CN107670657A - 一种Zn2SnO4@C光催化剂及其制备方法 - Google Patents

一种Zn2SnO4@C光催化剂及其制备方法 Download PDF

Info

Publication number
CN107670657A
CN107670657A CN201710959573.0A CN201710959573A CN107670657A CN 107670657 A CN107670657 A CN 107670657A CN 201710959573 A CN201710959573 A CN 201710959573A CN 107670657 A CN107670657 A CN 107670657A
Authority
CN
China
Prior art keywords
solution
sno
obtains
added
photochemical catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710959573.0A
Other languages
English (en)
Other versions
CN107670657B (zh
Inventor
谈国强
王敏
刘婷
张丹
李斌
任慧君
夏傲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhichanhui Technology Co ltd
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201710959573.0A priority Critical patent/CN107670657B/zh
Publication of CN107670657A publication Critical patent/CN107670657A/zh
Application granted granted Critical
Publication of CN107670657B publication Critical patent/CN107670657B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

一种Zn2SnO4@C光催化剂及其制备方法。将Zn(NO3)2·6H2O加入到去离子水得A溶液;将SnCl4·5H2O加入到去离子水中得B溶液;再将B溶液缓慢加入到A溶液中混合搅拌得C液,之后,加入柠檬酸作为添加剂;最后向混合溶液中加入NaOH溶液调节溶液pH至7.5‑8.5,搅拌均匀得反应前驱液,采用微波水热法制备出Zn2SnO4@C光催化剂的。本发明一步合成Zn2SnO4@C光催化剂的,其流程简易,操作简单,反应时间短,反应条件温和,且具有高的光催化活性和良好的应用前景。

