CN107670503A - 一种石墨烯高压过滤管及其制备方法 - Google Patents

一种石墨烯高压过滤管及其制备方法 Download PDF

Info

Publication number
CN107670503A
CN107670503A CN201710905265.XA CN201710905265A CN107670503A CN 107670503 A CN107670503 A CN 107670503A CN 201710905265 A CN201710905265 A CN 201710905265A CN 107670503 A CN107670503 A CN 107670503A
Authority
CN
China
Prior art keywords
graphene
high pressure
filter tube
pressure filter
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710905265.XA
Other languages
English (en)
Inventor
陆向东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Long Sheng Graphene Technology Co Ltd
Original Assignee
Changzhou Long Sheng Graphene Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Long Sheng Graphene Technology Co Ltd filed Critical Changzhou Long Sheng Graphene Technology Co Ltd
Priority to CN201710905265.XA priority Critical patent/CN107670503A/zh
Publication of CN107670503A publication Critical patent/CN107670503A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种石墨烯高压过滤管及其制备方法,该石墨烯高压过滤管通过向超高分子量聚乙烯中添加一定量的石墨烯、纳米氧化锌、量子能粉末和交联剂,高速搅拌得到混合物;在该混合物中加入沸石,并再次混合均匀,将最终混合物加进挤出机模具中并进行加热,加热至200‑250℃后,在该温度下进行化学交联反应2‑4个小时,随后挤压成型,得到石墨烯高压过滤管。本发明的石墨烯高压过滤管相比以往的过滤管,加入了石墨烯量子混合物,因此本发明的石墨烯高压过滤管的耐压性更好、强度更大且具有纳滤功能,并能去除海水中的大颗粒物和重金属,有杀灭细菌的作用,在浓盐高压生产中发挥重要作用,对我国海水淡化产业具有重要意义。

