别技术被分级为高(H)、中等(M)或低(L)。从左到右,七个分级准则是持久性、可收集性、性能、可接受性、规避性、唯一性及通用性。出于以下原因,相比于其它生物统计识别技术,NFP使用排名最高。
NFP是高排名通用技术。将为用户的每个人具有可从中捕获NFP的唯一神经系统。
NFP是区分用户的高度唯一用户认证技术。NFP反映用户对用户身体的运动控制。运动控制与控制手中的肌肉张力的脑活动有关。即使双胞胎也将具有不同运动控制,这是因为其将经历不同生活体验且具有不同运动技能训练。举例来说,双胞胎将学会以不同方式骑自行车,从而学习将在不同NFP中反映出的对肌肉的不同运动控制。
NFP是相对较高度持久性或稳定技术,这是因为其与每一人的解剖有关。可影响NFP的稳定性的演进过程(例如神经疾病)是罕见的。甚至在那些罕见情况下,神经演进过程通常足够慢,使得可重新校准NFP用户认证系统。对于用户的左手及用户的右手来说,用于触摸辨识的NFP是不同的。然而,所述NFP是每一用户特定NFP。用户可对他/她使用哪只手/哪根手指来握持/触摸加速度计启用装置/触摸传感器启用装置保持一致。替代地,可使用NFP用户认证系统校准相同用户的多个NFP。在此情况下,任一只手或多根手指的触摸可认证电子装置的用户。
一些亲神经药物可改变经扫描NFP。然而,NFP用户认证系统可经重新校准以便补偿。在其它情况下,可使用归因于摄入酒精、药品或强效药物引起的经扫描NFP的改变来改进运载工具的安全性。
酒精可暂时改变经扫描NFP使得其不匹配经校准NFP。这可有利地用来禁止在酒精的影响下驾驶汽车或其它运载工具。举例来说,NFP触摸技术可在遥控钥匙2102内实施(例如图21中所展示),以允许及禁止汽车或运载工具的操作。替代地,NFP触摸技术可由仪表板2202中的按钮2203实施(例如图22中所展示),以允许及禁止汽车或运载工具的操作。所述遥控钥匙及/或按钮将具有三维运动传感器(例如,图8A到8C中所展示的触摸垫传感器704到705或加速度计706及NFP认证控制器810A到810C)。
NFP触摸技术可用作清醒度测试器以区别不受酒精的影响的正常经授权NFP与受酒精的影响的醉酒经授权NFP。NFP控制器将正常经授权NFP或其表示保存于存储装置中,例如所述控制器之内或之外的存储器。从存储器重新调用所述经保存的正常经授权NFP以与经产生的后续NFP进行比较。可使用经保存的正常经授权NFP与后续NFP的比较的预定百分比差以从醉酒NFP确定正常NFP。如果确定经扫描NFP是正常的(由于无酒精摄入而不受影响或由于低酒精摄入而极少受影响),那么NFP触摸技术允许遥控钥匙2012或按钮2203发动引擎以行驶汽车。如果经扫描NFP受用户饮酒的影响(醉酒经授权NFP),那么NFP认证控制器禁止所述遥控钥匙或按钮起动汽车的引擎或禁止以其它方式起动运载工具的操作。
现参考图22,例如,可将NFP触摸技术透明地实施到方向盘2204而非遥控钥匙中,用户通常在操作期间触摸方向盘2204,但现需要在汽车起动之前或在换档器2206可切换到行驶D之前触摸方向盘2204。可通过各种方式禁止运载工具2200的操作,直到键入来自经授权用户的正确或正常经授权NFP为止。举例来说,可通过以下步骤来门控运载工具2200结合NFP触摸技术进行的操作:禁止引擎的起动;禁止变速器通过换档器2206从停车到行驶的切换;禁止紧急剎车2208的释放;及/或禁止加速器、油门踏板或节流器2210的操作以免增大运载工具的功率而使其从静止变为移动。
违禁药品及强效处方药物可类似地削弱运载工具(例如汽车、船、火车或飞机)的驾驶员的能力。类似于酒精,可使用NFP触摸技术及从用户捕获的NFP来确定用户是否受药品或药物的影响及是否削弱其操作运载工具的能力。也可使用NFP触摸技术来区别正常经授权NFP与受药品/药物的影响的中毒经授权NFP。如果经扫描NFP受经授权用户服用药品或强效药物的影响(中毒经授权NFP),那么禁止他/她的运载工具的操作。可通过各种方式禁止与所述经授权用户相关联的运载工具的操作,直到键入不受影响或正常经授权NFP为止。举例来说,参考图22,可通过以下步骤来门控运载工具2200结合NFP触摸技术进行的操作:禁止引擎的起动;禁止变速器通过换档器2206从停车到行驶的换档;禁止紧急剎车2208的释放;及/或禁止加速器、油门踏板或节流器2210的操作以免增大运载工具的功率而使其从静止变为移动。
在发动运载工具之前,NFP触摸技术可需要如所论述的认证。然而,在操作所述运载工具期间,可任选地使用NFP触摸技术以周期性地请求重新认证。这是为了验证用户在驾驶/操作所述运载工具时不饮酒是否削弱他的驾驶能力。然而,可使用所述重新认证来制止未经授权用户在发动之后的操作,例如其可在运载工具(在可操作时)的失窃或被劫期间发生。
NFP相对较容易收集或捕获,这是因为加速度计在移动装置中已变得常见。使用时钟每微秒或约每微秒对加速度计值进行频繁地取样以捕获用户的微运动。此外,加速度计是相对较敏感的。加速度计通常可感测亚微级加速度使得例如其能够捕获用户的手的微运动。可使用各种三维加速度计来捕获用户的手的微运动。可使用各种触摸传感器来捕获微运动及类型(是电容式还是电阻式是不相关的)。
使用NFP的NFP认证的性能是高的。使用非最好数学算法作为神经算法可实现介于93%与97%之间的辨识成功率。考虑时间及轨迹的变量的更适当且更准确的数学算法可实现更高辨识成功率以达到正确用户的100%辨识。在NFP认证系统无法辨识正确用户的情况下,可与NFP认证并行地使用替代用户认证系统,例如PIN。相比之下,多数生物统计(真实指纹或虹膜扫描除外)具有具较高失败率的低性能,所述失败率的范围可介于18%与20%之间,从而提供介于80%与82%之间的成功辨识率。
NFP技术应具有高度可接受性,这是因为其是用户友好的认证方法。NFP用户认证系统可为相当透明的或顺畅的。然而,可接受性也受如何设计并出售NFP用户认证系统连同如何通过适当安全措施及独立审计支持NFP用户认证系统的支配。
NFP难以规避,因此其具有高规避因素分级。在NFP认证系统驻留于电子装置中且不可用于因特网时,骇侵、电子欺骗或逆向工程几乎不可能获得存取。
最初,通过NFP用户认证系统针对用户在本地电子地产生校准NFP文件(用户校准参数)。所述校准NFP文件通常经加密并本地保存于电子装置上(例如,在与NFP认证控制器相关联的存储器中)且因此不可用于因特网。然而,在存储于别处时(例如存储区域网络中的存储装置或与认证服务器相关联的存储装置),所述校准NFP文件应经加密以提供更高安全性。
NFP用户认证不仅仅执行文件比较以授予存取。NFP必须从用户身体实时再生以获得存取。这避免了黑客通过针对信息使用代用误导输入或电子欺骗或网络钓鱼而使用失窃文件以获得对电子装置的存取及授权。为了规避服务级的NFP用户认证,黑客将必须在经授权用户正在存取需要认证或登录的服务时与所述用户同时并行地进行数据采集。为了规避装置级的NFP用户认证,黑客将必须模仿经授权用户的神经控制以获得NFP数据且接着将其键入到装置中以获得存取。黑客可从经授权用户的装置窃取经校准NFP值,但接着黑客将必须使用相同经校准NFP认证系统难以置信地将用户微运动输入再生到第二电子装置中。因此,具有NFP认证系统的电子装置可极难规避。具有NFP认证系统的移动电子装置可最终被信任为提供实时验证识别的用户的守门员(gatekeeper)。
仅在用户利用电子装置时,随后实时产生经扫描NFP,其中所述校准NFP仅调整计算。在无正确用户产生校准NFP文件的情况下,NFP认证系统拒绝对电子装置的本地存取。如果所述正确用户不是活体,那么NFP认证系统将拒绝存取,这是因为无法产生所述正确用户的微运动信号。因此,NFP认证技术的规避是困难的。相比之下,经典指纹具有高难度级规避,然而,甚至经典指纹可失窃且可经反向工程设计以登录到指纹认证系统中。
总而言之,与其它生物统计技术相比,如用于用户认证系统的生物统计的NFP技术排名较高。
隐私保护
移动电子装置正结合健康及健身应用而使用。在一些情况下,移动电子装置可用作到所连接医疗装置的用户接口。数个国家的规则及法律规范用户的医疗状况的隐私。因此,用户的医疗状况及医疗数据的保护已变得越来越重要。
可使用NFP认证系统来帮助保护可存储或输入到电子装置中的用户数据。可使用NFP认证系统来帮助遵守在数个国家生效的医疗数据法律及法规。
由于用户神经系统而从微运动产生的NFP数据可被视为一种形式的医疗数据。NFP认证系统可经实施以有效地保护在用于认证目的时存储于电子装置中或别处的经校准NFP数据。
微运动及震颤
NFP是响应于与一种类型或形式的震颤相关的微运动而产生。震颤是造成人体的一或多个部分中的振荡的无意识、有节奏的肌肉移动。震颤可能对肉眼是可见或不可见的。可见震颤多见于中年人及老年人。可见震颤有时被视为控制全身的一或多块肌肉或特定来说的区域(例如手及/或手指)的脑的部分中的失调。
多数震颤发生于手中。因此,可在握持具有加速度计的装置或通过手指触摸触摸垫传感器时感测具有微运动的震颤。
存在不同类型的震颤。最常见形式或类型的震颤发生于健康个人中。通常,健康个人不会注意此类型的震颤,这是因为运动太小且可在执行其它运动时发生。与一种类型的震颤相关的感兴趣微运动太小以致其对肉眼是不可见的。
震颤可在各种条件下(静止性、姿势性、运动性)激活且通常可被分类为静止性震颤、运动性震颤、姿势性震颤或运动性或意向性震颤。静止性震颤是在受影响身体部分不活跃但对抗重力时发生的震颤。运动性震颤是归因于自主肌肉激活引起的震颤,且包含众多震颤类型,包含姿势性震颤、运动性或意向性震颤及任务特定震颤。姿势性震颤与使身体部分对抗重力有关(如远离身体伸展臂)。运动性或意向性震颤与目标导向移动及非目标导向移动有关。运动性震颤的实例是将手指移动到一个人的鼻子的运动,通常用于检测在酒精的影响下驾驶的驾驶员。运动性震颤的另一实例是从桌子举起一杯水的运动。任务特定震颤在极特定运动期间发生,例如当使用钢笔或铅笔在纸上书写时。
震颤(无论对眼睛是否可见)被视为源于神经系统内的一些振荡神经元池、一些脑结构、一些感官反射机构及/或一些神经机械耦合及谐振。
虽然众多震颤已被描述为生理性(无任何疾病)或病理性的,但应认为震颤振幅对其分类不是极有用的。然而,对震颤频率感兴趣。震颤频率允许其以有用方式用来提取感兴趣信号且产生每一用户的唯一NFP。
图6说明各种震颤类型、其激活条件及归因于给定震颤类型的预期运动频率的表格。
众多病理状态(如帕金森症(3到7Hz)、小脑疾病(3到5Hz)、肌张力障碍(4到7Hz)、各种神经病(4到7Hz))使运动/信号为较低频率,例如7赫兹(Hz)及低于7赫兹的频率。由于病理状态并非为所有用户共有,所以这些频率的运动/信号不利于产生NFP且需要滤除。然而,本文中所揭示的部分实施例中用来具体地专注于使那些病理性信号作为用来记录、监测、遵循所述病症的方式以确定健康状况是健全还是退化。
其它震颤(例如生理性、原发性、直立性及增强生理性震颤)可在正常健康状况下发生。这些震颤本身不是病症。因此,所述震颤通常存在于总体人口中。对生理性震颤以及常见于所有用户的其它震颤是感兴趣的,这是因为其产生以介于3到30Hz或4到30Hz之间的范围内的频率的微运动。所述震颤可在肌肉用来对抗重力支撑身体部分时被激活。因此,将电子装置握持于一个人的手中以对抗重力支撑手及臂可产生可由加速度计感测的生理性震颤。使用手的手指触摸电子装置的触摸垫并对抗重力支撑其可产生可容易由手指触摸垫传感器感测的生理性震颤。
运动性类型的原发性震颤可在用户必须键入PIN或登录ID以获得对装置或手机的存取时发生并被感测。原发性震颤的频率范围介于4到12Hz之间,其可减小到8到12Hz的频率范围以避免对归因于非常见病理状态的震颤的感测。
对于生理性震颤(或增强生理性震颤,同上具有较大振幅),不同体侧的相干性是低的。即,左体侧上的生理性震颤与右体侧上的生理性震颤是极不相干的。因此,预期用户的左手或左手指中的震颤将不同于右手或右手指中的震颤。因此,NFP认证系统将需要用户在将相同侧的手或手指用于认证时保持一致;或替代地,将使用多个经授权用户校准参数集(每一手一个经授权用户校准参数集或每一手指一个经授权用户校准参数集)来提取NFP。
具有感兴趣的较高频率的运动可被视为噪声。因此,需要滤除在原始运动信号中具有高于所要范围(例如,12Hz或30Hz)中的最大值的频率的信号。因此,从8Hz到12Hz及/或8Hz到30Hz的频率信号范围含有关于可用来产生NFP的微运动的有用信息。
由电子装置中的手指触摸垫传感器或由手持电子装置的加速度计捕获的原始信号可在其中具有数个不想要的信号频率。因此,可使用响应于滤除所要频率范围外的信号的一种类型的过滤以从原始电子信号获得微运动信号。替代地,可使用用于所要频率范围中的信号的隔离/提取构件以从原始电子信号获得微运动信号。举例来说,可使用有限脉冲响应带通滤波器(例如,8到30HZ的带通)以在由触摸垫或加速度计感测的原始电子信号中选择感兴趣的低信号频率范围。替代地,低通滤波器(例如,30Hz截频)及高通滤波器(例如,8Hz截频)或高通滤波器(例如,8Hz截频)及低通滤波器(例如,30Hz截频)可串联地组合以实现类似结果。
具有NFP认证的电子装置
现参考图7,说明具有NFP认证的电子装置700的功能框图。电子装置700可为例如智能蜂窝电话或需要访问控制的其它手持类型的便携式或移动电子装置。电子装置700包含一或多个三维(3D)传感器,所述一或多个3D传感器可用来捕获包含可用于NFP认证的原始3D微运动信号的原始3D电子信号。
电子装置700可包含耦合在一起的以下装置:处理器701、存储装置(SD)702、电源703(例如,可再充电电池)、按钮/垫704、小键盘705、三维(3D)加速度计706(任选地)、显示器装置707、一或多个无线电设备708及一或多个天线709。如果所述电子装置不具有三维(3D)加速度计706,那么按钮/垫704、小键盘705及显示器设备707中的一或多者是触敏的,因此其可用来捕获包含3D微运动信号的3D原始电子信号。在电子装置700是智能电话的情况下,所述电子装置包含耦合到所述处理器的麦克风及扬声器。所述扬声器可用来将语音样本捕获为额外认证手段。
存储装置702优选地是非易失性类型的存储装置,其以非易失性方式存储数据、指令及(可能)其它信息(例如,用户校准参数),因此其在所述电子装置进入睡眠状态以节省电力或完全关闭时不会丢失。存储装置702存储用于NFP认证系统的软件应用程序指令712、NFP指令及(可能)NFP数据714(例如,经授权用户校准参数的校准NFP文件)以及用于用户的用户涂鸦垫数据716。NFP指令及NFP数据714出于安全原因而与用户涂鸦垫数据716及软件应用程序指令712分离以使其不可供所有用户存取。存储装置702耦合到处理器701使得数据及指令可由所述处理器读取且经执行以执行软件应用程序的功能。NFP指令及NFP数据714(如果有)是由所述处理器读取以执行NFP认证控制器模块且执行提供NFP认证所需的功能。
一或多个无线电设备708耦合到处理器701及一或多个天线709且耦合于处理器701与一或多个天线709之间。一或多个无线电设备708可经由无线网络无线地接收及传输数据。一或多个无线电设备708可包含用于局域无线(Wi-Fi)网络的Wi-Fi无线电设备、用于蜂窝电话网络的蜂窝无线电设备及用于蓝牙无线连接的蓝牙无线电设备。可由所述电子装置执行需要对远程服务器进行认证的软件应用程序。使用NFP认证系统以授予对所述电子装置自身的存取。然而,NFP认证系统也可供软件应用程序使用来验证或认证经授权用户的身份。
为了对电池再充电或提供替代电源,电源连接器及/或组合式电源/通信连接器(例如,通用串行总线连接器)722可被包含作为电子装置700的部分。连接器722可耦合到处理器701以进行数据通信且耦合到电源703以对电池再充电及/或对电子装置700提供替代电源。为了有线连接,电子装置700可进一步包含耦合到所述处理器的网络接口控制器及连接器724,例如以太网络控制器及端口连接器(例如,RJ-45)。
多数便携式或移动电子装置现包含3D加速度计706。传统上,已使用3D加速度计706来确定所述电子装置的定向。然而,也可使用3D加速度计706来捕获握持电子装置700的用户的手的微运动。在此情况下,3D加速度计数据是由加速度计706捕获、经取样、经预处理且接着提供到NFP认证控制器。
如果所述加速度计不可用于电子装置中,那么在包含X、Y及Z的三维中按钮/垫704及小键盘705中的一者或两者是触敏的以便用于NFP认证。Z轴是垂直于所述按钮及小键盘的轴并且压力可由手指施加以选择所述按钮或所述小键盘的键的潜在功能以便控制所述电子装置。按钮/垫704可为例如用来开启/关闭所述电子装置的电源按钮。按钮/垫704可为例如使所述电子装置进入“主页”或初始用户接口状态的主页按钮。
可使用触敏按钮/垫704及/或触敏小键盘705中的一者或两者来捕获可用于NFP认证的三维原始微运动信号。
如果显示器设备707是触敏显示器装置,那么可将小键盘705或按钮704显示于可从中捕获三维原始微运动信号的触敏显示器装置707上。
NFP认证控制器的部分(参见图8A到8C、14A中的NFP认证控制器810A到810C、810)可由处理器701执行从存储于存储装置702中的固件/软件712重新调用的指令而形成。
现参考图7及8A,展示具有三维触敏按钮/垫704的NFP认证系统的部分的功能框图。所述NFP认证系统进一步包含耦合到三维触敏按钮/垫704的触摸传感器801的NFP认证控制器810A。
三维触敏按钮/垫704在最接近垫704的表面之处包含用来感测位置以及X、Y手指位置及手指压力Z的变化的3D触摸传感器801。三维触敏按钮/垫704通常包含用来产生发送到所述处理器的功能控制信号的功能按钮开关814。3D触摸传感器801产生包含在用户手指890处感测且由3D箭头850指示的微运动的原始三维位移信号。
在一些预处理之后,NFP认证控制器810A接收表示由触摸传感器801感测的微运动的数据样本且产生用户的NFP。通常将经授权用户校准参数的校准NFP文件存储于所述NFP认证控制器内的非易失性存储器或其它非易失性存储装置、或者耦合到所述NFP认证控制器或经耦合而与所述NFP认证控制器通信的非易失性存储器或其它非易失性存储装置中(例如,存储器702或服务器的存储装置)。响应于NFP及由经授权用户训练且与经授权用户相关联的经存储用户校准参数,NFP认证控制器810A对NFP进行分类且产生匹配百分比值。响应于所述匹配百分比值及预定可接受匹配百分比,NFP认证控制器810A可产生对正在触摸所述触摸传感器的经授权用户授予对电子装置的存取的存取授予信号1449。NFP认证控制器810A可为处理器(例如,处理器701)经配置(由硬件、软件或硬件及软件的组合)以执行的功能过程。
现参考图7及8B,展示具有三维触敏小键盘705的NFP认证系统的功能框图。触敏小键盘705包含3D触摸传感器801AA到801MN的M×N阵列的矩阵,所述3D触摸传感器801AA到801MN中的每一者可感测位置以及手指890的X、Y手指位置及手指压力Z的变更且产生原始微运动数据。每一垫可包含用来在由3D触摸传感器801AA到801MN捕获原始微运动传感器数据的同时产生多个功能控制信号的功能按钮开关814。
