CN107669630A - 一种非泼罗尼纳米乳及其制备方法 - Google Patents
一种非泼罗尼纳米乳及其制备方法 Download PDFInfo
- Publication number
- CN107669630A CN107669630A CN201710830178.2A CN201710830178A CN107669630A CN 107669630 A CN107669630 A CN 107669630A CN 201710830178 A CN201710830178 A CN 201710830178A CN 107669630 A CN107669630 A CN 107669630A
- Authority
- CN
- China
- Prior art keywords
- nano
- fipronil
- emulsion
- parts
- added dropwise
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
- A61K9/1075—Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/415—1,2-Diazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/44—Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Colloid Chemistry (AREA)
Abstract
本发明公开了一种非泼罗尼纳米乳及其制备方法,以重量份表示,以重量份表示,主要由30~50份聚氧乙烯醚蓖麻油、1~10份肉桂醛、1~10份非泼罗尼,足量蒸馏水组成。本发明所致纳米乳为水包油型纳米乳,可用水无限稀释。透射电镜下,纳米乳呈圆球形,无黏连。平均粒径(Z‑Average)为12.3nm,多分散系数(PDI)为0.207。在25℃时,稀释5倍后的独活挥发油纳米乳的平均zeta电位为(‑11.4±0.3)mV,与恒温加速试验结果共同表明其稳定性良好;所述纳米乳制备工艺简单且质量可控,有望应用于临床。
Description
技术领域
本发明涉及纳米乳制备领域,具体是指一种非泼罗尼纳米乳及其制备方法。
背景技术
纳米乳液(nanoemulsion)又称微乳液(microemulsion),是由水、油、聚氧乙烯醚蓖麻油 和1,2-丙二醇等自发形成,粒径为1~100nm的热力学稳定、各向同性,透明或半透明的均相分散体系.一般来说,纳米乳分为三种类型,即水包油型纳米乳(O/W)、油包水型纳米乳(W/O以及双连续型纳米乳(B.C),1943年由Hoar和Schulman首次发现并报道了这一分散体系。直到1959年,Schulman才提出“microemulsion”这一概念。此后,纳米乳的理论和应用研究获得了迅速的发展。目前,纳米乳化技术已渗透到日用化工、精细化工、石油化工、材料科学、生物技术以及环境科学等领域,成为当今国际上具有巨大应用潜力的研究领域。
纳米乳具有许多其它制剂无可比拟的优点:①为各向同性的透明液体,属热力学稳定系统,经热压灭菌或离心也不能使之分层;②工艺简单,制备过程不需特殊设备,可自发形成,纳米乳粒径一般为1~100nm;③黏度低,可减少注射时的疼痛;④具有缓释和靶向作用;⑤提高药物的溶解度,减少药物在体内的酶解,可形成对药物的保护作用并提高胃肠道对药物的吸收,提高药物的生物利用度。因此纳米乳作为一种药物载体受到广泛的关注。
非泼罗尼是一种对多种害虫具有优异防治效果的广谱杀虫剂。其杀虫机理是,能与昆虫中枢神经细胞膜上的γ-氨基丁酸受体结合,阻塞神经细胞的氯离子通道,从而干扰中枢神经系统的正常功能而导致昆虫死亡。主要是通过胃毒和触杀起作用,也具有一定的内吸传导作用。然而非泼罗尼的溶解度和稳定性均有所欠缺,在进行临床用药方面,受到很大的制约。
发明内容
本发明的目的在于提供一种有效的提高非泼罗尼稳定性的非泼罗尼纳米乳。
本发明的另一个目的在于提供上述非泼罗尼纳米乳的制备方法。
本发明通过下述技术方案实现:一种非泼罗尼纳米乳,以重量份表示,主要由30~50份聚氧乙烯醚蓖麻油 、1~10份肉桂醛、1~10份非泼罗尼,足量蒸馏水组成。
为了更好地实现本发明,进一步地,以重量份表示,所述聚氧乙烯醚蓖麻油 为32份、肉桂醛为8份、非泼罗尼为1.2份、以及蒸馏水为58.8份。
上述一种非泼罗尼纳米乳的制备方法,包括以下步骤:
(1)在四口烧瓶中加入聚氧乙烯醚蓖麻油 ,非泼罗尼,肉桂醛,搅拌使其混合均匀;
(2)在水浴条件下固定四口烧瓶,将水温保持在40~60℃,待原料充分熔融后,开动搅拌器,搅拌速度为150~200rpm;
(3)待四口烧瓶内原料温度达40~60℃后,停止搅拌,加入聚氧乙烯醚蓖麻油,继续搅拌,持续30min;
(4)停止搅拌,用胶头滴管滴加40~60℃热蒸馏水,3~8h滴加完成后,于40~60℃保温1h;
(5)关闭水浴加热,降温至常温后,加入杀菌剂,继续搅拌30min;
(6)使用冷水浴降温至5~10℃后,过滤出料。
为了更好地实现本发明中纳米乳的制备,进一步地,所述制备过程中使用的搅拌器均为磁力搅拌器。
为了更好地实现本发明中纳米乳的制备,进一步地,所述步骤(4)中,滴加热蒸馏水使用的是胶头滴管。
为了更好地实现本发明中纳米乳的制备,进一步地,所述步骤(4)中,滴加热蒸馏水的过程为每3~4min滴加一滴,每滴管2~3ml。
本发明与现有技术相比,具有以下优点及有益效果:
(1)本发明所致纳米乳为水包油型纳米乳,可用水无限稀释。透射电镜下,纳米乳呈圆球形,无黏连。平均粒径(Z-Average)为12.3nm,多分散系数(PDI)为0.207。在25℃时,稀释5倍后的独活挥发油纳米乳的平均zeta电位为(-11.4±0.3)mV,与恒温加速试验结果共同表明其稳定性良好;
(2)本发明所述纳米乳制备工艺简单且质量可控,抗炎效果良好,有望应用于临床。
具体实施方式
下面结合实施例对本发明作进一步地详细说明,但本发明的实施方式不限于此,在不脱离本发明上述技术思想情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的范围内。
实施例:
本实施例的非泼罗尼纳米乳,按质量分数计:w(非泼罗尼)=1.2%,w(聚氧乙烯醚蓖麻油)=32%,w(肉桂醛)=8%, w(蒸馏水)=58.8%。
其制备方法,包括以下步骤:
(1)在四口烧瓶中加入聚氧乙烯醚蓖麻油 ,非泼罗尼,肉桂醛,搅拌使其混合均匀;
(2)在水浴条件下固定四口烧瓶,将水温保持在40~60℃,待原料充分熔融后,开动搅拌器,搅拌速度为150~200rpm;