Description

一种石墨烯高压过滤管及其制备方法
技术领域
本发明涉及管材技术领域,具体涉及一种石墨烯高压过滤管及其制备方法。
背景技术
我国海水淡化虽然研究开始较早,具备了产业化发展条件,但研究水平及创新能力、装备的开发制造能力、系统涉及和集成等方面与国外仍有较大差距。当务之急是尽快形成我国海水设备市场的完整产业链条,围绕制约海水淡化成本降低问题、发展关键膜材料、关键装备的核心技术等问题,研发具有自主知识产权的海水淡化新技术、新工艺、新装备和新产品,提高关键材料和关键设备的国产化率,增强自主建设大型海水淡化工程的能力。
发明内容
本发明的一个目的是提供一种石墨烯高压过滤管的制备方法,采用该制备方法制得的石墨烯高压过滤管,其耐压性好、强度大且具有纳滤功能,并能去除海水中的大颗粒物和重金属,有杀灭细菌的作用,在浓盐高压生产中发挥重要作用。
为达到上述目的,本发明采用的技术方案是:
一种石墨烯高压过滤管的制备方法,包括以下步骤:
(1)将质量为1份的石墨烯、质量为10-20份的纳米氧化锌、质量为10-20份的量子能粉末经高速搅拌均匀混合后得到石墨烯量子混合物;
(2)向超高分子量聚乙烯中添加所述石墨烯量子混合物和交联剂,并高速搅拌均匀混合后得到混合物;
(3)向所述混合物中加入沸石,混合均匀,并加热至200-250℃后,在该温度下进行化学交联反应2-4个小时,随后通过高温高压挤压成型,得到所述石墨烯高压过滤管。
优选地,所述超高分子量聚乙烯的分子量为300万以上。
优选地,所述石墨烯为1-5层。
优选地,所述石墨烯的粒径为0.032-0.1纳米,所述纳米氧化锌的粒径为9-11纳米,所述量子能粉末的粒径为1-10纳米。
优选地,所述石墨烯量子混合物的质量为所述超高分子量聚乙烯的质量的1‰-15‰。
优选地,所述交联剂为二叔丁基过氧化氢,所述二叔丁基过氧化氢的质量为所述超高分子量聚乙烯的质量的1‰-10‰。
优选地,所述沸石与所述超高分子量聚乙烯的质量比为0.3:1-1:1。
优选地,所述沸石粒径为150-300目。
本发明的另一个目的是提供一种根据上述制备方法制得的石墨烯高压过滤管,所述石墨烯高压过滤管的管体内部呈三维网状且包括多个纳米级小孔。
优选地,所述石墨烯高压过滤管的耐受压力为30-50公斤。
由于上述技术方案的运用,本发明与现有技术相比具有下列优点:本发明提供了一种石墨烯高压过滤管的制备方法及根据该制备方法制得的石墨烯高压过滤管,向超高分子量聚乙烯中加入石墨烯量子混合物,与化学交联剂二叔丁基过氧化氢混合后,再与沸石混合均匀,然后经过化学交联反应,最后通过挤出机挤压成型而制得,其耐压性好、强度大且具有纳滤功能,并能去除海水中的大颗粒物和重金属,有杀灭细菌的作用,在浓盐高压生产中发挥重要作用,对我国海水淡化产业具有重要意义。
附图说明
附图1为本发明的石墨烯高压过滤管的径向剖视图。
其中:1、过滤管管体;11、孔;2、石墨烯。
具体实施方式
下面结合附图来对本发明的技术方案作进一步的阐述。
参见图1所示,一种石墨烯高压过滤管,包括过滤管管体1,过滤管管体1为圆柱形管体,沿其轴心线方向开设有孔11,过滤完成的液体经由孔11收集。过滤管管体1由超高分子量聚乙烯,混入新型纳米材料石墨烯2、纳米氧化锌、量子能粉末,再与化学交联剂二叔丁基过氧化氢混合,最后与沸石混合均匀,然后通过化学交联反应,并经挤出机挤压成型而制得。
沸石本身是一种白色多孔的固体炭质,具有很强的吸附性能,这使得本发明的过滤管具有很好的过滤和吸附作用,沸石自身的颗粒粒径很小,粒径为150-300目,可根据实际需要进行调整,不同粒径的沸石过滤水的效果不同,用以适应不同状况下的过滤。
同时本发明还加入了新型纳米材料石墨烯2,石墨烯2是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体,既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%,这使得本发明的石墨烯高压过滤管相比以往的过滤管,强度大大增大,能适应更高的压力。
该量子能粉末由沸石经过1000℃或以上的高温煅烧后,将从中提取的精华能量素在量子能活化炉中经过48小时或以上的时间量子活化后制得。
由于石墨烯2的表面积很大,但比重只有0.1g/cm3。因此,石墨烯2的分散成为制备方法中的难点。通过加入纳米氧化锌,纳米氧化锌起到分散剂的作用,使得石墨烯2的分散变得简单和方便,减少了分散混合时间,提高了生产加工效率;同时石墨烯2又为纳米氧化锌提供催化所需的能量,用于催化分解有机污染物;量子能粉末又能散发远红外能量,有强大的吸附,灭菌,释放负氧离子功效;石墨烯高压过滤管具有过滤和催化的双重功效。通过加入石墨烯2,增强了石墨烯高压过滤管的强度。
通过化学交联反应将混合有石墨烯2、纳米氧化锌、量子能粉末和沸石的超高分子量聚乙烯交联成网状结构,石墨烯2的二位结构与超高分子量聚乙烯的网状结构相结合,成为三位一体的物质,使本发明的石墨烯高压过滤管耐压性和耐温性更好,过滤效果更强,可达到纳滤的范围。
本发明中超高分子量聚乙烯的分子量为300万以上,300万以上分子量的超高分子量聚乙烯具有更大的强度和更好的耐磨性。沸石与超高分子量聚乙烯的质量比为0.3:1-1:1,其中沸石的量不宜过多,也不宜过少,量太多会使强度下降,而量太少又会使得过滤效果变差,需根据实际需要合理选择沸石的量。
本发明中的交联剂为二叔丁基过氧化氢,质量为超高分子量聚乙烯的1‰-10‰,混合有沸石和石墨烯量子混合物的超高分子量聚乙烯,经交联剂交联后,结构上形成多个网状节点,使材料强度更大,耐压性更好。将石墨烯量子混合物与超高分子量聚乙烯先混合并加入交联剂,然后再加入沸石,使得沸石在超高分子量聚乙烯网状中分布更均匀,充分发挥石墨烯量子混合物在网状结构中具有的强催化性能,从而使得过滤效果更好,耐压性更好。其中石墨烯2为1-5层,粒径为0.032-0.1纳米,纳米氧化锌的粒径为9-11纳米,量子能粉末的粒径为1-10纳米,石墨烯量子混合物的质量为超高分子量聚乙烯的质量的1‰-10‰。
以下具体阐述下本实施例的工作过程:
在本实施例中,向分子量为300万以上的超高分子量聚乙烯中添加石墨烯量子混合物和交联剂二叔丁基过氧化氢,并经高速搅拌得到混合物,其中石墨烯2为1-5层,粒径为0.032-0.1纳米,纳米氧化锌的粒径为9-11纳米,量子能粉末的粒径为1-10纳米,石墨烯量子混合物的质量为超高分子量聚乙烯的质量的1‰-10‰,交联剂的质量为超高分子量聚乙烯的1‰-10‰,然后在上述混合物中加入沸石并混合均匀,其中沸石与超高分子量聚乙烯的质量比为0.3:1-1:1,接着将混合物加入挤出机模具中并进行加热,加热至200-250℃后,保持该温度进行交联反应2-4个小时,最后经挤压成型,得到石墨烯高压过滤管。通过交联剂的交联作用,使得超高分子量聚乙烯形成网状结构,并包裹石墨烯量子混合物,在石墨烯高压过滤管的管体1内形成三维网状结构。
本发明的石墨烯高压过滤管并不限制于上述结构,可根据实际需要来选择具体结构。根据不同的需要,采用不同粒径的沸石,制成的石墨烯高压过滤管,在高盐海水淡化,污水处理中,效率更高,成本更低,具有非常好的应用前景。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (10)