对来自3D触摸传感器801AA到801MN的M×N阵列的信号进行预处理及取样,其中经取样数据耦合到NFP认证控制器810B。在授予存取中,NFP认证控制器810B表现得类似于NFP认证控制器810A。然而,可训练NFP认证控制器810B以支持可预期来自3D触摸传感器801AA到801MN的M×N阵列的矩阵中的不同触摸传感器的稍微不同的信号。
因此,对于每一不同触摸传感器来说,经授权用户校准参数的校准NFP文件可不同。预期对于多个触摸传感器中的每一者的用户校准参数,经授权用户校准参数的校准NFP文件可较大。在较大校准NFP文件的情况下,存储所述档案的非易失性存储器或其它非易失性存储装置可稍大,具有稍大容量。类似地,耦合到所述NFP认证控制器或经耦合而与所述NFP认证控制器通信的非易失性存储器或其它非易失性存储装置(例如,存储器702或服务器的存储装置)可具有用来容纳来自一或多个用户的稍大NFP校准文件的较大存储区域及/或容量。NFP认证控制器810B可为处理器(例如,处理器701)经配置(由硬件、软件或硬件及软件的组合)以执行的功能过程。
现参考图7及8C,展示在电子装置700中具有三维加速度计706的NFP认证系统的功能框图。用户手899握持包含三维加速度计706的电子装置700。三维加速度计706耦合到NFP认证控制器810C。NFP认证控制器810C可为处理器(例如,处理器701)经配置(由硬件、软件或硬件及软件的组合)以执行的功能过程。
在将电子装置700稳定地握持于他/她的手399中时,由3D加速度计706感测在用户手899中且由3D箭头852指示的微运动。随着移动握持于所述用户手中的电子装置700以调整位置(例如从口袋到用户的耳朵),也由3D加速度计706感测除所述微运动之外的不合意微运动。如本文中进一步解释,将在所要信号中抑制、滤除或消除这些不合意微运动。
触摸传感器通常不同于3D加速度计。因此,经授权用户校准参数的校准NFP文件将可能不同。被产生为用来从所述3D加速度计滤除三维加速度计信号中的不想要的运动(例如,微运动)的数字滤波器的滤波器参数的一些校准数据可被包含为与用户相关联的NFP校准文件的部分。因此,3D加速度计的经授权用户校准参数的NFP校准文件可不同于触摸传感器的经授权用户校准参数的NFP校准文件。在任一种情况下,通常将经授权用户校准参数的NFP校准文件存储于所述NFP认证控制器内的非易失性存储器或其它非易失性存储装置或者耦合到所述NFP认证控制器或经耦合而与所述NFP认证控制器通信的非易失性存储器或其它非易失性存储装置中(例如,存储器702或服务器的存储装置)。
由3D加速度计706产生的原始三维加速度计信号经预处理且经历归因于重力的补偿。将原始三维加速度计信号取样成数据集的数据样本使得可使用数字信号处理进行数字过滤且使用数字处理器(例如图7中所展示的处理器701)执行数字变换。加速度计数据的数据样本被耦合到NFP认证控制器810C中。
NFP认证控制器810C接收表示由加速度计706感测的微运动的数据样本且产生用户的NFP。响应于NFP及由经授权用户训练且与经授权用户相关联的经存储用户校准参数,NFP认证控制器810C对NFP进行分类且产生匹配百分比值。响应于所述匹配百分比值及预定可接受匹配百分比,NFP认证控制器810C可产生对正握持所述电子装置的经授权用户授予对电子装置的存取的存取授予信号1449。
虽然本文中已描述用来捕获三维微运动信号为用来产生NFP的三维信号的三维传感器(例如,3D触摸传感器、3D加速度计或3D运动传感器),但所述传感器可为多维的以捕获具有至少二个维度的多维信号。举例来说,触敏表面可捕获具有可用来从可变二维信号产生NFP的三维表示的电阻及电容的两个可变维度的可变阻抗。
信号处理
现暂时参考图14A,为了从由传感器捕获且由取样器(模/数D转换器)取样的经取样微运动信号1450获得NFP 1460,由电子装置中的处理器执行数个信号处理步骤。由NFP认证系统810的信号处理及特征提取模块1401执行对经取样微运动信号1450中的每一维执行的信号处理步骤。由模块1401执行的这些一或多个信号处理算法在本文中通常可被称为NFP算法及方法。
通常,一序列事件经执行以获得用户的NFP且接着评估其真实性。
从3D加速度计或者一或多个触摸垫传感器(视情况而定)获得预定取样周期内的原始数据文件(沿X、Y及Z方向)。
在预定时间跨度(例如,5、10、20或30秒)内以预定取样频率对原始数据文件进行取样以捕获与所需进一步过滤兼容的感兴趣信号(例如,250Hz(在样本之间是4毫秒)、330Hz、200Hz或低到60Hz(30Hz感兴趣频率的两倍))。
对经取样信号执行信号处理以产生具有感兴趣的特定频率分量的微运动信号。使用具有介于7到8Hz、7到12Hz或8到30Hz之间的频率范围的带通滤波器过滤经取样信号。此频率范围的微运动信号对区别用户最有用。所述带通滤波器也可抑制可由传感器(例如加速度计)捕获的归因于自主或非自主移动的大振幅信号。如果加速度计被用作所述传感器,那么通过信号处理补偿或移除重力的影响。如果加速度计被用作所述传感器,那么通过信号处理使经取样信号位置不变或定向不变。微运动信号是可一致地用来提取特征值以用于用户之间的比较的位置不变的经取样信号。
对微运动信号执行额外信号处理以产生可从中提取的NFP的值的经信号处理的波形信号。选择其值将被提取来表示NFP的预定特征。可在执行额外信号处理之后从所述经信号处理的波形信号、每一微运动信号及/或从所述两者直接提取NFP的值。不管怎样,提取表示用户的唯一NFP的唯一值,所述唯一NFP将不同于由其它用户产生的其它NFP。
可在数个不同应用中使用用户的NFP。使用分类器(各种数据挖掘技术可被用作所述分类器)产生匹配结果值(例如,百分比)。使用产生经授权用户校准参数的初始NFP(校准NFP)训练/校准所述分类器使得实现校准匹配结果等级。此后,可在用户模式中结合所述经授权用户校准参数使用所述分类器。所述用户模式中的分类器产生匹配结果值以将用户认证为经授权用户或未经授权用户。响应于预定存取匹配等级,认证控制器可基于匹配结果值确定用户是否为经授权用户。
数个这些信号处理步骤在本文中作进一步详述。
信号取样
现参考图9,展示单轴(X、Y或Z)的手加速度信号随时间变化的手加速度波形900。手加速度波形900的部分901被放大为波形900T,如所展示。虽然模拟信号波形可被展示于图式中,但应理解,模拟信号波形可随时间变化经取样且由以离散周期性时间戳的一序列数字表示(“数字波形”)。虽然加速度计感测随时间变化的加速度,但如果传感器替代地感测随时间变化的位移,那么可通过二次区分随时间变化的位移信号而将所述位移转换成加速度。
在预定取样时间周期905内对每一轴的手加速度进行取样,例如,例如10、20或30秒时间跨度。取样频率经选择使得其与接续的过滤兼容。举例来说,取样频率可为250Hz(在样本之间是4毫秒)。替代地,取样频率可为例如330Hz或200Hz。由取样模/数转换器对模拟信号执行取样以在给定的预定取样时间周期期间的时间戳T1到TN内产生由数字表示的样本S1到SN。假设20秒取样时间周期及250Hz取样频率,那么在用于总计15k个样本的时间周期内,加速度数据集将包含3(3个轴)乘以5000个样本。
对不相关信号的信号正规化
NFP的产生是基于三维不相关信号。用来感测震颤的3D加速度计是由用户的手握持的电子装置的部分。如图10A中所展示,装置700及装置轴Xd、Yd、Zd可由所述用户的手以相对于世界W及世界轴Xw、Yw、Zw的不同定向握持。因此,来自装置轴Xd、Yd、Zd的3D加速度计的原始传感器数据是相关的。因此,来自装置轴Xd、Yd、Zd的3D加速度计的原始传感器数据取决于电子装置700的定向。使用主分量分析(PCA)执行信号正规化过程以使每一轴的3D加速度计数据是定向不变或旋转不变的且因此是不相关的。
在3D特征空间中分析在给定取样时间周期内来自装置轴Xd、Yd、Zd的3D加速度计的原始传感器数据的每一数据集。确定每一轴的三个本征向量及本征值。比较每一本征向量的本征值以确定识别最大本征向量的最大本征值。接着,使数据集的点旋转(在空间中变换点及其数据值)使得最大本征向量对准预定轴且沿预定轴。对于源自相同电子装置700的3D原始传感器数据的所有数据集来说,所述预定轴是恒定的。对于使用3D加速度计实施NSP算法的任何装置来说,所述预定轴甚至可为恒定的。所述预定轴可例如是Zw世界轴。沿所述预定轴对准,每一数据集的最大本征向量变换了原始传感器数据中的3D点的X、Y、Z分量使得其是不相关且旋转不变的。
举例来说,图10B说明加速度相对于本征向量1010A的3D点1011A。形成本征向量1010(包含点1011A)的数据集在3D空间中旋转到与Zw世界轴对准的本征向量1010B。因此,点1011A及其X、Y、Z分量值在3D空间中变换到点1011B及其X’、Y’、Z’分量值。
信号抑制/提取/过滤
此NFP算法具体从与受或不受外围结构(例如,肌肉、骨骼、腺等)影响的大脑皮层、其皮层下部分、小脑、中枢神经系统的运动控制有关的经变换传感器数据信号提取震颤或微运动,且抑制经变换传感器数据信号的不想要的部分。
因此,希望从经变换手加速度信号产生或提取微运动信号。然而,经变换手加速度信号可在其内具有可经抑制、经移除或经滤除的数个不合意信号。举例来说,握持电子装置的手通常伴随大移动而移动,例如从人的口袋/钱袋或口袋移动所述电子装置使得小键盘是可存取的且显示器屏幕是可见的。
大加速度摆动902可归因于此类大移动而发生,如图9中所展示。在一些情况下,来自用户的大运动(微运动)的信号的这些大摆动可用作行为轮廓,例如在由杰夫·克莱因(Geoff Klein)于2012年1月5日申请、标题为“用于不易察觉的装置用户辨识的方法及系统(METHOD AND SYSTEM FOR UNOBTRUSIVE MOBILE DEVICE USER RECOGNITION)”的第13/823107号美国专利申请案中所描述。然而,由于这些大摆动与神经肌肉震颤相关联的微运动关系不大,所以在此情况下希望在信号处理及产生用户的唯一NFP期间抑制或移除这些大摆动。
可抑制例如归因于大摆动902引起的不想要的信号分量。所述大摆动可来自与用户所处的建筑物或结构有关的振动或来自所述用户在握持具有加速度传感器的电子装置时实际上执行的运动。
多数建筑物及结构是以3Hz与6Hz之间的频率谐振。因此,来自建筑物及结构的振动在合意频率范围外(例如,在8Hz到30Hz的范围外)且不可能使具有所述范围的合意信号谐振及污染所述合意信号。随后将滤除3Hz与6Hz的范围中的信号。
用户的大尺度运动(大幅运动)包含带着电子装置跳跃、带着电子装置移动一个人的臂、带着电子装置转向、散步、跑步、慢跑及带着电子装置的其它大身体移动。用户的大尺度运动(大幅运动)通常对产生NFP不利。NFP算法不是基于手或身体架势,NFP也不是基于运动谱系/库。
用户的大尺度运动(大幅运动)形成例如图9中所展示的大尺度信号摆动902。用户的大尺度运动不可能在尝试于认证程序期间再生NFP时重复。用户的大尺度运动可在产生NFP中不利地使算法或计算偏斜。因此,来自大尺度运动的大尺度信号被部分抑制或通过针对所要频率范围执行的带通滤波从经获取数据滤除。在相对较长时间周期内,来自大尺度运动的大尺度信号是高度相关的。归因于神经系统的三维微运动是不密切相关的。因此,用来使三维信号不相关的后续信号处理将抑制来自大尺度运动的大尺度信号。
也可使用抑制/滤除来自所要信号、归因于用户的大尺度运动的大尺度信号的替代方式。电子信号可经分析且接着被分类/识别为从微运动的小信号振幅分出的小信号及大信号。分析可为在以下文献中描述的形式:由理查德J.波维内丽(Richard J.Povinelli)等人在2004年6月6日于《IEEE知识与数据工程期刊(IEEE Transactions on Knowledgeand Data Engineering)》第16卷发表的“使用重建相位空间的高斯混合模型的时间序列分类(Time Series Classification Using Gaussian Mixture Models of ReconstructedPhase Spaces)”。替代地,可通过使用如在附录中所附的文献中描述的BMFLC-Kalman滤波器对归因于自主运动的大信号进行分离:由卡雅拿C.维露(Kalyana C.Veluvolu)等人在2011年于《传感器(Sensors)》第11卷第3020到3036页发表的“从实时应用加速度计估计生理震颤(Estimation of Physiological Tremor from Accelerometers for Real-TimeApplications)”。
放大的手加速度波形900T更多是表示包含可从中产生感兴趣的微运动(微加速度)信号的震颤的加速度信号。波形900T具有感兴趣的频率范围外的数个频率分量。举例来说,信号中的感兴趣频率范围是从8Hz到12Hz及/或从8Hz到30Hz。这些频率范围与多数人应通常具有的已知震颤相关联。
现参考图11A,展示具有滤波器响应的带通滤波器(BPF),其中在所要频率范围的端处具有下截止(LC)频率及上截止(UC)频率。BPF是呈用来过滤数字信号的数字有限脉冲响应(FIR)带通滤波器的形式。此BPF将从由传感器捕获的原始电子信号滤除不合意频率信号分量以产生所要频率范围中的感兴趣的微运动加速度信号。可并行使用三个BPF,每一轴信号一个BPF。替代地,一个BPF可在每一轴之间是分时的。
现参考图11B,具有LC频率的数字高通滤波器(HPF)及具有UC频率的数字低通滤波器(LPF)可经串联地组合以在产生感兴趣的微运动加速度信号中实现类似于数字FIR带通滤波器的结果。替代地,具有UC频率的低通滤波器及具有LC频率的高通滤波器可经串联地组合以实现类似合成信号输出。
使用处理器对微运动信号执行额外信号处理以产生NFP。
对加速度计传感器的重力校正
希望移除重力对由加速度计捕获的三维加速度计数据的影响。正因如此,经产生NFP大致上独立于装置定向。专用三维触摸垫传感器可不受重力的影响。在此情况下,由触摸垫传感器在用户手指触摸其时捕获的三维数据无需遵循这些步骤。
重力加速度是常数。因此,预期重力对频谱的影响是接近零频率的固定向量。重力充当零频率DC分量,因此一个人将预期其将实现朝向低信号频率(低于1Hz)的泄漏。
现参考图12A,以低于1Hz(例如,0.25Hz)的截止频率的高通滤波器可用来补偿重力且改进使用NFP的辨识的准确度。具有重力效应的微运动信号被耦合到具有高通滤波器响应的重力高通滤波器(HPF)中,其中截止(CO)频率小于1Hz但大于0Hz。来自重力HPF的信号输出是无重力效应的微运动信号。
现参考图12B,用来消除重力影响的另一方式是变换每一数据集的3D加速度数据点(ADP1到ADPN)的坐标。首先确定在预定取样周期内3D加速度点(X、Y、Z信号)的经取样数据集的重心CG的XYZ坐标。接着,给定数据集中的3D加速度点的坐标经历平移变换使得重心在(X=0,Y=0,Z=0)坐标或轴原点处。在此情况下,整个数据集经历平移变换。
用来消除重力对加速度信号的影响的又一方式将是以分析方式针对在3D加速度计数据中引发的相移校正重力向量。可从原始3D加速度信号确定所述重力向量。接着,所述3D加速度计数据可沿响应于所述重力向量的一个方向减弱且沿所述重力向量的相反方向增强。
经过滤微运动波形
在进行过滤及抑制以移除不想要的信号且进行变换以补偿重力或关系之后,形成所要微运动信号。
现参考图13A,波形图展示归因于重力及定向差异而彼此偏移的原始加速度波形数据1301到1303的三个轴。图13B说明在抑制/移除/过滤来自经捕获加速度传感器数据的不想要的信号之后三个轴的加速度波形数据。图13B中的加速度波形数据表示微运动信号波形。如果使用3D触敏传感器而非3D加速度计,那么三个轴中的位移波形可为合成信号。虽然图13A到13B展示四秒的取样,但可使用更多或更少时间的取样周期。
存在对应于由3D加速度计感测的加速度的三个轴或由3D触摸垫传感器感测的位移的三个轴的微运动信号的三个轴。所述微运动信号的三个轴定义可绘制的三维点x(t)、y(t)、z(t)。可在取样时间周期内将用户的三维微运动信号x(t)、y(t)、z(t)进一步处理成相位(t)、y(t)、z(t)并绘制于例如图2A到2C中所展示的三维庞加莱相位散点图中。
不同用户的三维庞加莱相位散点图表明:微运动信号具有可用来识别并认证用户的唯一图案。可从庞加莱相位散点图获得每一用户的唯一图案。可从微运动自身的时间序列获得每一用户的另一唯一图案,而无需任何相位信息。然而,更容易的是,使用信号处理器及数字信号处理算法以从信号自身提取唯一图案。
NFP认证控制器
现参考图14A,展示NFP认证控制器810的框图。NFP认证控制器810包含信号处理及特征提取器模块1401(可分成两个单独模块)、NFP认证分类器模块及授权控制器模块1404。NFP认证控制器810可进一步包含用于例如由小键盘进行多因素认证的任选二次认证模块1406。可通过由处理器、硬接线电子电路或每一者的组合执行的软件/固件指令实施所述模块中的一或多者。
NFP认证控制器810可进一步包含:耦合到分类器1402的非易失性存储装置1454及用来存储数据(例如用户校准参数1466)的授权控制器1404;存取匹配(AM)等级1456A、强制性重新校准(MR)等级1456B、自主重新校准(VR)等级1456C(被统称为匹配百分比等级1456);及认证启用位(EN)1455。替代地,非易失性存储装置1454可在NFP认证控制器810外部,但作为安全独立的非易失性存储装置或更大非易失性存储装置的安全部分保持于电子装置内部。
NFP认证控制器810接收在每一取样周期内的每一数据集中的微运动数据样本1450的三维。将微运动数据样本1450耦合到信号处理及特征提取器模块1401中。信号处理及特征提取器模块1401对微运动数据样本1450执行信号处理及信号分析以针对相应三维(X、Y、Z)中的每一者提取多个经提取特征1460X、1460Y、1460Z。经提取特征1460X、1460Y、1460Z共同表示耦合到NFP认证分类器模块1402中的NeuroFingerPrint(NFP)1460。
NFP认证分类器模块1402接收NFP 1460(来自微运动数据样本1450的经提取特征),且产生匹配百分比(MP)信号输出1465。在用户模式中,将匹配百分比信号1465耦合到认证控制器1404中。在校准或训练模式中,匹配百分比信号1465供电子装置中的处理器使用以响应于对初始用户校准参数1466的选择评估匹配百分比信号1465。预期NFP认证分类器模块的训练/校准及初始用户校准参数1466的产生的持续时间介于5与10秒之间。预期在所述用户模式中,花费不足5秒来感测用户的身体部分中的运动及确定是授予还是拒绝所述存取。
在所述校准或训练模式中,经授权用户可产生用户校准参数1466的一或多个集使得NFP认证系统在不同条件下操作。举例来说,用户可能想要将电子装置握持于任一只手中且已被授予存取。在左手与右手之间或在不同手指之间,震颤将是不同的。用户可能想要将NFP认证系统校准到左手及右手两者或多根手指。此外,在一些情况下,一个以上用户将使用电子装置。在此情况下,多个人可为经授权用户且将需要进行并存储多次校准。因此,存储装置1454可存储相同经授权用户或不同经授权用户的用户校准参数的多个集。