(3)待四口烧瓶内原料温度达40~60℃后,停止搅拌,加入聚氧乙烯醚蓖麻油,继续搅拌,持续30min;
(4)停止搅拌,用胶头滴管滴加40~60℃热蒸馏水,3~8h滴加完成后,于40~60℃保温1h;
(5)关闭水浴加热,降温至常温后,加入杀菌剂,继续搅拌30min;
(6)使用冷水浴降温至5~10℃后,过滤出料。
本实施例以非泼罗尼为供试药物,通过绘制伪三元相图筛选处方,并对其进行质量评价。用透射电镜观察非泼罗尼纳米乳的形态;用激光粒度分析仪测定其粒径分布范围、多分散系数(PDI)和Zeta电位;通过留样观察和加速试验考察其稳定性;通过皮肤毒性试验和急性毒性试验评估其安全性。通过改良的扩散装置考察其透皮性。其呈规则的圆球型,粒径分布在平均粒径为5~24nm,PDI 为0.218,Zeta电位为-20.6mV,稳定性良好。皮肤毒性试验、急性毒性试验和透皮试验表明,该纳米乳有良好的安全性和透皮效果。试验结果表明,本研究成功研了非泼罗尼纳米乳,其稳定性好,安全性髙,透皮性好。
实施例2:
本实施例为了更好的实现纳米乳的制备,进一步限定所述制备过程中使用的搅拌器均为磁力搅拌器。本实施例其他部分与上述实施例相同,这里不再赘述。
实施例3:
本实施例为了更好的实现纳米乳的制备,进一步限定所述步骤(4)中,滴加热蒸馏水使用的是胶头滴管。本实施例其他部分与上述实施例相同,这里不再赘述。
实施例4;
本实施例为了更好的实现纳米乳的制备,进一步限定所述步骤(4)中,滴加热蒸馏水的过程为每3~4min滴加一滴,每滴管2~3ml。本实施例其他部分与上述实施例相同,这里不再赘述。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。
Claims (6)
1.一种非泼罗尼纳米乳,其特征在于:以重量份表示,主要由30~50份聚氧乙烯醚蓖麻油 、1~10份肉桂醛、1~10份非泼罗尼,足量蒸馏水组成。
2.根据权利要求1所述的一种非泼罗尼纳米乳,其特征在于:以重量份表示,所述聚氧乙烯醚蓖麻油 为32份、肉桂醛为8份、非泼罗尼为1.2份、以及蒸馏水为58.8份。
3.根据权利要求1或2所述一种非泼罗尼纳米乳的制备方法,其特征在于,包括以下步骤:
(1)在四口烧瓶中加入聚氧乙烯醚蓖麻油 ,非泼罗尼,肉桂醛,搅拌使其混合均匀;
(2)在水浴条件下固定四口烧瓶,将水温保持在40~60℃,待原料充分熔融后,开动搅拌器,搅拌速度为150~200rpm;
(3)待四口烧瓶内原料温度达40~60℃后,停止搅拌,加入聚氧乙烯醚蓖麻油,继续搅拌,持续30min;
(4)停止搅拌,用胶头滴管滴加40~60℃热蒸馏水,3~8h滴加完成后,于40~60℃保温1h;
(5)关闭水浴加热,降温至常温后,加入杀菌剂,继续搅拌30min;
(6)使用冷水浴降温至5~10℃后,过滤出料。
4.根据权利要求3所述的一种非泼罗尼纳米乳,其特征在于:所述制备过程中使用的搅拌器均为磁力搅拌器。
5.根据权利要求3或4所述的一种非泼罗尼纳米乳,其特征在于:所述步骤(4)中,滴加热蒸馏水使用的是胶头滴管。
6.根据权利要求5所述的一种非泼罗尼纳米乳,其特征在于:所述步骤(4)中,滴加热蒸馏水的过程为每3~4min滴加一滴,每滴管2~3ml。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710830178.2A CN107669630A (zh) | 2017-09-15 | 2017-09-15 | 一种非泼罗尼纳米乳及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710830178.2A CN107669630A (zh) | 2017-09-15 | 2017-09-15 | 一种非泼罗尼纳米乳及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107669630A true CN107669630A (zh) | 2018-02-09 |
Family
ID=61136118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710830178.2A Withdrawn CN107669630A (zh) | 2017-09-15 | 2017-09-15 | 一种非泼罗尼纳米乳及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107669630A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108926532A (zh) * | 2018-09-03 | 2018-12-04 | 南京威特动物药品有限公司 | 一种非泼罗尼自纳米乳溶液及其制备方法及其应用 |
CN116173017A (zh) * | 2022-12-01 | 2023-05-30 | 浙江科瑞特生物科技有限公司 | 一种安全高效非泼罗尼犬猫通用型外用驱虫剂及制备方法 |
-
2017
- 2017-09-15 CN CN201710830178.2A patent/CN107669630A/zh not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
郭建军: "非泼罗尼纳米乳的制备及理化性质与安全性分析", 《畜牧兽医学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108926532A (zh) * | 2018-09-03 | 2018-12-04 | 南京威特动物药品有限公司 | 一种非泼罗尼自纳米乳溶液及其制备方法及其应用 |
CN116173017A (zh) * | 2022-12-01 | 2023-05-30 | 浙江科瑞特生物科技有限公司 | 一种安全高效非泼罗尼犬猫通用型外用驱虫剂及制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gurpreet et al. | Review of nanoemulsion formulation and characterization techniques. | |
Hong et al. | One-step formation of w/o/w multiple emulsions stabilized by single amphiphilic block copolymers | |