1.一种石墨烯高压过滤管的制备方法,其特征在于:包括以下步骤:
(1)将质量为1份的石墨烯、质量为10-20份的纳米氧化锌、质量为10-20份的量子能粉末经高速搅拌均匀混合后得到石墨烯量子混合物;
(2)向超高分子量聚乙烯中添加所述石墨烯量子混合物和交联剂,并高速搅拌均匀混合后得到混合物;
(3)向所述混合物中加入沸石,混合均匀,并加热至200-250℃后,在该温度下进行化学交联反应2-4个小时,随后通过高温高压挤压成型,得到所述石墨烯高压过滤管。
2.根据权利要求1所述的一种石墨烯高压过滤管的制备方法,其特征在于:所述超高分子量聚乙烯的分子量为300万以上。
3.根据权利要求1所述的一种石墨烯高压过滤管的制备方法,其特征在于:所述石墨烯为1-5层。
4.根据权利要求1所述的一种石墨烯高压过滤管的制备方法,其特征在于:所述石墨烯的粒径为0.032-0.1纳米,所述纳米氧化锌的粒径为9-11纳米,所述量子能粉末的粒径为1-10纳米。
5.根据权利要求1所述的一种石墨烯高压过滤管的制备方法,其特征在于:所述石墨烯量子混合物的质量为所述超高分子量聚乙烯的质量的1‰-15‰。
6.根据权利要求1所述的一种石墨烯高压过滤管的制备方法,其特征在于:所述交联剂为二叔丁基过氧化氢,所述二叔丁基过氧化氢的质量为所述超高分子量聚乙烯的质量的1‰-10‰。
7.根据权利要求1所述的一种石墨烯高压过滤管的制备方法,其特征在于:所述沸石与所述超高分子量聚乙烯的质量比为0.3:1-1:1。
8.根据权利要求1所述的一种石墨烯高压过滤管的制备方法,其特征在于:所述沸石粒径为150-300目。
9.一种石墨烯高压过滤管,所述石墨烯高压过滤管是根据权利要求1-8中任一项所述制备方法制得的,其特征在于:所述石墨烯高压过滤管的管体内部呈三维网状且包括多个纳米级小孔。
10.根据权利要求9所述的一种石墨烯高压过滤管,其特征在于:所述石墨烯高压过滤管的耐受压力为30-50公斤。
CN201710905265.XA 2017-09-29 2017-09-29 一种石墨烯高压过滤管及其制备方法 Pending CN107670503A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710905265.XA CN107670503A (zh) 2017-09-29 2017-09-29 一种石墨烯高压过滤管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710905265.XA CN107670503A (zh) 2017-09-29 2017-09-29 一种石墨烯高压过滤管及其制备方法

Publications (1)

Publication Number Publication Date
CN107670503A true CN107670503A (zh) 2018-02-09

Family

ID=61138600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710905265.XA Pending CN107670503A (zh) 2017-09-29 2017-09-29 一种石墨烯高压过滤管及其制备方法

Country Status (1)