认证启用位(EN)1455耦合到认证控制器1404中。认证启用位(EN)1455可用来在初始校准或训练模式之后启用认证控制器1404。在初始校准或训练模式之后,设置认证启用位(EN)1455且启用认证控制器1404。在所述初始校准或训练模式之后,不在所述用户模式或重新校准模式中复位认证启用位(EN)1455。除非擦除整个电子装置连同所述启用位,否则由启用位1455启用认证控制器1404以便增强安全性。
在所述用户模式中,匹配百分比信号1465供认证控制器1404使用以评估是否授予对电子装置及其软件应用程序的存取。评估匹配百分比信号1465与存取匹配等级1456A以产生存取授予(AG)信号1499。如果匹配百分比信号1465大于或等于存取匹配等级1456A,那么产生以逻辑等级的存取授予(AG)信号1499以发信号通知已授予存取。如果匹配百分比信号1465小于存取匹配等级1456A,那么不产生存取授予(AG)信号1499且不授予存取。存取授予(AG)信号1499耦合到处理器以便使得经授权用户能够控制并操作电子装置的功能。
如果使用所述任选二次认证模式,那么将二次匹配(SM)信号1468耦合到认证控制器1404中。在此情况下,认证控制器1404关于是否产生存取授予(AG)信号1499进一步评估二次匹配信号1468。认证控制器1404可使用AND逻辑以在产生所述存取授予信号之前要求满足两个条件。替代地,认证控制器1404可使用OR逻辑以在产生所述存取授予信号之前要求满足两个条件。
响应于来自处理器的非作用重新激活信号1470,认证控制器1404维持存取授予信号1499处于有源状态(只要用户使用电子装置)且避免睡眠状态或超时以进入受保护状态。如果发生所述睡眠状态或超时,那么由处理器对重新激活信号1470施以脉冲。响应于所述脉冲式重新激活信号,授权控制器1404撤销激活存取授予信号1499使得用户必须使用电子装置的NFP认证系统重新认证他自己/她自己以获得存取。
现参考图15,展示与沿X轴的匹配百分比信号1465相比的匹配百分比等级(MP)1456的图表。Y轴指示由认证控制器1404产生存取授予(AG)信号1499及是否对可疑用户授予存取。
在所述用户模式中,匹配百分比信号1465供认证控制器1404使用以评估是否授予对电子装置及其软件应用程序的存取。评估匹配百分比信号1465与存取匹配等级1456A。如果匹配百分比信号1465处于或高于存取匹配等级1456A,那么由认证控制器1404产生存取授予(AG)信号1499。如果匹配百分比信号1465低于存取匹配等级1456A,那么认证控制器1404不产生存取授予(AG)信号1499。
现参考图14A及15,认证控制器1404也可产生一或多个重新校准信号以在NFP认证分类器1402无法产生处于或高于存取匹配等级1456A的匹配百分比信号1465的等级之前,通知用户通过对于经授权用户再生用户校准参数1466来重新校准NFP认证系统。
在所述训练或校准模式中,由初始用户校准参数1466来训练/校准NFP认证分类器1402使得NFP认证分类器1402产生处于可为或接近100%(例如98%)的校准等级1457匹配百分比信号1465的等级。在训练之后,在所述用户模式中,由用户随时间变化产生的NFP可随着他/她的身体年龄、疾病或影响身体的生理状况的其它原因而变化。因此,匹配百分比信号1465可随时间流逝从校准等级1457减小。使用周期性重新校准来复位用户校准参数1466使得匹配百分比信号1465恢复到校准等级1457。取决于用户年龄、健康状况及身体的其它生理状况,用户通常可或多或少需要周期性重新校准。
在所述用户模式中,NFP认证分类器1402供认证控制器1404使用以评估是否需要重新校准。重新校准的确定是响应于强制性重新校准(MR)等级1456B及自主重新校准(VR)等级1456C。强制性重新校准(MR)等级1456B小于自主重新校准(VR)等级1456C及校准等级1457两者。自主重新校准(VR)等级1456C小于校准等级1457。
重新校准需要首先将用户验证为经授权用户,首先必须授权对电子装置的存取以进入所述用户模式并进行重新校准。如果所述装置被未经授权用户窃取,那么所述未经授权用户将不被授予存取来重新校准所述装置。
如果匹配百分比信号1465降到低于自主重新校准(VR)等级1456C,那么由认证控制器1404产生自主重新校准信号1471。在此情况下,电子装置通过其用户接口通知用户:他/她应暂停并花费一些时间来通过再生用户校准参数1466自主地重新校准NFP认证系统。预期多数用户将自主地选择重新校准NFP认证系统。然而,一些经授权用户将选择等待、忘记警告或完全忽视警告。
对于不自主地重新校准NFP认证系统的那些经授权用户,可迫使其经历强制性重新校准过程。如果匹配百分比信号1465进一步减小并降到低于强制性重新校准(MR)等级1456B,那么由认证控制器1404产生强制性重新校准信号1472。在此情况下,在经授权用户由NFP认证分类器1402被验证且由认证控制器1404被授予存取之后,电子装置立即进入重新校准模式,通过其用户接口通知用户通过继续适当地握持所述装置或适当地触摸按钮来准备并执行重新校准程序。进一步通知用户:NFP认证系统正执行重新校准并继续等待直到重新校准完成为止且随着再生用户校准参数1466以产生处于或高于校准等级1457的匹配百分比信号1465已成功地重新校准NFP认证系统。
如果一段时间不使用电子装置,那么匹配百分比信号1465有可能进一步减小并降到低于存取匹配(AM)等级1456C。在此情况下,经授权用户可被拒绝存取。因此,存取匹配(AM)等级1456C的值的选择是重要的使得经授权用户不容易被拒绝对电子装置的存取,而未经授权用户被拒绝存取。希望产生NFP信号1460,NFP信号1460是由模块1401产生并耦合到NFP认证分类器1402中,对用户的变化不太敏感(例如,老龄化、疾病)使得重新校准是不太频繁的。因此,希望选择模块1401的信号处理及特征提取算法使得在产生NFP中敏感度是低的且不太可能随时间改变。
以递增次序的匹配百分比等级(MP)1456的实例设置为:存取匹配(AM)等级1456A是85%,强制性重新校准(MR)等级1456B是90%,且自主重新校准(VR)等级1456C是95%。因此,由电子装置的用户接口通知用户在需要执行强制性重新校准之前执行自主重新校准。
在需要用户进行强制性重新校准的情况下,如果电子装置被积极地使用,那么应避免NFP认证系统拒绝对电子装置的存取。如果电子装置被搁置一段时间(例如,一或多年),那么可能需要用户将电子装置擦干净,重新初始化NFP认证系统,且例如从备份重载应用程序及/或数据。
现参考图14A到14B,展示用于NFP认证分类器1402的模型。根据一个实施例,所述模型是可呈线性的回归分析模型。在替代实施例中,用于NFP认证分类器1402的回归分析模型可为非线性的。在训练或校准模式期间,由信号处理及特征提取模块1401提取来自经授权用户的微运动信号的特征以产生校准NFP 1460,包含每一轴的校准NFP信息1460X、1460Y、1460Z。
将每一轴的校准NFP信息1460X、1460Y、1460Z置于单行NFP矩阵1452中。经授权用户校准参数1466的适当值是未知的。可随机地将用户校准参数1466的值设置到单列校准矩阵1454中。由处理器执行矩阵乘法以使单行NFP矩阵1452及单列校准矩阵1454相乘以获得匹配百分比值1465。
在校准/训练期间,处理器搜出将置于单列校准矩阵1454中以产生匹配百分比1465的预定值的用户校准参数1466。此预定值被称为校准等级1457。举例来说,校准等级1457可设置到90%。在此情况下,处理器搜出经授权用户校准参数1466的值使得在与NFP1460相乘时,从分类器输出的匹配百分比1465是90%或更大。
一旦经授权用户校准参数1466经设置并存储于电子装置中,NFP分类器1402就使用经授权用户校准参数1466以乘以从未知用户或经授权用户产生的后续经再生NFP。
如果一人员随后无法产生大致上类似于校准NFP的经再生NFP,那么在用户校准参数1466乘以不同经再生NFP时,由分类器1402产生的匹配百分比1465的值将为低。授权控制器1404可经设置使得匹配百分比1465的低值对产生显著不同的经再生NFP的未知人员拒绝存取。
如果一人员随后产生NFP(大致上类似于校准NFP的经再生NFP),那么在用户校准参数1466乘以所述经再生NFP时,由分类器1402产生的匹配百分比1465的值将为高。授权控制器1404可经设置使得高于存取匹配等级1456A的匹配百分比1465的高值授予对电子装置的存取。
用来产生NFP的信号处理及特征提取
现参考图13A,图中展示来自3D加速度计的三维加速度数据的原始未经过滤样本。对于电子装置的X、Y及Z轴,对于三维中的每一者捕获原始信号1301到1303。随着一些预处理、带通滤波及重力补偿,图13B中所展示的微运动信号波形1311到1313可分别由原始信号1301到1303形成。接着,可对微运动信号波形1301到1303执行进一步信号处理以针对加速度数据的给定样本形成NFP。存在用来从微运动信号产生NFP的各种方式。一旦经校准/经训练,电子装置中的NFP认证系统就使用产生所述NFP的一致方法。
三维微运动信号与存在于用户中的常见震颤相关。存在隐藏于微运动信号的时域中的图案,所述微运动信号因其起源于每一用户的神经肌肉机能而为他/她所独有。希望通过对微运动信号执行信号处理且接着从微运动信号提取特征以形成NFP来突出所述图案。接着可在训练或校准过程期间使用校准NFP来产生经授权用户校准参数。出于用户认证的目的,随后可使用所述经授权用户校准参数以对经再生NFP进行分类并区别已知的经授权用户与未知的未经授权用户。
然而,在可将NFP用于认证之前,使用所述NFP以通过产生经授权用户校准参数的集来训练或校准分类器的模型。随后,结合所述分类器模型使用经授权用户校准参数的此集以评估由传感器从未知人员捕获的未来NFP(经再生NFP)。可使用各种信号处理算法以从微运动信号提取数据作为NFP。
可使用逆谱分析检测隐藏于微运动信号中的图案,举例来说,例如图13B中所展示的微运动信号波形1311到1313。执行所述逆谱分析以便恢复与时间变化有关的未知信号分量。
一种类型的可用逆谱分析是倒谱分析。倒谱分析是用于检测频谱的周期性的工具。可使用所述倒谱分析来检测重复图案、其周期性及频率间隔。
通常,倒谱是进行信号的经估计频谱的对数的逆傅立叶变换(IFT)的结果。
如由以下方程式展示,信号的功率倒谱可被定义为信号的傅立叶变换的平方量值的对数的逆傅立叶变换的平方量值。
首先,使用快速傅立叶变换取得微运动信号(例如图13中所展示的微运动信号)的傅立叶频谱。数学上,此可通过使用以下方程式执行傅立叶变换而完成
其中ξ表示实频率(以赫兹为单位)值且独立变量x表示时间,为变换变量。使用可对信号进行数字取样的软件或数字电路,可使用由以下方程式表示的离散时间傅立叶变换(DFT)
对微运动信号的傅立叶变换的结果是谱密度(功率谱或傅立叶谱)。图16说明针对手处的震颤、随时间变化的加速度所呈现的谱密度的实例。应注意,生理震颤的预期峰值(P)信号分量是处于约10到12Hz的峰值频率(PF)。然而,在针对震颤的谱密度曲线中仍存在许多有用的隐藏图案(HP)信息。
谱密度(功率谱)是信号的分量频率的复合物。即,存在组合在一起以形成谱密度曲线的众多信号频率。希望有效地分出信号频率以展示图案。由所述谱密度说明的信号复合物是等效于构成信号的乘积的信号卷积。
取卷积的对数将所述谱密度有效地转成构成信号的总和而非乘积。此外,所述谱密度的对数(或所述谱密度的平方的对数)突出隐藏图案(HP)信息可存在于其中的谱密度曲线中的较低振幅频率分量。取所述谱密度的对数有效地使谱密度信号的大信号振幅压缩且使谱密度信号的较小振幅扩展。
然而,难以看见通过对数变换产生的信号波形的周期性及图案。因此,对所述对数信号波形执行逆傅立叶变换(IFT)使得未知频率分量及隐藏图案是可见的。所述对数变换的逆傅立叶变换使微运动信号波形的谱密度中的复合信号的分量分离。
图17A到17B说明图13B中所展示的微运动波形所呈现的倒谱。此合成波形是在进行谱对数的逆傅立叶变换(IFT)之后产生。倒谱在所述合成波形中产生一系列经大致上分辨的未知信号分量。特征的图案的值可从所述合成波形中的每一轴(维)提取且用作用来识别用户的NFP。注意,图17A到17B中所展示的倒谱波形的水平轴是频率且不是时域中的时间度量。
通常,逆傅立叶变换是可针对函数g的变量值对所述函数g求积分的积分。在此情况下,逆傅立叶变换可由以下方程式表示:
为了恢复离散时间数据序列x[n],可使用逆离散傅立叶变换(IDFT)。
使用逆快速傅立叶变换(IFFT),方程式变为
其中由n=0到N-1对N个样本的序列f(n)编索引,且离散傅立叶变换(DFT)被定义为F(k),其中k=0到N-1。
图17A到17B说明三维倒谱波形信号1700的实例。波形信号1700是对微运动信号执行倒谱分析从而导致倒谱信号波形1701、1702、1703的结果,微运动信号的每一维具有一个倒谱信号波形。倒谱波形信号1700具有与其相关联且可容易用来识别用户的不同特征。举例来说,倒谱波形1700的前N个峰值可为用来从每一倒谱波形1700提取以识别用户的预定特征。所述峰值因其高变化而被选择,因此其是不同特征。对于每一用户,前N个峰值的倒频率及振幅的值可用作相应用户的NFP。N个峰值的倒频率及振幅的值可用作响应于经授权用户校准参数输入到分类器模型中以产生匹配百分比(MP)的NFP。
其它特征可经选择且其值是从微运动信号的倒谱提取。其它信号处理可经执行使得微运动信号中的额外特征或图案变得显而易见且可用于产生NFP。对于NFP认证系统来说,使用哪些特征来提取值的一致性是关键所在。所述特征应是预定的。相同特征(例如,前N个峰值)应在校准/训练模式期间结合校准NFP使用且在用户模式中时形成来自新样本集的经再生NFP。
举例来说,在图17A中可看出,在每一轴上处于其相应倒频率及振幅的前五个峰值P1、P2、P3、P4、P5(例如,从3个轴/3条曲线及5个峰值,总计3×5个振幅值)具有可用来不同地识别用户的大变化。前五个峰值P1、P2、P3、P4、P5的振幅及倒频率在从不同用户捕获时将明显不同。因此,可使用对于前五个峰值P1、P2、P3、P4、P5提取的振幅及倒频率来区别用户身份,举例来说例如图18A到18B中所展示。虽然在此实例中使用前五个峰值,但其不是对实施例的约束或限制,这是因为更少峰值、额外峰值或多个其它特征可经选择以形成NFP。
在前五个峰值P1、P2、P3、P4、P5是用来从倒谱信号波形提取值的预定特征的情况下,可对于具有微小变化的相同用户反复再生NFP。如果不同用户产生他/她的NFP,那么预定特征的经提取值将大幅变化。可使用经授权用户的NFP与不同用户的NFP之间的实质变化以对所述经授权用户授予存取且对所述不同用户拒绝存取。
从倒谱波形提取的前N个特征可用来再生NFP且供NFP认证分类器使用来对与经授权用户校准参数的匹配进行分类。选择倒谱中的较前特征(例如前N个(例如,N为3到5)峰值或其它系数)可减小取样周期,但仍表示信号的大部分变化。举例来说,这前N个系数可通过凭借PCA分析规划N个特征而扩展成128个经提取特征,且因此变为128个经提取特征的线性组合。
在5、10或20秒的取样周期内,从倒谱波形提取的值是预定特征的位置(倒频率)及其相应振幅。如果预定特征是例如前五个峰值,那么将每一轴的振幅及倒频率的值提取为NFP。此方法汇总取样周期内的时间。
可近实时分析倒谱,而非汇总所述取样周期内的时间。举例来说,在此情况下,可根据时间选择并绘制以一个倒频率的一个峰值。举例来说,可选择以图17A中的倒频率8的峰值P1。接着可根据时间绘制以倒频率8的每一轴振幅的3D坐标。以其它倒频率的其它特征可经进一步选择,因此存在N个频率(例如,128个‘倒频率’),因此可使用最近邻分析、线性或二次分析执行n空间分析,其中例如n是128。
然而,128个倒频率的分析是一种挑战。通过检查波形中的最大变化在何处,所述分析可变得更简单且缩减计算时间。可采用前3、5或10个倒频率位置且在数据空间的3、5或10维中执行主分量分析(PCA)。接着,可例如对此受限数据空间执行最近邻分析以提取NFP值。
特征提取及产生NFP值的另一方式可在未根据时间对每个倒频率的数据点进行3D绘制的情况下完成。可将倒频率、振幅及时间当作向量的真坐标。N个倒频率可经选择以将振幅及时间绘制为维度。接着,可在任何给定时间针对经分辨频率绘制这些向量。这产生可经分析以提取NFP值的所述经提取特征的时间序列。
特征提取及产生NFP值的另一方式是在不同时间提取所述频率(倒频率)、振幅(如每秒50次提醒:在16与30+Hz之间,感兴趣且相关的原始信号是带通的)。在几秒内,产生可用作NFP的提取值的一系列数字。以不同时间点而非不同倒频率的值可经提取且用作NFP。
虽然本文中描述倒谱信号处理,但可对微运动信号使用其它信号处理算法使得其它图案出现于不同波形中。不同特征可从所述波形信号提取且用来定义用于NFP认证分类器的NFP。不同经提取特征可用作响应于经授权用户校准参数输入到模型中以产生匹配百分比(MP)的NFP。
现参考图18A到18B及19A到19B,展示不同用户的不同NFP的单轴的实例。可由两个或两个以上额外维度提供额外维度。
图18A到18B说明基于两个不同用户的倒频率的单轴的不同NFP的实例。在图18A到18B中的每一者中,五个经提取峰值P1到P5中的一或多者以不同倒频率F1到F5以不同振幅出现。因此,每一用户的NFP是不同的。图19A到19B说明基于两个不同用户的时间的单轴的不同NFP的实例。在图19A到19B中的每一者中,五个峰值P1到P5中的一或多者在不同时间T1到T5以不同振幅出现。因此,每一用户的NFP是不同的。
倒谱信号波形的前五个峰值是针对每一用户从每一用户的不同微运动信号提取的预定特征。前五个峰值的定位及振幅的值区别一个用户与另一用户,其类似于门钥匙中的齿及切口如何区别钥匙。经授权用户校准参数表现得有点像接合门钥匙中的齿及切口的锁的转臂(tumbler)。如果所述门钥匙中的齿及切口是错误的,那么所述门锁的转臂将不正确地接合而无法开锁。在一个以上维度(例如,3个轴)用于特征提取的情况下,NFP变得更独特。图14B说明在从微运动信号1460X、1460Y、1460Z提取以形成NFP 1460的特征的三维之外提取的特征的值的经添加维度AD 1460A。
虽然可使用3D加速度或3D位移值,但时间可为另一添加的维度。在一个时间点,3D值具有一个振幅,而在另一时间点,其将具有另一振幅。
训练/校准
现参考图14B,NFP 1460中一或多个维度及用户校准参数(如果经训练)耦合到NFP认证分类器1402中。用于所述NFP认证分类器的算法是数据挖掘算法,例如线性回归算法、非线性回归算法、线性二次算法、二次方程式算法、最近邻分类器或k×N最近邻分类器。线性回归算法被展示为具有xM个元件或xM列的一个行矩阵1452与具有xM行的一个列矩阵1454相乘。一个行矩阵1452表示具有用于一或多个维度中的每一者的经提取特征的值的NFP 1460。一个列矩阵1454表示经授权用户校准参数1466。在此情况下,乘法提供匹配百分比的值。在训练/校准期间,用户校准参数1466经调整以将校准等级形成为匹配百分比(MP)输出1465。