Description

一种Zn2SnO4@C光催化剂及其制备方法
技术领域
本发明属于功能材料领域,具体涉及一种Zn2SnO4@C光催化剂及其制备方法。
背景技术
目前,环境污染越来越严重,尤其是空气污染和水污染,已经影响到了人类的正常生活。迄今为止,最常用的处理污染水体的方法有以下几种,如浮选法、蒸发法、萃取法、氧化还原法、絮凝法等,虽然可以去除悬浮物和部分有机污染物,但是对于难降解的有机物,效果却非常差,而且常常会造成二次污染。与上述方法相比,半导体光催化技术可以将有机物彻底降解成无毒的无机小分子,效果良好,并且以太阳光为驱动力成本低廉,具有明显的优势,因此半导体光催化是一种非常有潜力的污水处理技术。
Zn2SnO4作为一种新型的可见光催化剂引起了科研工作者的广泛关注,许多科学家将其应用于降解有机染料,以达到治理水体污染目的。大量研究表明,光催化剂的光催化性能与材料自身的晶体结构、比表面积、晶粒尺寸和颗粒形貌等有很大关系。颗粒细小、比表面积大的粉体往往光催化活性比较高。
发明内容
本发明的目的在于提供一种Zn2SnO4@C光催化剂及其制备方法,该方法操作简单,反应时间短,反应条件温和,制备的Zn2SnO4@C光催化剂在紫外光照射下具有较高的降解速率。
为达到上述目的,本发明的制备方法为:Zn2SnO4@C光催化剂的制备方法,其特征在于,包括以下步骤:
步骤1:取0.002mol的Zn(NO3)2·6H2O溶解到20mL去离子水中磁力搅拌得A溶液;
步骤2:取0.0015-0.0025mol的SnCl4·5H2O溶解到20mL去离子水中磁力搅拌得B溶液;
步骤3:将B溶液缓慢加入到A溶液中,得到Zn(NO3)2·6H2O和SnCl4·5H2O的混合溶液,向混合溶液中加入柠檬酸磁力搅拌得含有柠檬酸的C溶液;
步骤4:向C溶液中加入NaOH溶液调节pH值为7.5-8.5,磁力搅拌得反应前驱液;
步骤5:将反应前驱液加入微波水热反应釜中,将微波水热反应釜置于微波辅助水热合成仪中,在300W的微波功率下,10min从室温升温至150-220℃反应;
步骤6:待反应结束后,自然冷却至70℃,取出微波水热反应釜中的沉淀物,用去离子水和无水乙醇洗涤,最后在80℃下恒温干燥得Zn2SnO4@C光催化剂。
所述的步骤3)C溶液中柠檬酸的浓度为0.03-0.045g/mL。
所述的步骤4)中所加入的NaOH溶液的浓度为1mol/L。
所述的步骤5)微波水热反应釜的填充比为40-70%。
按以上制备方法制成的Zn2SnO4@C光催化剂中Zn2SnO4为不规则球状,外面包裹无定形C,形成了C包裹Zn2SnO材料,即Zn2SnO4@C光催化剂,且光催化剂平均34nm颗粒堆积形成团聚体,团聚间有连通孔。
相对于现有技术,本发明的有益效果为:
本发明以六水合硝酸锌(Zn(NO3)2·6H2O)为锌源,五水合四氯化锡(SnCl4·5H2O)为锡源,柠檬酸为添加剂,使用NaOH溶液调节pH值,通过微波水热法一步制备出Zn2SnO4@C光催化剂。其流程简易,操作简单,反应时间短,反应条件温和,合成的Zn2SnO4@C光催化剂有高的光催化活性和良好的应用前景。
附图说明
图1是本发明制备的Zn2SnO4@C光催化剂的XRD图,其中a、b、c分别为实施例1、2、3制备的Zn2SnO4@C光催化剂的XRD图。
图2是本发明实施例2制备得到的Zn2SnO4粉体的SEM图。
图3是实施例1制备的Zn2SnO4@C光催化剂的FT-IR图。
图4是本发明制备的Zn2SnO4粉体降解罗丹明B的降解率-时间曲线,其中a-e分别为实施例1-实施例5制备的Zn2SnO4@C光催化剂降解罗丹明B的降解率-时间曲线。
具体实施方式
下面结合实施例和附图对本发明作进一步详细说明。
实施例1:
步骤1:取0.002mol的Zn(NO3)2·6H2O溶解到20mL去离子水中磁力搅拌得A溶液;
步骤2:取0.0015mol的SnCl4·5H2O溶解到20mL去离子水中磁力搅拌得B溶液;
步骤3:将B溶液缓慢加入到A溶液中,得到Zn(NO3)2·6H2O和SnCl4·5H2O的混合溶液,向混合溶液中加入柠檬酸磁力搅拌得含柠檬酸浓度为0.03g/mL的C溶液;
步骤4:向C溶液中加入浓度为1mol/L的NaOH溶液调节pH值为7.5磁力搅拌得反应前驱液;
步骤5:按60%的填充比将反应前驱液加入微波水热反应釜中,将微波水热反应釜置于微波辅助水热合成仪中,在300W的微波功率下,10min从室温升温至190℃反应;
步骤6:待反应结束后,自然冷却至70℃,取出微波水热反应釜中的沉淀物,用去离子水和无水乙醇各洗涤三次,最后在80℃下恒温干燥得Zn2SnO4@C光催化剂。
实施例2:
步骤1:取0.002mol的Zn(NO3)2·6H2O溶解到20mL去离子水中磁力搅拌得A溶液;
步骤2:取0.002mol的SnCl4·5H2O溶解到20mL去离子水中磁力搅拌得B溶液;