Country Link
CN (1) CN107670503A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050087491A1 (en) * 2002-02-26 2005-04-28 Creavis Gesellschaft F. Techn. U. Innovation Mbh Hybrid membrane, method for producing the same and use of said membrane
CN102618955A (zh) * 2012-03-22 2012-08-01 中国人民解放军总后勤部军需装备研究所 超高分子量聚乙烯/石墨烯复合纤维制备方法及其应用
CN103816710A (zh) * 2014-03-28 2014-05-28 陆向东 抗菌过滤管
CN104076073A (zh) * 2014-07-10 2014-10-01 南京理工大学 一种短棒状纳米氧化锌/石墨烯复合物及其制备方法
CN105332153A (zh) * 2015-10-25 2016-02-17 江苏悦达纺织集团有限公司 一种高弹柔肤针织面料的制备方法
CN106867076A (zh) * 2017-02-15 2017-06-20 九江学院 一种矿用石墨烯增强超高分子量聚乙烯双抗管材制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050087491A1 (en) * 2002-02-26 2005-04-28 Creavis Gesellschaft F. Techn. U. Innovation Mbh Hybrid membrane, method for producing the same and use of said membrane
CN102618955A (zh) * 2012-03-22 2012-08-01 中国人民解放军总后勤部军需装备研究所 超高分子量聚乙烯/石墨烯复合纤维制备方法及其应用
CN103816710A (zh) * 2014-03-28 2014-05-28 陆向东 抗菌过滤管
CN104076073A (zh) * 2014-07-10 2014-10-01 南京理工大学 一种短棒状纳米氧化锌/石墨烯复合物及其制备方法
CN105332153A (zh) * 2015-10-25 2016-02-17 江苏悦达纺织集团有限公司 一种高弹柔肤针织面料的制备方法
CN106867076A (zh) * 2017-02-15 2017-06-20 九江学院 一种矿用石墨烯增强超高分子量聚乙烯双抗管材制备方法

Similar Documents

Publication Publication Date Title
Qiao et al. Fabrication of superporous cellulose beads via enhanced inner cross-linked linkages for high efficient adsorption of heavy metal ions
Gong et al. Recent progress in controlled carbonization of (waste) polymers
Liu et al. A novel strategy based on magnetic field assisted preparation of magnetic and photocatalytic membranes with improved performance
Lu et al. Blow-spun nanofibrous membrane for simultaneous treatment of emulsified oil/water mixtures, dyes, and bacteria
Khan et al. 3D printed nanofiltration membrane technology for waste water distillation
Su et al. Hierarchically structured TiO2/PAN nanofibrous membranes for high-efficiency air filtration and toluene degradation
Jiang et al. Three-dimensional photocatalysts with a network structure
Zhang et al. Corn stover–derived biochar for efficient adsorption of oxytetracycline from wastewater
Lin et al. Facile fabrication of melamine sponge@ covalent organic framework composite for enhanced degradation of tetracycline under visible light
Dai et al. Zeolitic imidazole framework/graphene oxide hybrid functionalized poly (lactic acid) electrospun membranes: a promising environmentally friendly water treatment material
Sheoran et al. Recent advances of carbon-based nanomaterials (CBNMs) for wastewater treatment: Synthesis and application
Song et al. Removal of tetracycline residue from pharmaceutical wastewater by using 3D composite film
Zhang et al. Synthesis and adsorption performance of three-dimensional gels assembled by carbon nanomaterials for heavy metal removal from water: a review
Wang et al. Water purification and environmental remediation applications of carbonaceous nanofiber-based materials
CN111250056B (zh) 一种壳聚糖/石墨相氮化碳/二氧化钛纳米纤维膜及其制备方法和应用
CN104028247B (zh) 一种用于去除水中钒的过滤介质及其制备方法
Gopakumar et al. Nanomaterials—state of art, new challenges, and opportunities
CN105295265B (zh) 一种改性聚偏氟乙烯超疏水材料及其制备方法
Sahu et al. Advanced polymeric nanocomposite membranes for water and wastewater treatment: a comprehensive review
Feng et al. Novel dual-heterojunction photocatalytic membrane reactor based on Ag2S/NH2-MIL-88B (Fe)/poly (aryl ether nitrile) composite with enhanced photocatalytic performance for wastewater purification
Chen et al. Constructing porous channels in superhydrophilic polyethersulfone composite nanofibrous membranes for sustainably enhanced photocatalytic activities in wastewater remediation
Zhu et al. Highly catalytic and durable nanocellulose fibers-based nanoporous membrane film for efficient organic pollutant degradation
CN113231100A (zh) 共价有机框架海绵复合材料的制备方法及所得产品和在光催化降解抗生素中的应用
Siddiqui et al. Emerging trends in the development and application of 3D printed nanocomposite polymers for sustainable environmental solutions
CN105056887B (zh) 一种负Ca的磁性碳纳米管复合材料及其制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180209