NFP认证分类器1402在使用之前由经授权用户进行训练/校准。一旦初始训练/校准完成,未经授权用户就无法训练或重新校准分类器1402。在一或多个取样周期期间由加速度计捕获微运动信号,其中电子装置在用户的手中或用户按下触摸传感器。对加速度计的校准可伴随左手或右手或两只手发生。对触摸传感器的校准可伴随每一手的一或多根手指发生。
微运动信号是使用信号处理算法经处理且特征是从合成波形提取作为本文中被称为校准NFP的NFP校准样本。在训练/校准期间,使用NFP校准样本来查找与经授权用户相关联的经授权用户校准参数1454且训练/校准分类器以产生所要校准匹配百分比等级。在已产生并安全地存储经授权用户校准参数1454之后,出于安全原因而放弃校准NFP。由于不保存校准NFP,所以需要在用户模式中针对用户再生NFP(其被称为经再生NFP)以获得对电子装置的存取。在装置认证已经重新制定以锁定装置而不被存取之后,需要由经授权用户再生所述NFP。
经再生NFP是使用来自用户的神经机械微运动的另一样本且通过从存储装置重新调用经存储的经授权用户校准参数而产生。接着出于认证目的而使用经再生NFP以获得对电子装置的存取。使用经再生NFP,经授权用户校准参数可能提供高匹配百分比使得可能再次授予对电子装置的存取。如同校准NFP被放弃,经再生NFP在暂时用来测量认证之后不被保存。随后出于安全原因而放弃经再生NFP,且产生下一经再生NFP并评估其与经授权用户校准参数的匹配百分比。如果经再生NFP被分类为具有大于或等于存取匹配等级的匹配百分比,那么授予对电子装置的存取。
取决于由分类器1402使用的算法,NFP认证分类器的训练可为线性的或不是线性的(即,非线性的)。
为了校准分类器1402,针对校准匹配百分比等级选择预定值。所述校准匹配百分比等级的预定值可为100%或更小。然而,所述校准匹配百分比等级的预定值应高于所要授予存取匹配(AM)等级。
鉴于NFP校准样本,电子装置中的处理器浏览用户校准参数的测试序列以便产生等于或大于所述校准匹配百分比等级的预定值的匹配百分比。在选择产生等于或大于所述校准匹配百分比等级的匹配百分比的初始用户校准参数之前,可要求用户通过继续握持所述装置或继续按下触敏按钮来产生额外微运动(表示NFP)。使用这些额外NFP来验证所述分类器是通过用户校准参数1454正确地训练/校准。
在校准之后,进行实验以确定在对经授权用户授予存取中的错误率。使用微运动信号的倒谱信号分析,具有加速度计传感器的手持电子装置中的经训练分类器在辨识经授权用户中具有7%的错误率。此时,经授权用户93%被正确地辨识。因此,存取匹配(AM)等级需要设置到低于93%(举例来说例如80%),使得所述经授权用户始终被授权存取电子装置。
在微运动信号的倒谱信号分析结合电子装置中的触敏小键盘使用时,错误结果似乎有所改进。在小样本大小的用户将其PIN号码输入于触敏小键盘上时,通过使用倒谱信号分析的方法来实现经授权用户的100%辨识率。不管怎样,存取匹配(AM)等级需要设置到低于100%(举例来说例如85%),使得所述经授权用户始终被授权存取电子装置。
倒谱信号处理及产生NFP的替代方式。
用于信号分类任务的许多现存时域方法是基于相当简单的潜在图案或模板的存在(先验已知或从数据得知)。然而,对于真实信号(如心脏、语音或电动机系统),此简单图案由于潜在过程的复杂度而很少存在。确实,基于频率的技术是基于谱图案的存在。从随机过程观点,对微运动信号使用的基于频率的信号处理技术将仅捕获系统的一阶特性及二阶特性。
本文中所描述的倒谱分析可从加速度计数据提取一些时间相关信息,但此方法仍与频率分散有关。由于在微运动信号中比普通频率存在更多信息,所以其它信号处理技术及特征提取方法可能能够改进NFP的强度使得其不太敏感且不太可能随时间改变。
替代地,例如可使用混沌分析来产生NFP。使用混沌学,可提取关于倒谱描述的模拟预定特征。然而,这些预定特征不是基于频率,但具有时间轨迹。用于使用混沌分析提取的实例特征是奇异吸引子的重心与其碎形维度及李亚普诺夫指数(Lyapunov exponent)。可使用若干秒内(例如,5、10、20秒)的数据扫描以从微运动信号获得这些特征的值。
使用混沌分析的另一实例是在无IFT的情况下使用从每一轴的谱的对数产生的波形信号。从所述对数波形信号,振幅及时间可被当作向量的真坐标且在任何给定时间针对N个(例如,N=128)经分辨频率进行绘制。重心、维数及李亚普诺夫指数可被提取为表示NFP的值的时间序列。
根据一个实施例,可产生NFP信号特征可从中提取并耦合到NFP认证分类器中的相位散点或庞加莱散点(例如参见图2A到2C中所展示的庞加莱散点200A到200D)。在相位散点或庞加莱散点的轨道中比倒谱波形的轨道存在更多信息。因此,有用的是,使用从经过滤微运动数据流产生的相位散点或庞加莱散点,针对NFP从所述相位散点或庞加莱散点提取传感器数据中的特征。
在又另一实施例中,将隐马尔可夫(Markov)模型分析用作信号处理模块以获得更多特征信息作为NFP以耦合到选定分类器中。马尔可夫模型是用来模型化随机改变系统的随机模型,其中未来状态仅取决于目前状态且不取决于其之前事件的序列。通常,将马尔可夫链(一或多种状态的状态空间)用作所述马尔可夫模型。从一种状态到另一种状态的转变是无记忆随机过程。下一种状态仅取决于当前状态且不取决于其之前事件的序列。隐马尔可夫模型是仅可部分地观察状态的马尔可夫链。
现参考图20,说明实施所述隐马尔可夫模型分析的状态机2000。使用状态机2000及隐马尔可夫模型以从微运动信号的经信号处理波形提取特征且执行用来授予或拒绝存取的分类(或认证用户)。
状态机2000包含状态2001到2004及来自经信号处理波形的经提取特征F1 2010A到Fn 2010N(例如,图2A到2D中所展示的庞加莱散点),其中N小于或等于10。状态2001是接受状态,状态2002是重新校准状态,状态2003是拒绝状态,且状态2004是复位/初始化状态。
存在可在状态机2000的状态2001到2004之间进行的状态转变。状态转变a1是从接受状态2001到重新校准状态2002。状态转变a2是从重新校准状态2002到拒绝状态2003。状态转变a3是从重新校准状态2002到接受状态2001。状态转变a4是从接受状态2001到拒绝状态2003。拒绝状态2003也可转变到复位/初始化状态2004。
从状态2001到2003到特征F1 2010A到Fn 2010N,存在输出概率。从接受状态2001到特征F1 2010A到Fn 2010N,存在输出概率Oa1到Oan。从重新校准状态2002到特征F12010A到Fn 2010N,存在输出概率Or1到Orn。从拒绝状态2003到特征F1 2010A到Fn 2010N,存在输出概率Od1到Odn。
使用隐马尔可夫模型,尝试在不了解正被分析的系统的内部细节的情况下得到正确答案。所述答案是状态2001到2003,其非常复杂且基于混沌输入。经提取的N个特征F12010A到Fn 2010N是唯一的可测量特征。所述特征可为多样的,例如重心或一系列李亚普诺夫指数、可从数据轨迹提取的任何参数,所述特征中的每一者与特定于三种状态2001到2003的优势率相关(例如,Oa1到Oan、Or1到Orn、Od1到Odn)。通过到第四状态2004的转变退出状态机2002。第四状态2004对应于系统重新初始化,例如完全复位。
在又另一实施例中,基于重构相位空间(RPS)使用新信号分类方法执行动力学系统信号分析。可将动力学不变量用作将在所述信号分析之后提取的特征。预期此方法可捕获更多信息,从而导致更好用户辨识。
使用方法
如图8A到8C中所展示,一个人握持电子装置或触摸一或多个触敏板以认证他自己/她自己。在取样周期的几秒内,电子装置中的3D传感器(定位于不同轴上的3个传感器)感测归因于用户身体的生理状况引起的用户的手或手指中的振动或微运动。所述3D传感器同时产生可经取样并转换成数字形式的三个电子信号。使用信号处理技术预处理并分析数字样本以针对刚刚手持电子装置或触摸触摸传感器的用户实时产生NFP。
响应于经授权用户校准参数,接着可使用所述NFP来评估握持或触摸电子装置的人员是否为经授权用户。响应于经授权用户校准参数,可将所述NFP用作用来对数据文件加密及解密的密钥。替代地,可使用有效NFP来认证文件是否由所述经授权用户签署、书写或创建。
可将用户校准参数存储于电子装置中的本地档案或本地存储装置中。替代地,可将用户校准参数存储于与服务器相关联的存储装置中的远程档案中或存储于因特网云端中的存储区域网络的存储装置中。在无活体经授权用户的手或手指的情况下,经授权用户校准参数是无用的。在经授权用户的手或手指不再生他/她的NFP的情况下,拒绝对电子装置的存取。
用于NFP认证的应用
可使用NFP认证系统来控制对电子装置的存取。也可使用NFP认证系统来控制对与所述电子装置相关联的功能及由所述电子装置执行的软件应用程序的存取。可使用NFP认证系统来控制对远程电子装置的存取(即,其中对本地装置实践感测以确定对远程电子装置的存取)。
可具有由NFP认证系统控制的存取的功能的实例包含但不限于登录、用户受保护存取、电子交易及需要明确认证的任何其它本地功能。
举例来说,用于NFP认证系统的安全应用包含计算机及软件登录、电子商务、电子银行业务及反诈骗应用。用于NFP认证系统的人类控制应用的实例包含住宅自动化(domotic)认证(住宅自动化/控制系统)及保护(住宅安全系统)、汽车安全(例如参见图22)及对限制区的专业进出。
图23A到23D说明具有NFP认证能力的进出控制机构。在图23A中,例如,用户2301使用他/她的手触摸门把手2302以转动门把手2302以便打开门2300。门把手2302包含也在由用户转动所述门把手之前针对用户透明地感测/扫描NFP的3D触摸垫表面2304。3D触摸垫表面2304耦合到NFP控制器以认证用户且控制门闩或门锁的栓。图23C说明在门2300A中可控制门把手2302的死栓门锁2350。
在图23B中,用户2301使他的手触摸门2300B的集成门锁2310的3D触摸垫2306。3D触摸垫表面2306耦合到NFP控制器以认证所述用户且控制集成门锁2310的栓或闩。如果用户2301是经授权用户,那么门锁2310解锁所述栓且允许所述用户转动手柄或门把手2312以移除所述栓并打开门2300B。
在图23C中,展示支持NFP技术的门把手2302及/或集成门锁2310的门栓2320。NFP控制器2380耦合于3D触摸垫2304、2306与门栓2320之间。门栓2320包含耦合到把手2302/杆2312的轴件2323。轴件2323机械地耦合到机械连杆2325,例如臂。机械连杆2325又机械地耦合到所述闩的栓2327且电耦合到NFP控制器2380。电源2399经提供以例如通过一或多个电池或耦合到本地可用电力供应器(例如,110伏特AC)的变压器对NFP控制器2380及其它电子设备供电。
响应于控制信号,机械连杆2325可选择性地将轴件2323的旋转平移并耦合到栓2327的线性运动中。栓2327是经载入以从门延伸出且通过门框2350的锁扣板2374并到保险装置2372中的弹簧。选择性地,响应于所述控制信号(例如,有效NFP)及轴件旋转,可线性地移动栓2327使得其从锁扣板2374及保险装置2372移出。
响应于从触摸所述触摸垫的用户接收NFP,通过NFP控制器2380启用及停用机械连杆2325。如果因未接收NFP或未经授权NFP(预设条件)而停用机械连杆2325,那么机械连杆2325保持轴件2323与栓2327去耦合使得栓2327保持于门框2350的保险装置2372及锁扣板2374内。如果由经授权NFP启用机械连杆2325,那么机械连杆2325选择性地将轴件2323耦合到栓2327使得其可从门框2350的保险装置2372及锁扣板2374移除。
在图23D中,展示支持NFP技术的门把手2302及/或集成门锁2310的NFP死栓2352。NFP控制器2381耦合于3D触摸垫2304、2306与死栓2352之间。死栓2352包含发电机/螺线管(m/s)2352、机械连杆2355及栓2357。机械连杆2355耦合到栓2352及发电机/螺线管(m/s)2352且耦合于其之间。发电机/螺线管(m/s)2352电耦合到NFP控制器2381以接收控制信号以选择性地控制栓2357的线性运动。电源2399经提供以例如通过一或多个电池或耦合到本地可用电力供应器(例如,110伏特AC)的变压器对NFP控制器2380及其它电子设备供电。
NFP死栓2352可任选地包含用来产生耦合到NFP控制器2381中的门状态信号2384的开门/关门传感器2382。在栓2357缩回之后,如果感测到门仍打开,那么可保持栓2357在门中使得可关闭门。门传感器2382可为用来在关门时检测磁体2375的光学传感器或霍尔效应传感器。因此,门状态信号2384可进一步用来选择性地控制栓2357的衬层运动。
响应于经授权NFP,所述NFP控制器产生用来控制发电机/螺线管(m/s)2352以使栓2357从锁扣板及门框缩回的控制信号。几秒之后,假设门状态信号指示关门,那么所述NFP控制器产生用来控制发电机/螺线管(m/s)2352以将栓2357插回到锁扣板及门框中的控制信号。
如果发电机/螺线管(m/s)2352是发电机,那么选择性旋转机械移动经产生并例如由弯臂耦合到机械连杆2355中。机械连杆2325机械地耦合到栓2327。响应于所述选择性旋转机械移动,机械连杆2325将所述发电机的旋转平移并耦合到栓2327的线性运动中。可线性地移动栓2327使得其可从门框的锁扣板2374及保险装置2372缩回并插入到门框的锁扣板2374及保险装置2372中。
如果发电机/螺线管(m/s)2352是螺线管,那么选择性线性机械移动响应于所述控制信号而产生并直接耦合到机械连杆2355及栓2327中。所述螺线管、机械连杆2355及/或栓2327可为经加载以响应于所述控制信号的缺失使所述栓从门延伸出并到锁扣板及门框中的弹簧。在任何情况下,在响应于经授权NFP通过控制信号启用所述发电机/螺线管时,可从门框2350的保险装置2372及锁扣板2374移除栓2327。
图21说明NFP进出控制系统,其包含与也可用于进出控制的基站2106无线地通信的电子无线遥控钥匙2102。基站2106可包含用来从遥控钥匙2102接收无线信号的天线2108。遥控钥匙2102包含:外壳2103,其具有NFP控制器2111、按钮开关2104;3D传感器2106(例如,按钮2104下方的3D加速度计2106或3D触摸垫传感器);无线电发射器2109;及电力供应器2199(例如,电池),其安装于所述外壳中。外壳2013可具有可耦合环及物理钥匙的开口2120。
NFP控制器2111耦合到3D传感器2106以捕获用户2100的微运动且响应于其产生NFP。3D传感器2106可为3D加速度计。替代地,3D传感器2106可为供按钮2104捕获微运动以产生NFP的3D触摸垫。按钮2104可为将电力供应器2199暂时地耦合到NFP控制器2111及安装于所述外壳中的其它电子装置的接通/关断电源按钮。按钮2104经按下以请求进出以便解锁住宅/建筑物/设施。按钮2104经按下以请求对运载工具的进出且允许其操作。
不可在空中经由基站与遥控钥匙之间的无线链路开放地发送NFP或其校准参数。可由遥控钥匙2102产生由与NFP相关联的加密代码、用户校准参数及日期/时间戳加密的数字而非令牌。可在不使用物理钥匙的情况下将所述令牌无线地发射到基站2106以授予对设施或住宅的进出。所述令牌可为经加戳记以提供用户的当前明确识别的日期及时间。可通过所述基站响应于用户校准参数、日期/时间戳及加密代码对所述令牌解密。如果所述令牌不是正确数字(未解密到正确数字范围)或过期或在时间范围外(例如,几分钟或几秒不同步),那么将不授予进出。替代地,可通过所述基站响应于与NFP相关联的令牌执行NFP认证。
图24说明具有NFP认证的住宅控制/自动化系统2400的图。系统2400包含在住宅或建筑物内与便携式电子装置700无线地通信的基本控制单元2402。基本控制单元2402(有线地或无线地)耦合到住宅2401中的可控制装置2404A到2404D。可控制装置2404A到2404D可包含但不限于一或多个恒温器(例如,HVAC、供暖、通风及空调系统)、家庭娱乐系统、照明系统、门锁/开具系统(例如,车库门打开、死栓锁定,例如图23A到23D中所展示)、灌溉系统、摄像机系统及警报装置,例如运动传感器。可通过电子装置700响应于用户的NFP认证控制住宅2401内的基本控制单元2402及可控制装置。
电子装置700具有例如先前参考图7所描述的NFP认证。基本控制单元2402也可包含3D触摸垫2405及NFP认证控制器2408,NFP认证控制器2408用来通过NFP经认证用户在无装置700的情况下控制所述基本控制单元处的系统2400。可从电力供应器2499(例如来自变压器的DC电力供应器及备用电池)对基本控制单元2402供电。基本控制单元2402与便携式电子装置700之间的无线通信可经由蜂窝无线电系统或无线局域网络无线电系统(例如,WIFI及/或蓝牙)进行。
为了避免在空中使用无线通信发送NFP,可替代地传达令牌。可由无线装置700响应于NFP认证产生随时间及日期变化的所述令牌。将所述令牌而非NFP无线地发射到基本控制单元2402。
用于NFP认证系统的医疗应用的实例包含对保健专业人士的诊断协助(神经肌肉a.o.)、对患者的治疗监测以及对存储医疗记录的数据库的患者及医生医疗认证(记录、数据路由、…)。用于NFP认证系统的健康及健全应用的实例包含保护用户的体质记录。用于NFP认证系统的游戏应用的实例包含用于虚拟现实游戏的安全特征及/或模拟器。
生物统计加密组合触摸辨识技术与实际数据存储。数据是使用NFP进行加密使得其是不可读取的,除非是数据的经授权用户/拥有者。后门进出是不可用的。然而,作为可信人员的其它经授权用户也可使经授权用户校准参数产生,使得万一出现与原始用户/拥有者相关的问题那么其被授予进出。
可在某些应用中嵌入触摸辨识技术。举例来说,触摸辨识技术可用于进出控制面板使得在由人类手或人类手指触摸表面时,可响应于不使用钥匙(无钥匙)的用户NFP授予或拒绝对车辆、建筑物(例如,住宅或办公室)或区(例如,楼层)的进出。类似地,触摸辨识技术可用于握持于用户的手中或由手指触摸的无线遥控钥匙,使得可响应于不使用钥匙的用户NFP授予或拒绝进出。触摸辨识技术可与指纹认证组合。在此情况下,图像扫描仪及触敏垫可一起用来同时捕获用户指纹及用户NFP两者以用于在授予或拒绝进出中进行多次认证。
使用额外信号处理算法,NFP的产生可经调适以监测用户的健康及健全。NFP再生的改变可减小指示用户健康的退化的匹配百分比。所述改变可用来发现及/或监测神经变性疾病(例如阿兹海默氏症、帕金森症)或用于疗效监测。所述改变可用来获得心率变异性的度量,可使用加速度计通过在用户握持装置时提取心脉的冲击波来测量压力及情绪状态的关联。所述改变可用作可用于例如视频游戏产业的虚拟现实眼镜及护目镜的生理安全特征。
政府可提供在线服务(例如投票),且触摸技术可用来验证经授权用户的身份。学校及教育者可提供在线测试。触摸技术可用来验证网页或网站门户上的用户的身份(用户登录所述网页或网站门户)。举例来说,可容易使用NFP触摸技术识别例如参加在线测试的学生,即使所述学生是在学校参加测试。电子在线银行业务可变得更安全,其中银行能够使用NFP触摸技术验证其顾客的身份。