步骤3:将B溶液缓慢加入到A溶液中,得到Zn(NO3)2·6H2O和SnCl4·5H2O的混合溶液,向混合溶液中加入柠檬酸磁力搅拌得含柠檬酸浓度为0.04g/mL的C溶液;
步骤4:向C溶液中加入浓度为1mol/L的NaOH溶液调节pH值为8.0磁力搅拌得反应前驱液;
步骤5:按50%的填充比将反应前驱液加入微波水热反应釜中,将微波水热反应釜置于微波辅助水热合成仪中,在300W的微波功率下,10min从室温升温至150℃反应;
步骤6:待反应结束后,自然冷却至70℃,取出微波水热反应釜中的沉淀物,用去离子水和无水乙醇各洗涤三次,最后在80℃下恒温干燥得Zn2SnO4@C光催化剂。
实施例3:
步骤1:取0.002mol的Zn(NO3)2·6H2O溶解到20mL去离子水中磁力搅拌得A溶液;
步骤2:取0.0025mol的SnCl4·5H2O溶解到20mL去离子水中磁力搅拌得B溶液;
步骤3:将B溶液缓慢加入到A溶液中,得到Zn(NO3)2·6H2O和SnCl4·5H2O的混合溶液,向混合溶液中加入柠檬酸磁力搅拌得含柠檬酸浓度为0.045g/mL的C溶液;
步骤4:向C溶液中加入浓度为1mol/L的NaOH溶液调节pH值为8.5磁力搅拌得反应前驱液;
步骤5:按70%的填充比将反应前驱液加入微波水热反应釜中,将微波水热反应釜置于微波辅助水热合成仪中,在300W的微波功率下,10min从室温升温至220℃反应;
步骤6:待反应结束后,自然冷却至70℃,取出微波水热反应釜中的沉淀物,用去离子水和无水乙醇各洗涤三次,最后在80℃下恒温干燥得Zn2SnO4@C光催化剂。
实施例4:
步骤1:取0.002mol的Zn(NO3)2·6H2O溶解到20mL去离子水中磁力搅拌得A溶液;
步骤2:取0.0018mol的SnCl4·5H2O溶解到20mL去离子水中磁力搅拌得B溶液;
步骤3:将B溶液缓慢加入到A溶液中,得到Zn(NO3)2·6H2O和SnCl4·5H2O的混合溶液,向混合溶液中加入柠檬酸磁力搅拌得含柠檬酸浓度为0.035g/mL的C溶液;
步骤4:向C溶液中加入浓度为1mol/L的NaOH溶液调节pH值为7.5磁力搅拌得反应前驱液;
步骤5:按40%的填充比将反应前驱液加入微波水热反应釜中,将微波水热反应釜置于微波辅助水热合成仪中,在300W的微波功率下,10min从室温升温至200℃反应;
步骤6:待反应结束后,自然冷却至70℃,取出微波水热反应釜中的沉淀物,用去离子水和无水乙醇各洗涤三次,最后在80℃下恒温干燥得Zn2SnO4@C光催化剂。
实施例5:
步骤1:取0.002mol的Zn(NO3)2·6H2O溶解到20mL去离子水中磁力搅拌得A溶液;
步骤2:取0.0023mol的SnCl4·5H2O溶解到20mL去离子水中磁力搅拌得B溶液;
步骤3:将B溶液缓慢加入到A溶液中,得到Zn(NO3)2·6H2O和SnCl4·5H2O的混合溶液,向混合溶液中加入柠檬酸磁力搅拌得含柠檬酸浓度为0.045g/mL的C溶液;
步骤4:向C溶液中加入浓度为1mol/L的NaOH溶液调节pH值为8.5磁力搅拌得反应前驱液;
步骤5:按60%的填充比将反应前驱液加入微波水热反应釜中,将微波水热反应釜置于微波辅助水热合成仪中,在300W的微波功率下,10min从室温升温至210℃反应;
步骤6:待反应结束后,自然冷却至70℃,取出微波水热反应釜中的沉淀物,用去离子水和无水乙醇各洗涤三次,最后在80℃下恒温干燥得Zn2SnO4@C光催化剂。
图1是本发明制备的Zn2SnO4@C光催化剂的XRD图,图中a、b、c分别为实施例1、实施例2和实施例3制备的粉体的XRD图。衍射角2θ=29°、34°、55°左右的衍射峰分别对应立方晶系、尖晶石结构Zn2SnO4(JCPDF No.24-1470)的(220)、(311)、(511)晶面,宽化的馒头峰表明Zn2SnO4被由柠檬酸生成的C包裹。
图2是实施例2制备得到的Zn2SnO4粉体的SEM图,从图中可以看出,Zn2SnO4为不规则球状颗粒,存在一定的团聚现象,颗粒间堆积形成连通孔结构,平均颗粒尺寸约为34nm。
图3是实施例1制备的Zn2SnO4@C光催化剂的FT-IR图,1092cm-1、1250cm-1处的吸收峰为C-O键的吸收峰,1396cm-1处的吸收峰为O-H键的吸收峰,1581cm-1处的吸收峰为C=C键的吸收峰,544cm-1处的吸收峰为Zn2SnO4中[ZnO4]四面体的吸收峰,表明粉体中有C存在。
图4是本发明制备的Zn2SnO4粉体降解罗丹明B的降解率-时间曲线,其中a-e分别为实施例1-实施例5制备的粉体的降解曲线。图4中纵坐标的C/C0为某时刻罗丹明B降解后的浓度与其初始浓度的比值。从图中可以看出,采用微波水热法制备的Zn2SnO4@C光催化剂剂具有较高的降解活性,实施例1制备的Zn2SnO4@C光催化剂在紫外光照射5min后,对罗丹明B的降解率达到80%以上。