Liu et al. | Non-coalescence of oppositely charged droplets in pH-sensitive emulsions | |
Hanson et al. | Nanoscale double emulsions stabilized by single-component block copolypeptides | |
Cui et al. | Stability and biological activity evaluation of chlorantraniliprole solid nanodispersions prepared by high pressure homogenization | |
Malo de Molina et al. | Oil-in-water-in-oil multinanoemulsions for templating complex nanoparticles | |
Tong et al. | Formation of concentrated nanoemulsion by W/O microemulsion dilution method: biodiesel, tween 80, and water system | |
Protat et al. | Biocompatible stimuli-responsive W/O/W multiple emulsions prepared by one-step mixing with a single diblock copolymer emulsifier | |
CN107669630A (zh) | 一种非泼罗尼纳米乳及其制备方法 | |
WO2010103514A1 (en) | Silica nanocapsules from nano-emulsions obtained by phase inversion | |
Mundo et al. | Stabilization of soybean oil-in-water emulsions using polypeptide multilayers: Cationic polylysine and anionic polyglutamic acid | |
Arenas-Calderon et al. | Preparation of highly concentrated bitumen emulsions by catastrophic phase inversion: Follow-up of the emulsification process | |
Song et al. | Preparation and characterization of an oil-in-water microemulsion of thiamethoxam and acetamiprid without organic solvent for unmanned aerial vehicle spraying | |
Hu et al. | Effects of microfluidization cycles on physicochemical properties of soy protein isolate-soy oil emulsion films | |
Acharya et al. | QbD based optimization of curcumin nanoemulsion: DoE and cytotoxicity studies | |
Horváth et al. | Preparation and in vitro diffusion study of essential oil Pickering emulsions stabilized by silica nanoparticles | |
Zhao et al. | Particle formation mechanisms in the nanoprecipitation of polystyrene | |
Ferreira et al. | Complex coacervation assisted by a two-fluid nozzle for microencapsulation of ginger oil: Effect of atomization parameters | |
Bi et al. | Characterization of a novel high internal phase Pickering emulsions stabilized by soy protein self-assembled gel particles | |
Spernath et al. | Polyurea nanocapsules obtained from nano‐emulsions prepared by the phase inversion temperature method | |
Rao et al. | Preparation of microcapsule suspension of herbicide oxyfluorfen polyurea and its effects on phytotoxicity on rice crop | |
Son et al. | Microbial activation of bacillus subtilis-immobilized microgel particles for enhanced oil recovery | |
Ribeiro et al. | Development of water-in-oil Pickering emulsions from sodium oleate surface-modified nano-hydroxyapatite | |
Debeli et al. | Controlling the stability and rheology of copolyol dispersions in fatty alcohol ethoxylate (AEO9)-stabilized multiple emulsions | |
Kumar et al. | Plant latex as a versatile and sustainable emulsifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20180209 |