NFP技术可通过对患者及医生的较好认证以及医疗记录加密来保护医疗记录。用户可认证他/她与保健系统(提供者、保险公司、医疗记录公司…)的交互。用户可以经加密格式将他/她的医疗记录存储于云端中或存储于任何装置上,其中NFP是钥匙。
NFP认证的优点
使用NFP进行触摸辨识存在数个优点。触摸辨识无需集中式数据库。由本地NFP用户认证系统本地控制及屏蔽对电子装置的存取。
NFP的额外优点是一人可被唯一地识别为电子装置的正确用户但保持匿名,从而提供强大的用户隐私保护。NFP是响应于由传感器产生的脑/神经系统相关信号而产生。接着,NFP可提供万无一失的唯一用户识别(即使双胞胎也具有不同肌力)。
触摸辨识采用神经算法以从与手上的手指的微运动相关联的微运动信号产生NFP。这避免了与行为生物统计相关联的背景有关谱系或运动谱系。触摸辨识是用户友好的且可提供无顺畅登录及认证。
神经算法可被开发成软件并添加到具有应用程序设计接口(API)或移动软件开发工具包的先前现有电子装置。可添加其作为系统登录的部分。
神经算法无需连续监测传感器。神经算法可处于睡眠状态直到电子装置从睡眠状态被唤醒或所述传感器感测到触摸为止。训练时间及识别是快速的(仅需几秒)。因此,神经算法可节省电力且智能地使用通常可用于移动装置电子设备的电池电力。
结论
在以软件实施时,实施例的元件本质上是可由一或多个处理器执行以执行及实施任务且提供功能的指令的代码段。举例来说,处理器(例如,图7中的处理器701)可由指令经配置(以硬件、软件或硬件及软件的组合)以执行本文中所描述的NFP认证控制器的功能过程。程序指令或代码段可存储于耦合到一或多个处理器或者至少与一或多个处理器通信的处理器可读媒体或存储装置中(例如,图7中的存储装置702)。所述处理器可读媒体可包含可存储信息的存储装置或任何媒体。处理器可读媒体的实例包含但不限于电子电路、半导体存储器装置、只读存储器(ROM)、快闪存储器、可擦除可编程只读存储器(EPROM)、软盘、CD-ROM、光盘、硬盘或固态驱动。程序或代码段可例如在存储装置之间通过计算机网络(例如因特网、内部网络等)进行下载或传输。
虽然本说明书包含许多细节,但这些细节不应被解释为对本发明的范围或可能主张的内容的限制,相反,应被解释为特定于本发明的特定实施方案的特征的描述。也可在单个实施方案中组合实施在本发明中于单独实施方案的上下文中所描述的某些特征。相反地,也可在多个实施方案中单独地或以子组合实施在单个实施方案的上下文中所描述的各种特征。此外,尽管特征可在上文被描述为以某些组合起作用且甚至最初如此主张,但在一些情况下,来自所主张组合的一或多个特征可从所述组合删除,且所述所主张组合可涉及子组合或子组合的变化。
因此,虽然某些示范性实施例已作特别描述且被展示于附图中,但其不应被解释为受这些实施例的限制,而是相反,应根据所附权利要求书解释。

Claims (59)

1.一种进出控制系统,其包括:
进出控制面板,其包含:
可触摸表面;
所述可触摸表面下方的多维触摸传感器,所述多维触摸传感器用来捕获包含微运动信号分量的多维运动信号,所述微运动信号分量表示触摸所述多维触摸传感器的用户的神经机械微运动;
处理器,其耦合到所述多维触摸传感器;
其中所述处理器经配置以执行所述多维运动信号的信号处理以获得所述微运动信号分量;且
其中响应于与所述用户相关联的用户校准参数,所述处理器经进一步配置以从所述微运动信号分量提取预定特征的唯一值以形成唯一地识别触摸所述多维触摸传感器的所述用户的神经指纹NFP。
2.根据权利要求1所述的进出控制系统,其进一步包括:
进出控制服务器,其经耦合而与所述进出控制面板的所述处理器安全地通信,所述进出控制服务器包含存储装置,所述存储装置存储分别与所述进出控制系统的N个经授权用户相关联的N个用户校准参数的数据库;
其中所述进出控制服务器经配置以结合所述N个用户校准参数中的每一者评估所述用户的所述NFP以确定匹配百分比是否大于或等于进出授予等级;且
其中所述进出控制服务器经进一步配置以响应于所述匹配百分比大于或等于所述进出授予等级,授予对安全结构或区域的进出。
3.根据权利要求2所述的进出控制系统,其中
所述安全结构或区域是建筑物;
所述进出控制面板耦合到所述建筑物的壁;且
所述服务器短暂地解锁所述建筑物的门以通过所述门暂时授予对所述建筑物的进出。
4.根据权利要求2所述的进出控制系统,其中
所述安全结构或区域是由围栏门控;且
所述服务器短暂地解锁门以通过所述门暂时授予对所述安全结构或区域的进出。
5.根据权利要求1所述的进出控制系统,其中所述进出控制面板进一步包含:
存储装置,其耦合到所述处理器,所述存储装置存储分别与所述进出控制系统的N个经授权用户相关联的N个用户校准参数;
其中所述处理器经进一步配置以结合所述N个用户校准参数中的每一者评估所述用户的所述NFP以确定匹配百分比是否大于或等于进出授予等级;且
其中所述处理器经进一步配置以响应于所述匹配百分比大于或等于所述进出授予等级,授予对安全结构或区域的进出。
6.根据权利要求5所述的进出控制系统,其中
所述安全结构或区域是建筑物,
所述进出控制面板耦合到所述建筑物的壁,且
所述处理器短暂地解锁门以通过所述门暂时授予对所述建筑物的进出。
7.根据权利要求5所述的进出控制系统,其中
所述安全结构或区域是由围栏门控;且
所述处理器短暂地解锁门以通过所述门暂时授予对所述安全结构或区域的进出。
8.根据权利要求5所述的进出控制系统,其中
所述多维触摸传感器是三维触摸传感器;且
所述多维运动信号是三维运动信号。
9.一种解锁门而无需物理钥匙的方法,所述方法包括:
在门把手处感测用户的身体部分的多维运动以产生多维运动信号;
响应于所述多维运动信号,产生所述用户独有的神经机械指纹NFP;
从存储装置读取与一或多个经授权用户相关联的经授权用户校准参数的一或多个集;
响应于所述经授权用户校准参数集,评估所述用户的所述NFP以确定最大匹配百分比;
响应于所述最大匹配百分比,通过比较所述最大匹配百分比与经授权用户百分比来确定所述用户是否为经授权用户;及
响应于所述最大匹配百分比大于或等于所述经授权用户百分比,为所述用户解锁门锁。
10.根据权利要求9所述的方法,其中
所述门锁的所述解锁包含使死栓从门口侧的开口撤回到所述门中。
11.根据权利要求9所述的方法,其中
所述门锁的所述解锁包含释放门闩的锁扣使得所述用户可旋转所述门把手以打开门。
12.根据权利要求9所述的方法,其中
所述门把手是门手柄,且
所述门锁的所述解锁包含释放门闩的锁扣使得所述用户可上提所述门手柄以打开门。
13.根据权利要求9所述的方法,其中
所述门把手是门手柄;且
所述门锁的所述解锁包含释放门闩的锁扣使得所述用户可按下按钮以打开门。
14.根据权利要求9所述的方法,其中
在所述门把手处使用多维触摸传感器感测所述用户的所述身体部分的所述多维运动。
15.根据权利要求9所述的方法,其中
在所述门把手处感测所述用户的所述身体部分的至少二维运动以产生至少二维运动信号。
16.一种用于在线服务的方法,所述方法包括:
显示在线服务的网页;
接收与用户相关联的用户名称;
从所述用户接收令牌,所述接收到的令牌与唯一地识别所述用户的神经机械指纹相关联;及
响应于所述接收到的令牌,允许所述用户进出所述在线服务。
17.根据权利要求16所述的方法,其中
所述在线服务是用来在存取与所述用户相关联的电子医疗记录之前认证所述用户的保健服务;且
所述在线服务允许所述经认证用户发送及接收与所述经认证用户相关联的电子医疗记录、电子医疗记录的部分或医疗数据。
18.根据权利要求17所述的方法,其中
所述电子医疗记录是具有标准化格式的通用健康记录。
19.根据权利要求16所述的方法,其中
所述在线服务是政府在线服务;且
与所述神经机械指纹相关联的所述令牌是经加戳记以提供所述用户的当前明确识别的日期及时间。
20.根据权利要求19所述的方法,其中
所述在线服务是在线投票服务。
21.根据权利要求19所述的方法,其中
所述在线服务是在线测试服务。
22.根据权利要求16所述的方法,其进一步包括:
响应于所述用户的所述名称,从存储装置查阅用户校准参数;
响应于所述令牌及所述用户校准参数,产生数字;
响应于所述经产生数字,确定匹配百分比;
响应于所述匹配百分比,通过比较所述匹配百分比与经授权用户百分比来确定所述用户是否为经授权用户;及
响应于所述匹配百分比大于或等于所述经授权用户百分比,允许所述用户存取所述在线服务。
23.根据权利要求22所述的方法,其中
响应于日期及时间戳的预期范围内的日期及时间戳,进一步产生所述经产生数字。
24.根据权利要求22所述的方法,其中
使用加密代码对所述令牌加密且所述数字的所述产生进一步包括:
在产生所述数字之前,响应于所述加密代码对所述令牌解密。
25.根据权利要求23所述的方法,其中
响应于日期及时间戳的预期范围内的日期及时间戳,进一步产生所述经产生数字。
26.根据权利要求24所述的方法,其中
所述令牌的所述解密是进一步响应于日期及时间戳的预期范围内的所述令牌的日期及时间戳。
27.根据权利要求22所述的方法,其进一步包括:
在接收所述令牌之前,将所述用户校准参数存储于所述存储装置中。
28.一种无线进出系统,其包括:
无线遥控钥匙,其包含:
手持外壳;
传感器,其安装于所述外壳中,所述传感器用来感测所述用户的微运动且产生微运动信号;
神经机械指纹NFP认证控制器,其安装于所述外壳中且耦合到所述传感器,所述NFP认证控制器用来接收所述微运动信号、产生NFP,且对照经存储NFP用户校准评估所述NFP以确定匹配百分比,并响应于所述匹配百分比授权进出;
无线电发射器,其耦合到所述NFP认证控制器以接收进出控制信号,所述无线电发射器包含用来响应于所述进出控制信号本地传输授权信号的天线;及
电力供应器,其安装于所述外壳中,所述电力供应器选择性地耦合到所述传感器、所述NFP认证控制器及所述无线电发射器以从所述无线电发射器无线地发射所述授权信号。
29.根据权利要求28所述的无线进出系统,其进一步包括:
无线基站,其具有与所述无线遥控钥匙的所述无线电发射器无线地通信的无线电接收器,所述无线基站用来响应于由所述遥控钥匙产生的经授权NFP控制电子门锁以解锁门并授予进出。
30.根据权利要求29所述的无线进出系统,其中
所述无线基站控制对运载工具的进出;且
所述无线基站响应于由所述遥控钥匙产生的所述经授权NFP进一步控制所述运载工具的操作。
31.根据权利要求30所述的无线进出系统,其中
所述运载工具是汽车且所述受控制操作是所述汽车响应于由所述遥控钥匙产生的所述经授权NFP的发动操作。
32.根据权利要求31所述的无线进出系统,其中
所述发动操作是点燃引擎、松开紧急剎车、将变速器接合到行驶、或启用节流器以控制所述汽车的速度。
33.根据权利要求28所述的无线进出系统,其进一步包括:
无线基站,其具有与所述无线遥控钥匙的所述无线电发射器无线地通信的无线电接收器,所述无线基站用来响应于由所述遥控钥匙产生的经授权NFP控制运载工具的操作。
34.根据权利要求29所述的无线进出系统,其中
所述无线基站通过控制门锁来控制对建筑物的进出;且
所述无线基站响应于由所述遥控钥匙产生的所述经授权NFP进一步控制所述建筑物内的一或多个可控制装置的操作。
35.根据权利要求29所述的无线进出系统,其中
所述一或多个可控制装置包含以下装置中的一或多者:用于供暖的恒温器、通风及空调HVAC系统;娱乐系统;照明系统;灌溉系统;摄像机监控系统;及具有其相关联运动传感器及安全或警报装置的安全系统。
36.一种进出系统,其包括:
基站,其包含:
外壳;
三维运动传感器,其安装于所述外壳中,所述三维运动传感器用来感测用户的微运动且产生微运动信号;及
神经机械指纹NFP认证控制器,其安装于所述外壳中且耦合到所述三维运动传感器,所述NFP认证控制器用来接收所述微运动信号、产生NFP,且对照经存储NFP用户校准评估所述NFP以确定匹配百分比,并响应于所述匹配百分比授权进出;
电子门锁,其电耦合到所述NFP认证控制器,其中所述无线基站响应于所述经授权NFP及所述匹配百分比,通过控制所述电子门锁来控制对建筑物的进出。
37.根据权利要求36所述的进出系统,其中
所述基站响应于所述经授权NFP及所述匹配百分比,控制所述电子门锁以解锁门并授予对所述建筑物的进出。
38.根据权利要求36所述的进出系统,其进一步包括:
一或多个可控制装置,其在所述建筑物内电耦合到所述NFP认证控制器,其中所述无线基站响应于所述经授权NFP及所述匹配百分比,进一步控制所述一或多个可控制装置的操作。
39.根据权利要求38所述的进出系统,其中
所述一或多个可控制装置包含以下装置中的一或多者:用于供暖的恒温器、通风及空调HVAC系统;娱乐系统;照明系统;灌溉系统;摄像机监控系统;及具有其相关联运动传感器及安全或警报装置的安全系统。
40.根据权利要求36所述的进出系统,其中
所述基站进一步包含:
无线电接收器,其耦合到所述NFP认证控制器,所述无线电接收器包含用来本地接收授权信号的天线。
41.根据权利要求40所述的进出系统,其中
所述基站进一步包含:
备用电力供应器,其安装于所述外壳中,所述备用电力供应器选择性地耦合到所述传感器、所述NFP认证控制器及所述无线电接收器以在交流电AC电源断电期间无线地接收所述授权信号。
42.根据权利要求40所述的进出系统,其进一步包括:
无线遥控钥匙,其包含:
手持外壳;
传感器,其安装于所述外壳中,所述传感器用来感测所述用户的微运动且产生微运动信号;
神经机械指纹NFP认证控制器,其安装于所述手持外壳中且耦合到所述传感器,所述NFP认证控制器用来接收所述微运动信号、产生NFP,且对照经存储NFP用户校准评估所述NFP以确定匹配百分比,并响应于所述匹配百分比授权进出;
无线电发射器,其耦合到所述NFP认证控制器以接收进出控制信号,所述无线电发射器包含用来响应于所述进出控制信号本地发射授权信号的天线;及
电力供应器,其安装于所述手持外壳中,所述电力供应器选择性地耦合到所述传感器、所述NFP认证控制器及所述无线电发射器以将所述授权信号从所述基站的所述无线电发射器无线地发射到所述无线电接收器。
43.一种用于进出建筑物的方法,所述方法包括:
在可触摸表面处接收用户的触摸;
响应于所述用户的所述触摸,使用三维运动传感器产生微运动信号;
响应于所述微运动信号,使用神经机械指纹NFP认证控制器产生NFP;
对照经存储NFP用户校准评估所述NFP以确定匹配百分比;及
响应于所述匹配百分比大于或等于预定匹配百分比,授权对所述建筑物的进出。
44.根据权利要求43所述的方法,其进一步包括:
响应于所述匹配百分比小于所述预定匹配百分比,拒绝对所述建筑物的进出。
45.根据权利要求43所述的方法,其进一步包括:
响应于授权对所述建筑物的所述进出,控制电子门锁以解锁门并授予对所述建筑物的进出。
46.根据权利要求45所述的方法,其中所述可触摸表面、所述三维传感器及所述NFP认证控制器安装于具有无线电发射器的遥控钥匙的手持外壳中,且所述方法进一步包括:
使用无线电接收器,从所述遥控钥匙的所述无线电发射器接收表示所述NFP的无线信号。
47.一种检测用户的不清醒度的方法,所述方法包括:
使用多维传感器及神经机械指纹NFP控制器,产生不受药品或酒精的影响的用户的第一经授权NFP;
将所述第一经授权NFP存储到存储装置中;
使用所述多维传感器及所述NFP控制器,产生所述用户的第二经授权NFP;
从所述存储装置重新调用所述第一NFP;及
使用所述NFP控制器,比较所述用户的所述第一NFP与所述第二NFP以得到大于预定百分比的差以确定所述用户是受药品或酒精的影响。
48.根据权利要求47所述的方法,其进一步包括:
响应于所述第一NFP与所述第二NFP的所述差大于所述预定百分比,停用运载工具的操作。
49.根据权利要求48所述的方法,其中
所述多维传感器是在所述运载工具的方向盘中。
50.根据权利要求48所述的方法,其中
所述多维传感器是在与所述运载工具相关联的无线遥控钥匙中。
51.根据权利要求48所述的方法,其中
所述多维传感器是在用来发动所述运载工具的按钮中。
52.根据权利要求48所述的方法,其中
停用所述运载工具的发动操作。
53.根据权利要求48所述的方法,其中
停用所述变速器到行驶的换挡。
54.根据权利要求48所述的方法,其中
停用紧急剎车的松开。
55.根据权利要求48所述的方法,其中
所述多维传感器至少是二维传感器。
56.一种投票方法,所述方法包括:
接收与用户相关联的名称及地址;
响应于所述用户的所述名称及所述地址,从数据库查阅用户校准参数;
多维地感测所述用户的身体部分的运动以产生多维运动信号;
响应于所述多维运动信号,产生所述用户独有的神经机械指纹NFP;
响应于所述用户校准参数,评估所述用户的所述NFP以确定最大匹配百分比;
响应于所述匹配百分比,通过比较所述最大匹配百分比与经授权投票者百分比来确定所述用户是否为经授权投票者;及
响应于所述最大匹配百分比大于或等于所述经授权投票者百分比,允许所述用户投票。
57.根据权利要求56所述的方法,其进一步包括:
在接收与所述用户相关联的所述名称及所述地址之前,
产生所述用户校准参数;
使经授权投票者的所述用户名称及街道地址与所述用户校准参数相关联;及
将与所述用户名称及街道地址相关联的所述用户校准参数存储到数据库中,而无需将所述NFP存储到所述数据库中。
58.根据权利要求56所述的方法,其中
使用多维传感器感测所述身体部分的所述运动。
59.根据权利要求58所述的方法,其中
所述多维传感器至少是二维运动传感器且所述多维运动信号至少是二维运动信号。
CN201680018318.XA 2015-02-04 2016-02-04 使用神经及神经机械指纹的无钥匙进出控制 Active CN107683106B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562112153P 2015-02-04 2015-02-04
US62/112,153 2015-02-04
US15/013,810 US9836896B2 (en) 2015-02-04 2016-02-02 Keyless access control with neuro and neuro-mechanical fingerprints
US15/013,810 2016-02-02
PCT/US2016/016663 WO2016127006A1 (en) 2015-02-04 2016-02-04 Keyless access control with neuro and neuro-mechanical fingerprints

Publications (2)

Publication Number Publication Date
CN107683106A true CN107683106A (zh) 2018-02-09
CN107683106B CN107683106B (zh) 2021-09-03

Family

ID=56564719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680018318.XA Active CN107683106B (zh) 2015-02-04 2016-02-04 使用神经及神经机械指纹的无钥匙进出控制

Country Status (5)

Country Link
US (4) US9836896B2 (zh)