Claims (5)

1.一种Zn2SnO4@C光催化剂的制备方法,其特征在于,包括以下步骤:
步骤1:取0.002mol的Zn(NO3)2·6H2O溶解到20mL去离子水中磁力搅拌得A溶液;
步骤2:取0.0015-0.0025mol的SnCl4·5H2O溶解到20mL去离子水中磁力搅拌得B溶液;
步骤3:将B溶液缓慢加入到A溶液中,得到Zn(NO3)2·6H2O和SnCl4·5H2O的混合溶液,向混合溶液中加入柠檬酸磁力搅拌得含有柠檬酸的C溶液;
步骤4:向C溶液中加入NaOH溶液调节pH值为7.5-8.5,磁力搅拌得反应前驱液;
步骤5:将反应前驱液加入微波水热反应釜中,将微波水热反应釜置于微波辅助水热合成仪中,在300W的微波功率下,10min从室温升温至150-220℃反应;
步骤6:待反应结束后,自然冷却至70℃,取出微波水热反应釜中的沉淀物,用去离子水和无水乙醇洗涤,最后在80℃下恒温干燥得Zn2SnO4@C光催化剂。
2.根据权利要求1所述的Zn2SnO4@C光催化剂的制备方法,其特征在于:所述的步骤3)C溶液中柠檬酸的浓度为0.03-0.045g/mL。
3.根据权利要求1所述的Zn2SnO4@C光催化剂的制备方法,其特征在于:所述的步骤4)中所加入的NaOH溶液的浓度为1mol/L。
4.根据权利要求1所述的Zn2SnO4@C光催化剂的制备方法,其特征在于:所述的步骤5)微波水热反应釜的填充比为40-70%。
5.一种如权利要求1所述制备方法制成的Zn2SnO4@C光催化剂,其特征在于:Zn2SnO4@C光催化剂中Zn2SnO4为不规则球状,外面包裹无定形C,形成了C包裹Zn2SnO4材料,即Zn2SnO4@C光催化剂,且光催化剂平均34nm颗粒堆积形成团聚体,团聚间有连通孔。
CN201710959573.0A 2017-10-16 2017-10-16 一种Zn2SnO4@C光催化剂及其制备方法 Active CN107670657B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710959573.0A CN107670657B (zh) 2017-10-16 2017-10-16 一种Zn2SnO4@C光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710959573.0A CN107670657B (zh) 2017-10-16 2017-10-16 一种Zn2SnO4@C光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN107670657A true CN107670657A (zh) 2018-02-09
CN107670657B CN107670657B (zh) 2020-05-05

Family

ID=61140957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710959573.0A Active CN107670657B (zh) 2017-10-16 2017-10-16 一种Zn2SnO4@C光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN107670657B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108642875A (zh) * 2018-05-15 2018-10-12 佛山市衣香蒂丝服装设计有限公司 一种用于光催化降解有机物的新型纺织面料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103877966B (zh) * 2014-04-09 2015-12-30 扬州大学 一种异质结构光催化剂的制备方法
CN106179407A (zh) * 2016-07-11 2016-12-07 陕西科技大学 一种微波水热法制备碳包覆硫化锌微球的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103877966B (zh) * 2014-04-09 2015-12-30 扬州大学 一种异质结构光催化剂的制备方法
CN106179407A (zh) * 2016-07-11 2016-12-07 陕西科技大学 一种微波水热法制备碳包覆硫化锌微球的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
姬晓旭等: "碳修饰Zn2SnO4纳米颗粒的制备及光催化性质研究", 《人工晶体学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108642875A (zh) * 2018-05-15 2018-10-12 佛山市衣香蒂丝服装设计有限公司 一种用于光催化降解有机物的新型纺织面料的制备方法