EP (2) EP3253285B1 (zh)
CN (1) CN107683106B (zh)
TW (4) TWI755093B (zh)
WO (1) WO2016127006A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113313859A (zh) * 2021-05-18 2021-08-27 连洁 基于节奏的智能锁系统及方法
CN113747407A (zh) * 2021-08-25 2021-12-03 上海瓶钵信息科技有限公司 适用于遮挡环境的蓝牙定位系统、方法、介质及设备

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9836896B2 (en) * 2015-02-04 2017-12-05 Proprius Technologies S.A.R.L Keyless access control with neuro and neuro-mechanical fingerprints
US9693711B2 (en) * 2015-08-07 2017-07-04 Fitbit, Inc. User identification via motion and heartbeat waveform data
CN106874725A (zh) * 2017-01-23 2017-06-20 广东欧珀移动通信有限公司 一种指纹解锁方法及移动终端
CN107454246A (zh) * 2017-06-07 2017-12-08 深圳市驿固科技有限公司 一种可视化界面管理电子设备的方法
CN109426713B (zh) * 2017-08-28 2022-05-24 关楗股份有限公司 用于身份核实系统中的造假生物特征过滤装置
US10235821B1 (en) * 2017-11-17 2019-03-19 Brivo Systems, Llc Virtual door knocker apparatus, system, and method of operation
US11228601B2 (en) * 2018-03-20 2022-01-18 Intel Corporation Surveillance-based relay attack prevention
US10769260B2 (en) 2018-04-10 2020-09-08 Assured Information Security, Inc. Behavioral biometric feature extraction and verification
US11449746B2 (en) 2018-04-10 2022-09-20 Assured Information Security, Inc. Behavioral biometric feature extraction and verification
US10769259B2 (en) * 2018-04-10 2020-09-08 Assured Information Security, Inc. Behavioral biometric feature extraction and verification
US11405386B2 (en) * 2018-05-31 2022-08-02 Samsung Electronics Co., Ltd. Electronic device for authenticating user and operating method thereof
US10587615B2 (en) * 2018-06-06 2020-03-10 Capital One Services, Llc Systems and methods for using micro accelerations as a biometric identification factor
US11030287B2 (en) * 2018-06-07 2021-06-08 T-Mobile Usa, Inc. User-behavior-based adaptive authentication
US20190386513A1 (en) * 2018-06-14 2019-12-19 Integrated Device Technology, Inc. Bi-directional communication in wireless power transmission
WO2020058561A1 (en) 2018-09-18 2020-03-26 Nokia Technologies Oy Apparatus and method for authenticating a user
KR20200100481A (ko) * 2019-02-18 2020-08-26 삼성전자주식회사 생체 정보를 인증하기 위한 전자 장치 및 그의 동작 방법
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
EP3751532A1 (en) * 2019-06-13 2020-12-16 Rohde & Schwarz GmbH & Co. KG Remote access and control system and corresponding method
US11904866B2 (en) 2019-07-31 2024-02-20 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for brain-machine interfaces and EEG-based driver identification
CN110415415A (zh) * 2019-08-02 2019-11-05 深圳大学 一种用于门禁系统的身份验证方法
US11750605B2 (en) * 2019-08-21 2023-09-05 Texas Instruments Incorporated Identity validation using Bluetooth fingerprinting authentication
US11055941B1 (en) * 2020-03-31 2021-07-06 Nxp B.V. System and method of improving security during backup functionality of electronic control key
TR202009757A2 (tr) * 2020-06-23 2022-01-21 Oyak Renault Otomobil Fabrikalari Anonim Sirketi Bagaj açma yöntemi̇
TWI764233B (zh) * 2020-08-12 2022-05-11 高雄醫學大學 阿茲海默症評估系統
CN113298028A (zh) * 2020-11-03 2021-08-24 神盾股份有限公司 电子装置以及指纹影像校正方法
US11947648B2 (en) * 2020-12-23 2024-04-02 Proprius Technolgies S.A.R.L Electronic device related to user identification, authentication, liveliness, encryption using biometrics technology and methods for operation thereof
US11348389B1 (en) * 2021-05-17 2022-05-31 Marat Kushnir Lock and switch controller device with offline responsiveness to flexible commands
US11875621B2 (en) * 2021-05-17 2024-01-16 Marat Kushnir Lock and switch controller system, lock and switch device with offline responsiveness, lock and switch controller system with flexible commands

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120206586A1 (en) * 2004-04-16 2012-08-16 Validity Sensors, Inc. Unitized ergonomic two-dimensional fingerprint motion tracking device and method

Family Cites Families (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972038A (en) 1975-03-28 1976-07-27 Nasa Accelerometer telemetry system
US4723625A (en) 1985-12-16 1988-02-09 Susan Komlos Sobriety tester
US5197489A (en) 1991-06-17 1993-03-30 Precision Control Design, Inc. Activity monitoring apparatus with configurable filters
US5293879A (en) 1991-09-23 1994-03-15 Vitatron Medical, B.V. System an method for detecting tremors such as those which result from parkinson's disease
US5573011A (en) 1994-04-08 1996-11-12 Felsing; Gary W. System for quantifying neurological function
US6076167A (en) * 1996-12-04 2000-06-13 Dew Engineering And Development Limited Method and system for improving security in network applications
US6806863B1 (en) 1999-10-15 2004-10-19 Harmonic Research, Inc. Body-mounted selective control device
US6097374A (en) 1997-03-06 2000-08-01 Howard; Robert Bruce Wrist-pendent wireless optical keyboard
US6980672B2 (en) * 1997-12-26 2005-12-27 Enix Corporation Lock and switch using pressure-type fingerprint sensor
US20020124176A1 (en) 1998-12-14 2002-09-05 Michael Epstein Biometric identification mechanism that preserves the integrity of the biometric information
EP1145180A2 (en) 1999-04-28 2001-10-17 San Diego State University Foundation Electronic medical record registry including data replication
JP2001057551A (ja) 1999-08-18 2001-02-27 Nec Corp 暗号化通信システムおよび暗号化通信方法
WO2002005478A1 (en) 2000-07-09 2002-01-17 Black Gerald R Network security system
US7030860B1 (en) 1999-10-08 2006-04-18 Synaptics Incorporated Flexible transparent touch sensing system for electronic devices
US6721738B2 (en) 2000-02-01 2004-04-13 Gaveo Technology, Llc. Motion password control system
US6454706B1 (en) 2000-03-02 2002-09-24 The Trustees Of Columbia University In The City Of New York System and method for clinically assessing motor function
US7558965B2 (en) 2000-08-04 2009-07-07 First Data Corporation Entity authentication in electronic communications by providing verification status of device
JP4660900B2 (ja) 2000-08-31 2011-03-30 ソニー株式会社 個人認証適用データ処理システム、個人認証適用データ処理方法、および情報処理装置、並びにプログラム提供媒体
US20040069846A1 (en) 2000-11-22 2004-04-15 Francis Lambert Method and apparatus for non-intrusive biometric capture
US20020112177A1 (en) 2001-02-12 2002-08-15 Voltmer William H. Anonymous biometric authentication
WO2002065693A2 (en) 2001-02-14 2002-08-22 Scientific Generics Limited Cryptographic key generation apparatus and method
US8554607B2 (en) * 2001-03-13 2013-10-08 Science Applications International Corporation Method and system for securing network-based electronic voting
US7369688B2 (en) 2001-05-09 2008-05-06 Nanyang Technological Univeristy Method and device for computer-based processing a template minutia set of a fingerprint and a computer readable storage medium
US7689272B2 (en) 2001-06-07 2010-03-30 Lawrence Farwell Method for brain fingerprinting, measurement, assessment and analysis of brain function
US20030028774A1 (en) 2001-08-06 2003-02-06 Meka Anil Kumar Ensuring the integrity of an electronic document
NO316489B1 (no) 2001-10-01 2004-01-26 Genkey As System, b¶rbar anordning og fremgangsmåte for digital autentisering, kryptering og signering ved generering av flyktige, men konsistente ogrepeterbare kryptonökler
US20030140232A1 (en) 2002-01-21 2003-07-24 De Lanauze Pierre Method and apparatus for secure encryption of data
US7162475B2 (en) 2002-04-17 2007-01-09 Ackerman David M Method for user verification and authentication and multimedia processing for interactive database management and method for viewing the multimedia
US6993659B2 (en) 2002-04-23 2006-01-31 Info Data, Inc. Independent biometric identification system
US20030219121A1 (en) 2002-05-24 2003-11-27 Ncipher Corporation, Ltd Biometric key generation for secure storage
US20050144136A1 (en) 2002-06-28 2005-06-30 Fujitsu Limited Content providing system and content reproducing apparatus
CA2491628A1 (en) 2002-07-03 2004-01-15 Aurora Wireless Technologies, Ltd. Biometric private key infrastructure
WO2004010365A2 (en) 2002-07-19 2004-01-29 Dicut Inc. Face recognition system and method therefor
US7171680B2 (en) 2002-07-29 2007-01-30 Idesia Ltd. Method and apparatus for electro-biometric identity recognition
US7616784B2 (en) 2002-07-29 2009-11-10 Robert William Kocher Method and apparatus for contactless hand recognition
US20040123113A1 (en) * 2002-12-18 2004-06-24 Svein Mathiassen Portable or embedded access and input devices and methods for giving access to access limited devices, apparatuses, appliances, systems or networks
US20060133651A1 (en) 2002-12-31 2006-06-22 Polcha Andrew J Recoverable biometric identity system and method
US20050008148A1 (en) * 2003-04-02 2005-01-13 Dov Jacobson Mouse performance identification
JP2006524352A (ja) 2003-04-23 2006-10-26 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. バイオメトリクスに基づいたアイデンティティベースの暗号化方法および装置
US8751801B2 (en) 2003-05-09 2014-06-10 Emc Corporation System and method for authenticating users using two or more factors
US7249263B2 (en) 2003-07-25 2007-07-24 International Business Machines Corporation Method and system for user authentication and identification using behavioral and emotional association consistency
TWI255628B (en) * 2003-09-26 2006-05-21 Lite On Technology Corp Door lock apparatus with security authentication by wireless communication device and method for the same
US20050188213A1 (en) 2004-02-23 2005-08-25 Xiaoshu Xu System for personal identity verification
US20090240949A9 (en) 2004-04-23 2009-09-24 Kitchens Fred L Identity authentication based on keystroke latencies using a genetic adaptive neural network
EP2273484B1 (en) * 2004-04-30 2019-08-28 Hillcrest Laboratories, Inc. Methods and devices for removing unintentional movement in free space pointing devices
JP4657668B2 (ja) 2004-10-08 2011-03-23 富士通株式会社 生体認証方法及び生体認証装置
US8533791B2 (en) 2004-07-15 2013-09-10 Anakam, Inc. System and method for second factor authentication services
KR101019844B1 (ko) 2004-11-08 2011-03-04 이데시아 엘티디. 전기-생체 신원 인식 방법 및 장치
KR20060053812A (ko) 2004-11-17 2006-05-22 삼성전자주식회사 생체신호를 이용한 생체 인식 장치 및 방법
US7565548B2 (en) 2004-11-18 2009-07-21 Biogy, Inc. Biometric print quality assurance
US20090293112A1 (en) 2004-12-03 2009-11-26 Stephen James Moore On-line generation and authentication of items
IL165586A0 (en) 2004-12-06 2006-01-15 Daphna Palti Wasserman Multivariate dynamic biometrics system
US7779268B2 (en) 2004-12-07 2010-08-17 Mitsubishi Electric Research Laboratories, Inc. Biometric based user authentication and data encryption
US20060176146A1 (en) * 2005-02-09 2006-08-10 Baldev Krishan Wireless universal serial bus memory key with fingerprint authentication
KR100718125B1 (ko) 2005-03-25 2007-05-15 삼성전자주식회사 생체신호와 인공신경회로망을 이용한 생체인식 장치 및방법
US20060282681A1 (en) 2005-05-27 2006-12-14 Scheidt Edward M Cryptographic configuration control
US8189788B2 (en) 2005-07-15 2012-05-29 Tyfone, Inc. Hybrid symmetric/asymmetric cryptography with user authentication
US20070140530A1 (en) * 2005-12-20 2007-06-21 Coogan John M Method and apparatus for providing fingerprint authentication and actuation
US20080005578A1 (en) * 2006-06-29 2008-01-03 Innovya Research & Development Ltd. System and method for traceless biometric identification
US8169299B2 (en) 2006-07-12 2012-05-01 Onasset Intelligence, Inc. Method and apparatus for neural activity identification
SG139580A1 (en) 2006-07-20 2008-02-29 Privylink Pte Ltd Method for generating cryptographic key from biometric data
EP1892674A1 (de) 2006-08-23 2008-02-27 Siemens Aktiengesellschaft Gehirnmusterbasiertes Zugangskontrollsystem
US8266681B2 (en) 2006-08-29 2012-09-11 Ca, Inc. System and method for automatic network logon over a wireless network
US7886156B2 (en) * 2006-09-18 2011-02-08 John Franco Franchi Secure universal transaction system
EP2074552A1 (en) 2006-09-29 2009-07-01 Koninklijke Philips Electronics N.V. Template synthesis for ecg/ppg based biometrics
US20080114271A1 (en) 2006-11-13 2008-05-15 David Rubenstein Method of neuromuscular calibration
US20080148393A1 (en) 2006-12-15 2008-06-19 Barry Myron Wendt Neural authenticator and method
US7971156B2 (en) * 2007-01-12 2011-06-28 International Business Machines Corporation Controlling resource access based on user gesturing in a 3D captured image stream of the user
US8095974B2 (en) 2007-02-23 2012-01-10 At&T Intellectual Property I, L.P. Methods, systems, and products for identity verification
US8674804B2 (en) 2007-03-01 2014-03-18 Deadman Technologies, Llc Control of equipment using remote display
GB0708029D0 (en) 2007-04-25 2007-06-06 Everynone Counts Inc Supervised voting system and method
WO2008143941A1 (en) 2007-05-15 2008-11-27 Searete Llc Computational user-health testing
US8065529B2 (en) 2007-05-21 2011-11-22 Ut-Battelle, Llc Methods for using a biometric parameter in the identification of persons
US20080313707A1 (en) 2007-06-18 2008-12-18 Techporch, Inc. Token-based system and method for secure authentication to a service provider
IL184399A0 (en) 2007-07-03 2007-10-31 Yossi Tsuria Content delivery system
US20090060183A1 (en) 2007-08-29 2009-03-05 Dynasig Corporation Private lock infrastructure
US20090110192A1 (en) 2007-10-30 2009-04-30 General Electric Company Systems and methods for encrypting patient data
US20090251311A1 (en) * 2008-04-06 2009-10-08 Smith Patrick W Systems And Methods For Cooperative Stimulus Control
US20090320123A1 (en) 2008-06-20 2009-12-24 Motorola, Inc. Method and apparatus for user recognition employing motion passwords
US20100056878A1 (en) 2008-08-28 2010-03-04 Partin Dale L Indirectly coupled personal monitor for obtaining at least one physiological parameter of a subject
US9400879B2 (en) 2008-11-05 2016-07-26 Xerox Corporation Method and system for providing authentication through aggregate analysis of behavioral and time patterns
US9077537B2 (en) 2008-11-13 2015-07-07 International Business Machines Corporation Generating secure private keys for use in a public key communications environment
GB2465782B (en) 2008-11-28 2016-04-13 Univ Nottingham Trent Biometric identity verification
US8920345B2 (en) 2008-12-07 2014-12-30 Apdm, Inc. System and apparatus for continuous monitoring of movement disorders
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
US8941466B2 (en) 2009-01-05 2015-01-27 Polytechnic Institute Of New York University User authentication for devices with touch sensitive elements, such as touch sensitive display screens
US8590021B2 (en) 2009-01-23 2013-11-19 Microsoft Corporation Passive security enforcement
JP5177075B2 (ja) 2009-02-12 2013-04-03 ソニー株式会社 動作認識装置、動作認識方法、プログラム
JP5458597B2 (ja) 2009-02-20 2014-04-02 富士通株式会社 照合装置及び認証装置
JP5245971B2 (ja) 2009-03-26 2013-07-24 富士通株式会社 生体情報処理装置および方法
WO2010116470A1 (ja) 2009-03-30 2010-10-14 富士通株式会社 生体認証装置、生体認証方法、および記憶媒体
WO2010126504A1 (en) 2009-04-29 2010-11-04 Hewlett-Packard Development Company, L.P. Fingerprint scanner
US8260262B2 (en) * 2009-06-22 2012-09-04 Mourad Ben Ayed Systems for three factor authentication challenge
FR2948793B1 (fr) 2009-07-28 2014-10-31 Thales Sa Procede securise de reconstruction d'une mesure de reference d'une donnee confidentielle a partir d'une mesure bruitee de cette donne, notamment pour la generation de cles cryptographiques
WO2011042950A1 (ja) 2009-10-05 2011-04-14 富士通株式会社 生体情報処理装置、生体情報処理方法及び生体情報処理用コンピュータプログラム
JP5270514B2 (ja) 2009-10-23 2013-08-21 株式会社日立製作所 生体認証方法及び計算機システム
EP2511845A4 (en) 2009-12-08 2014-04-23 Fujitsu Ltd BIOMETRIC AUTHENTICATION SYSTEM AND BIOMETRIC AUTHENTICATION METHOD
KR101081369B1 (ko) 2010-01-26 2011-11-08 중앙대학교 산학협력단 생체신호의 특징 추출 장치 및 방법
US8762734B2 (en) 2010-02-10 2014-06-24 Raytheon Company Biometric pressure grip
US9872637B2 (en) 2010-04-21 2018-01-23 The Rehabilitation Institute Of Chicago Medical evaluation system and method using sensors in mobile devices
CN102821681B (zh) 2010-04-28 2015-02-18 松下电器产业株式会社 脑电波测量装置、电噪声的推定方法
TWI424321B (zh) * 2010-05-14 2014-01-21 Chunghwa Telecom Co Ltd 雲端儲存系統及方法
US8959357B2 (en) 2010-07-15 2015-02-17 International Business Machines Corporation Biometric encryption and key generation
EP2458524B1 (en) 2010-11-25 2018-08-15 Deutsche Telekom AG Identifying a user of a mobile electronic device
US20120137340A1 (en) 2010-11-29 2012-05-31 Palo Alto Research Center Incorporated Implicit authentication
US8938787B2 (en) 2010-11-29 2015-01-20 Biocatch Ltd. System, device, and method of detecting identity of a user of a mobile electronic device
US9372979B2 (en) * 2011-01-07 2016-06-21 Geoff Klein Methods, devices, and systems for unobtrusive mobile device user recognition
US20120316458A1 (en) * 2011-06-11 2012-12-13 Aliphcom, Inc. Data-capable band for medical diagnosis, monitoring, and treatment