Also Published As

Publication number Publication date
CN107670657B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
Lee et al. Visible-light driven photocatalytic degradation of organic dyes over ordered mesoporous Cd x Zn1–x S materials
Liu et al. Synergistic effect of single-atom Cu and hierarchical polyhedron-like Ta3N5/CdIn2S4 S-scheme heterojunction for boosting photocatalytic NH3 synthesis
CN109351365A (zh) 水滑石修饰g-C3N4新型高效光催化剂及其在燃油深度脱硫中的应用
CN105618050A (zh) 一种降解含盐废水中有机污染物的可见光响应复合催化剂及其制备方法
CN107649115A (zh) 一种Zn2SnO4/ZnO复合光催化剂及其制备方法
CN103721737B (zh) 一种高效可见光驱动催化分解水的非金属材料
CN103861573A (zh) 一种光触媒水溶胶的制备方法
Zhang et al. Cu2S-Cu-TiO2 mesoporous carbon composites for the degradation of high concentration of methyl orange under visible light
CN105618024A (zh) 泡沫玻璃负载的二氧化钛光催化剂的制备方法
Khan et al. Polyethylene glycol capped copper ferrite porous nanostructured materials for efficient photocatalytic degradation of bromophenol blue
Touahra et al. A new approach to the synthesis of CuFe2O4@ CeO2 direct Z‐scheme with a core‐shell structure for enhanced photo‐degradation of methyl violet under ultraviolet and visible‐light irradiation
Yang et al. Crystal-facet-controllable synthesis of Cu2O micron crystals by one-step, surfactant-and capping agent-free method and the formation mechanism
CN109012696A (zh) 一种三角锥形Ag8SnS6微粒的制备方法
CN107649163A (zh) 一种Zn2SnO4‑xNx/ZnO光催化剂及其制备方法
CN103894171A (zh) 一种花簇状氧化锌微米结构光催化剂的制备方法
CN109772373A (zh) 一种具有可见光响应的rGO/黑色氯氧化铋-铋-三氧化二铋异质结光催化剂的制备方法
CN107670657A (zh) 一种Zn2SnO4@C光催化剂及其制备方法
CN106607015A (zh) 一种双粒径分布的纳米二氧化钛光催化剂及其制备方法
Chang et al. Synergetic effect of carbon black as co-catalyst for enhanced visible-light photocatalytic activity and stability on ZnO nanoparticles
CN107824178A (zh) 一种球状Zn2SnO4/六棱柱状ZnO原位生成的复合光催化剂及其制备方法
Seddigi et al. Kinetics and Photodegradation Study of Aqueous Methyl tert‐Butyl Ether Using Zinc Oxide: The Effect of Particle Size
Li et al. Degradation of 2, 4, 6-trichlorphenol by producing hydrogen using ultrasonic mist generated from photocatalysts suspension
CN109675546A (zh) 用于降解盐酸环丙沙星废水的锡酸锌纳米立方体/石墨烯气凝胶太阳光催化剂的制备方法
CN1132694C (zh) 纳米二氧化钛柱撑膨润土及其制备方法
Yaacob et al. Synergistic Adsorption/Photodegradation of Ciprofloxacin by UV light-driven Nanocomposite Photocatalyst of Cu doped AC/TiO2: Experimental design via RSM-CCD.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240517

Address after: 810, 8th Floor, Building 10, Courtyard 1, Tianxing Street, Fangshan District, Beijing, 102400

Patentee after: Beijing Zhichanhui Technology Co.,Ltd.

Country or region after: China

Address before: 710021 Shaanxi province Xi'an Weiyang university campus of Shaanxi University of Science and Technology

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

Country or region before: China

TR01 Transfer of patent right