US20120316456A1 (en) * 2011-06-10 2012-12-13 Aliphcom Sensory user interface
US20130173926A1 (en) 2011-08-03 2013-07-04 Olea Systems, Inc. Method, Apparatus and Applications for Biometric Identification, Authentication, Man-to-Machine Communications and Sensor Data Processing
US8407774B2 (en) 2011-08-31 2013-03-26 Delfigo Corporation Cloud authentication processing and verification
US9729549B2 (en) * 2011-09-24 2017-08-08 Elwha Llc Behavioral fingerprinting with adaptive development
US9043048B2 (en) * 2011-10-13 2015-05-26 Panasonic Automotive Systems Company Of America, Division Of Panasonic Corporation Of North America RF biometric ignition control system
US8707040B2 (en) 2011-10-31 2014-04-22 Neuropace, Inc. Establishing secure communication between an implantable medical device and an external device
US10064571B2 (en) 2011-12-12 2018-09-04 Medvet Science Pty Ltd Method and apparatus for detecting the onset of hypoglycaemia
KR101242390B1 (ko) 2011-12-29 2013-03-12 인텔 코오퍼레이션 사용자를 인증하기 위한 방법, 장치, 및 컴퓨터 판독 가능한 기록 매체
TWI469613B (zh) * 2012-03-02 2015-01-11 Univ Nat Cheng Kung 雲端認證系統及方法
US8752146B1 (en) 2012-03-29 2014-06-10 Emc Corporation Providing authentication codes which include token codes and biometric factors
US9137246B2 (en) * 2012-04-09 2015-09-15 Brivas Llc Systems, methods and apparatus for multivariate authentication
US8959358B2 (en) 2012-05-08 2015-02-17 Qualcomm Incorporated User-based identification system for social networks
US20130307670A1 (en) 2012-05-15 2013-11-21 Jonathan E. Ramaci Biometric authentication system
US20130338539A1 (en) 2012-06-14 2013-12-19 International Business Machines Corporation Software program for monitoring a hand tremor of an end-user via a computer mouse input device
US9268405B2 (en) 2012-06-15 2016-02-23 International Business Machines Corporation Adaptive gesture-based method, system and computer program product for preventing and rehabilitating an injury
US20130342314A1 (en) * 2012-06-22 2013-12-26 Gun Chen Smart lock structure and operating method thereof
TW201402378A (zh) * 2012-07-11 2014-01-16 Hon Hai Prec Ind Co Ltd 汽車啟動控制系統及方法
EP2895067B1 (en) 2012-09-11 2021-02-24 The Cleveland Clinic Foundation Evaluation of movement disorders
US20140171834A1 (en) 2012-10-20 2014-06-19 Elizabethtown College Electronic-Movement Analysis Tool for Motor Control Rehabilitation and Method of Using the Same
US20140157401A1 (en) 2012-11-30 2014-06-05 Motorola Mobility Llc Method of Dynamically Adjusting an Authentication Sensor
US11194368B2 (en) 2012-12-10 2021-12-07 Adobe Inc. Accelerometer-based biometric data
EP2936458A1 (en) * 2012-12-20 2015-10-28 Unicredit S.p.A. Biometric recognition method with speed and security feature suitable for pos/atm applications
US9223459B2 (en) 2013-01-25 2015-12-29 University Of Washington Through Its Center For Commercialization Using neural signals to drive touch screen devices
JP5642210B2 (ja) 2013-02-04 2014-12-17 インテル コーポレイション 電子バイオメトリック識別認識のための方法及び装置
US20140228701A1 (en) 2013-02-11 2014-08-14 University Of Washington Through Its Center For Commercialization Brain-Computer Interface Anonymizer
WO2014165230A1 (en) 2013-03-13 2014-10-09 Lookout, Inc. System and method for changing security behavior of a device based on proximity to another device
US20140281568A1 (en) 2013-03-15 2014-09-18 Google Inc. Using Biometrics to Generate Encryption Keys
CN105051647B (zh) 2013-03-15 2018-04-13 英特尔公司 基于生物物理信号的搜集时间和空间模式的大脑计算机接口(bci)系统
WO2014172494A1 (en) 2013-04-16 2014-10-23 Imageware Systems, Inc. Conditional and situational biometric authentication and enrollment
US9207772B2 (en) * 2013-05-13 2015-12-08 Ohio University Motion-based identity authentication of an individual with a communications device
US10042994B2 (en) * 2013-10-08 2018-08-07 Princeton Identity, Inc. Validation of the right to access an object
WO2015066274A1 (en) * 2013-10-30 2015-05-07 Ohio University Motion-based identity authentication of an individual
US9594433B2 (en) 2013-11-05 2017-03-14 At&T Intellectual Property I, L.P. Gesture-based controls via bone conduction
JP5613314B1 (ja) 2013-11-14 2014-10-22 Jfeシステムズ株式会社 ジェスチャー検出装置、ジェスチャー検出プログラム、ジェスチャー認識装置およびジェスチャー認識プログラム
KR102091161B1 (ko) * 2013-12-05 2020-03-19 엘지전자 주식회사 이동 단말기 및 그것의 제어방법
US9239917B2 (en) * 2013-12-03 2016-01-19 Lenovo (Singapore) Ltd. Ptd. Gesture controlled login
US9660974B2 (en) 2014-02-18 2017-05-23 Secureauth Corporation Fingerprint based authentication for single sign on
US10032008B2 (en) 2014-02-23 2018-07-24 Qualcomm Incorporated Trust broker authentication method for mobile devices
US20150248799A1 (en) * 2014-02-28 2015-09-03 Lg Innotek Co., Ltd. Fingerprint identification system for vehicle and vehicle smart key including the same
US9510196B2 (en) 2014-03-17 2016-11-29 Qualcomm Incorporated Method and apparatus for authenticating a user on a mobile device
EP3608812A1 (en) 2014-03-21 2020-02-12 Samsung Electronics Co., Ltd. System and method for executing file by using biometric information
US9355236B1 (en) 2014-04-03 2016-05-31 Fuji Xerox Co., Ltd. System and method for biometric user authentication using 3D in-air hand gestures
TWM491703U (zh) * 2014-06-13 2014-12-11 Taiwan Secom Co Ltd 具有密碼鎖的保全系統
CA2954793C (en) * 2014-07-11 2023-10-10 No Tears Learning Inc. System and method for teaching pre-keyboarding and keyboarding
US9311464B2 (en) 2014-08-19 2016-04-12 Airwatch, Llc Authentication via accelerometer
US9501881B2 (en) * 2014-08-20 2016-11-22 Gate Labs Inc. Access management and resource sharing system based on biometric identity
US9710071B2 (en) 2014-09-22 2017-07-18 Rovi Guides, Inc. Methods and systems for recalibrating a user device based on age of a user and received verbal input
CN205050141U (zh) 2014-09-30 2016-02-24 苹果公司 电子设备
US9569776B2 (en) * 2014-11-12 2017-02-14 BenedorTSE LLC Secure authorizations using independent communications and different one-time-use encryption keys for each party to a transaction
WO2016094375A1 (en) 2014-12-08 2016-06-16 Rutgers, The State University Of New Jersey Methods for measuring physiologically relevant motion
US9805534B2 (en) * 2014-12-23 2017-10-31 Gate Labs Inc. Increased security electronic lock
US9836896B2 (en) * 2015-02-04 2017-12-05 Proprius Technologies S.A.R.L Keyless access control with neuro and neuro-mechanical fingerprints
US9590986B2 (en) * 2015-02-04 2017-03-07 Aerendir Mobile Inc. Local user authentication with neuro and neuro-mechanical fingerprints
US9577992B2 (en) * 2015-02-04 2017-02-21 Aerendir Mobile Inc. Data encryption/decryption using neuro and neuro-mechanical fingerprints
US10357210B2 (en) * 2015-02-04 2019-07-23 Proprius Technologies S.A.R.L. Determining health change of a user with neuro and neuro-mechanical fingerprints
US10089452B2 (en) * 2016-09-02 2018-10-02 International Business Machines Corporation Three-dimensional fingerprint scanner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120206586A1 (en) * 2004-04-16 2012-08-16 Validity Sensors, Inc. Unitized ergonomic two-dimensional fingerprint motion tracking device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113313859A (zh) * 2021-05-18 2021-08-27 连洁 基于节奏的智能锁系统及方法
CN113313859B (zh) * 2021-05-18 2023-06-02 连洁 基于节奏的智能锁系统及方法
CN113747407A (zh) * 2021-08-25 2021-12-03 上海瓶钵信息科技有限公司 适用于遮挡环境的蓝牙定位系统、方法、介质及设备

Also Published As

Publication number Publication date
TW202242684A (zh) 2022-11-01
US10706655B2 (en) 2020-07-07
US11244526B2 (en) 2022-02-08
WO2016127006A1 (en) 2016-08-11
TWI706267B (zh) 2020-10-01
EP3669766B1 (en) 2021-09-01
CN107683106B (zh) 2021-09-03
US9836896B2 (en) 2017-12-05
EP3253285B1 (en) 2019-10-30
TWI774080B (zh) 2022-08-11
EP3253285A1 (en) 2017-12-13
TWI813132B (zh) 2023-08-21
US20200312071A1 (en) 2020-10-01
US20160232726A1 (en) 2016-08-11
US20220343710A1 (en) 2022-10-27
TW201642168A (zh) 2016-12-01
EP3669766A1 (en) 2020-06-24
TWI755093B (zh) 2022-02-11
TW202107310A (zh) 2021-02-16
TW202105213A (zh) 2021-02-01
US20180158266A1 (en) 2018-06-07
EP3253285A4 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
CN107683106A (zh) 使用神经及神经机械指纹的无钥匙进出控制
CN107710713A (zh) 使用神经及神经机械指纹的数据加密/解密
CN107708546A (zh) 使用神经及神经机械指纹的本地用户认证
CN107708525A (zh) 使用神经及神经机械指纹来确定用户的健康改变

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant