CN107667221A - 校正转子不平衡的方法及其风力涡轮机 - Google Patents

校正转子不平衡的方法及其风力涡轮机 Download PDF

Info

Publication number
CN107667221A
CN107667221A CN201680023626.1A CN201680023626A CN107667221A CN 107667221 A CN107667221 A CN 107667221A CN 201680023626 A CN201680023626 A CN 201680023626A CN 107667221 A CN107667221 A CN 107667221A
Authority
CN
China
Prior art keywords
unbalance
wind turbine
rotor
mass
factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680023626.1A
Other languages
English (en)
Other versions
CN107667221B (zh
Inventor
科德·斯蒂芬·佩德森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision Energy Jiangsu Co Ltd
Envision Energy Denmark ApS
Original Assignee
Envision Energy Jiangsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Envision Energy Jiangsu Co Ltd filed Critical Envision Energy Jiangsu Co Ltd
Publication of CN107667221A publication Critical patent/CN107667221A/zh
Application granted granted Critical
Publication of CN107667221B publication Critical patent/CN107667221B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/30Commissioning, e.g. inspection, testing or final adjustment before releasing for production
    • F03D13/35Balancing static or dynamic imbalances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/024Adjusting aerodynamic properties of the blades of individual blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0296Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor to prevent, counteract or reduce noise emissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

本发明涉及一种用于校正转子不平衡的方法及其风力涡轮机。该校正方法包括在至少一个时间窗口内测量振动并确定不平衡因子和不平衡相位。然后基于不平衡因子和不平衡相位,更新用于计算校正动作的方程式中的参数值。使用这些调整的参数计算每个风力涡轮机叶片的校正角。校正角用于空气动力地平衡转子,并且可使用模型确定参数的初始值。基于另一组测量值确定另一个不平衡因子和不平衡相位。然后,这个不平衡因子用于计算质量矩,该质量矩用于校正风力涡轮机叶片的质量不平衡。最后,基于这个质量矩计算平衡质量块的重量和位置,并且将平衡质量块安装至各自的风力涡轮机叶片。

Description

校正转子不平衡的方法及其风力涡轮机
技术领域
本发明涉及一种用于校正风力涡轮机中的转子不平衡的方法,该风力涡轮机包括风力涡轮机塔架、机舱和连接至具有至少两片风力涡轮机叶片的可转动转子的发电机。
本发明还涉及一种风力涡轮机,其包括风力涡轮机塔架、机舱、连接至具有至少两片风力涡轮机叶片的可转动转子的发电机、和设置为执行上文提及的控制方法的控制系统。
背景技术
众所周知,风力涡轮机转子在旋转期间需要保持平衡以获得高能量输出,并将风力涡轮机包括转子中的振动减至最小。风力涡轮机叶片重量分布不均(质量不平衡)或偏离正常或理想的气动特性(空气动力不平衡)可能引起转子不平衡。如果风力涡轮机叶片安装的安装角度有公差,或者轮毂或叶片根部的安装界面不平,安装和制造公差也可能会产生转子不平衡。已知由于磨损在前缘上产生的侵蚀、因雷击在外表面上造成的裂缝、冰或其他粒子在外表面上的积聚、或其他情况可损害风力涡轮机叶片的气体动力。任何转子的不平衡将会导致转子和风力涡轮机其他部分的振动和动负荷,从而减少风力涡轮机内部部件的寿命,也减少能量输出和功率输出。
已知利用位于机舱上的激光来光学地测量离岸风力涡轮机的空气动力不平衡,或者在陆上风力涡轮机前放置摄像机。然后对接收到的反射信号或捕获的图像进行分析,以确定单个俯仰角之间的任何偏差。如果检测到偏差,则校正各自的俯仰角。向一个风力涡轮机叶片的内部或外部增加临时测试重量元件,引起质量不平衡,然后用单独的测量箱测量振动和相位。计算并应用平衡配重,然后去除测试重量元件。
美国专利US 8261599 B2公开了一种平衡的方法,其中,在转子下放置摄像机用于捕捉风力涡轮机叶片的图像,然后对其进行分析以确定空气动力不平衡。首先,将转子锁定,并将风力涡轮机叶片倾斜到一个参考的俯仰角。然后转动转子,以便将每个风力涡轮机叶片置于摄像机前,并捕获每个叶片的图像。然后确定每个风力涡轮机叶片的俯仰角,并与预设的公差范围进行比较。如果俯仰角不在这个范围内,那么调整俯仰角,直到它在这个范围内。
这种平衡方法还利用振动传感器和加速度计来测量转子的振动,然后对其进行分析以确定转子的质量不平衡。根据第一组测量确定表示转子不平衡的平均振幅和平均相位的第一向量。然后,将测试重量放置在离轮毂中心的预先确定位置处,并根据第二组测量检测第二向量。根据第二向量和第一向量的差异来计算适合的平衡配重的重量和位置。移除测试重量,并在确定的位置增加平衡配重。进行最后一组测量,以确定振动是否在可接受的公差范围内。如果不是,那么重复这个平衡过程。
这种方案要求工人们去到风力涡轮机场地或场所,将相机相对于风力涡轮机放置,并在风力涡轮机叶片上增加测试重量。这增加了平衡过程的复杂性和成本。
美国专利申请US 2012/0183399 A1公开了另一种校正空气动力不平衡的方法,其中,利用振动传感器和转速计测量转子不平衡。在这种控制方法中,至少有两个俯仰偏移被应用于风力涡轮机中,其中在每个俯仰偏移后测量振动。控制器计算每次测量的最大振动幅度和转子旋转位置。然后,控制器根据这些最大振动振幅和转子旋转位置确定校正俯仰角。然后将这个校正俯仰角应用到风力涡轮机叶片上。该申请提出了上述的校正俯仰角可进一步确定为风速的函数,以补偿质量不平衡。然而,由于它改变了风力涡轮机叶片的气动性能,从而影响了风力涡轮机的电力生产,因此俯仰角的这种校正不适用于质量校正。这种控制方案也不能区分空气动力不平衡和质量不平衡,也不能在所有风速条件下校正不平衡。这种控制方法还不能有效地消除转子不平衡。相反,它只是将其降低到一个更可接受的水平。
发明目的
本发明的目的在于提供一种用于校正空气动力不平衡的平衡方法,其不使用摄像机或者激光技术。
本发明的目的在于提供一种用于校正质量不平衡的平衡方法,其不需要在风力涡轮机叶片上放置测试重量。
本发明的目的在于提供一种基于测得的振动数据,确定不平衡因子的平衡方法。
本发明的目的在于提供一种具有控制系统的风力涡轮机,该控制系统能远程地确定平衡重量和校正角。
发明内容
在下面的描述中,除非另有说明,术语“转子不平衡”指的是任何的空气动力不平衡和任何的质量不平衡。除非另有说明,术语“校正动作”指的是任何用于空气动力不平衡校正的俯仰角调整,和任何用于质量不平衡校正的平衡质量矩。
本发明的一个目的通过一种校正风力涡轮机的转子不平衡的方法实现,该风力涡轮机包括风力涡轮机塔架、设置于风力涡轮机塔架顶部的机舱、连接至具有至少两片风力涡轮机叶片的可转动转子的发电机,其中该方法包括步骤:
-在至少一个时间窗口之内测量转子的振动,
-检测转子的质量不平衡,
-分析测得的数据,以确定至少一个不平衡因子和至少一个不平衡相位,
-应用至少一种校正动作至至少一片上述的风力涡轮机叶片,其中至少一种校正动作是基于至少一个不平衡因子和至少一个不平衡相位来确定,该至少一种校正动作包括计算平衡力矩,该平衡力矩表示至少一片上述风力涡轮机叶片的质量校正。
相比于已知的校正方法,这提供了一种更准确的用于确定平衡转子所需的校正动作的校正方法。不需要工人去风力涡轮机场地,并建立测试设备来测量转子的不平衡。使用任一类型的控制系统,至少根据不平衡因子,来计算每个风力涡轮机叶片所需的校正动作。控制系统可能是远程计算机或监控单元、内部或分散式的控制器(例如可编程逻辑控制器或阵列)、或另外的用于控制或监控风力涡轮机运行的适当控制系统。该校正方法可实现为控制系统中的自动化过程,或由操作员或工人实施的手动过程。这减少了校正转子不平衡的时间和成本,因为如果需要,工人只需去风力涡轮机处安装平衡配重块或调整风力涡轮机叶片的固定俯仰角。相反,如果风力涡轮机配备有连接至至少一部分风力涡轮机叶片的变桨系统,则操作员/工人或控制系统可以远程地实现所需的校正角。
振动测定为固定参考系的加速度,该固定参考系由机舱或风力涡轮机塔架的上端定义。或者,振动可以用由转子轮毂或风力涡轮机叶片所定义的旋转参考系来测量,然后转换为固定参考系,以供控制系统的后续分析。沿着机舱的纵向/轴向或横向/横轴,优选同时沿该两个轴,对振动进行测量。这使得可以在至少一个轴向和/或横向方向上,优选在沿各个轴的两个相反方向上,对振动进行测量。这使得控制系统可以根据振动发生的方向来检测任何空气动力不平衡或质量不平衡。
旋转位置测定为相对于参考角度,例如风力涡轮机叶片的尖端背离风力涡轮机塔架的垂直位置,风力涡轮机叶片在转子平面的角位置。用预先选定的频率,例如由转子转速定义的1P频率,来确定转子不平衡的振幅,即不平衡振幅。不平衡因子相应计算为这个振幅的函数。与此同时,转子不平衡的相位,即不平衡相位,被确定为旋转位置,在这个位置上,该不平衡振幅具有最大值,例如最大峰值或最小峰值。这个相位进一步用于确定哪个风力涡轮机叶片需要校正。对于所测量振动的每一个方向,如轴向和/或横向方向,都可以确定不平衡因子和不平衡相位。
根据风力涡轮机的配置,当风力涡轮机产生功率时,优选当功率输出低于额定功率输出时,并且/或在风力涡轮机叶片的俯仰启动前,激活该校正过程。
根据一个特殊的实施例,转子的质量分布由每个风力涡轮机叶片定义,其中质量不平衡表明转子具有临时未更改的质量分布。
传统的不平衡校正方法要求在一个风力涡轮机叶片的外部表面临时放置测试重量。这些测试重量暂时改变了质量分布,并因此改变了转子的质量不平衡,然后通过另一组测量来测量该转子的质量不平衡。该测量和未更改的质量分布的初始测量,以及由此初始的质量不平衡,被用来确定需要的质量校正。
本控制方法允许在不使用临时测试重量的情况下确定质量校正。这进一步消除了工人爬到风力涡轮机叶片上并固定测试重量的需求,而工人爬到风力涡轮机叶片上并固定测试重量不仅耗时还需要使用各种安全系统。因此,平衡力矩可以由振动测量直接确定,而不需改变例如一个或多个风力涡轮机叶片的转子的质量分布。本控制方法允许校正任何的质量不平衡,不论其大小。
根据一个实施例,分析测得的数据的步骤进一步包括基于测得的数据确定至少一个不平衡振幅,其中至少一个不平衡因子计算为上述至少一个不平衡振幅的函数。
振动、旋转位置、转速或其他相关控制参数都是在若干预定时间窗口内,例如一个、两个、三个或更多个时间窗口内测量的。每个单独控制参数的各自时间窗口的长度可以根据一个或多个预先确定的标准,例如转速来选择或确定。测量值,例如一组测得的数据,本地存储于内部控制器或分散控制器的存储单元中,或远程地存储于远程计算机或监控单元的储存单元中。然后该控制系统对这些测得的数据进行分析,以确定针对每个时间窗口转子不平衡的不平衡因子和不平衡相位。
控制系统通过快速傅立叶变换(FFT)算法、有限脉冲响应(FIR)滤波算法或其他合适的算法,将测量值例如至少振动数据转换到频域。控制系统分析频率变换的数据,并确定针对每个单独的时间窗口,测量的转子不平衡的不平衡振幅和不平衡相位。这种不平衡振幅,例如1P振幅,可以确定为峰值振幅或以所选频率,例如1P频率为中心的平均振幅。例如,不平衡因子可以确定为这个不平衡振幅与转速的比值。转速可进一步提升至n次方,该n次方可为4次方。例如,控制系统可以确定在轴向的一个不平衡因子和一个不平衡相位,和/或在横向的另一个不平衡因子和另一个不平衡相位。这些确定或计算的值,例如不平衡因子、不平衡相位、校正角和质量矩,都被进一步存储在上文提到的存储器中。
本控制方法允许以转速作为标准化因子,使不平衡振幅标准化。这使得该控制方法能够校正所有转速以及由此所有的风速条件下的任意转子不平衡,包括大的质量不平衡。使用转速而不是风速作为参数还允许本控制系统有更好的公差。
根据一个实施例,该方法还包括以下步骤:
-在第一个所述时间窗口内测量转子的振动和旋转位置,并分析测得的数据以确定至少第一不平衡因子和第一不平衡相位,
-基于至少第一不平衡因子和第一不平衡相位,应用第一个所述的校正动作,
-在第二个时间窗口内测量转子的振动和旋转位置,并分析测得的数据,以确定至少第二不平衡因子和第二不平衡相位,
-基于至少第二不平衡因子和第二不平衡相位,应用第二个所述校正动作。
在第一个实施例中,在初始或第一次的校正过程中,上文提到的控制参数在至少两个时间窗口,例如第一个和第二个时间窗口内进行测量。然后,控制系统针对第一个和第二个时间窗口的每一个确定不平衡因子和不平衡相位。在第一次测量后,计算并应用第一个校正动作。然后,在第二次测量后,计算并应用第二个校正动作。这也使得用来计算这个校正动作的参数能够根据下文描述的变化的转子不平衡而调整。在任何随后的(第二次、第三次、第四次等等)校正过程中,控制参数至少在一个时间窗口,例如第三个时间窗口内进行测量,因此控制系统可选择地使用这些调整后的参数,基于这第三次测量确定至少一个(第三个)不平衡因子和/或不平衡相位。
这个测量步骤可以在至少一个上述这些测量步骤内的至少两个子时间窗口内重复。子时间窗口形成上面提到的时间窗口。该控制系统可以针对这些单独的子时间窗口计算相应数量的不平衡因子。然后,这些不平衡因子可能会被平均,以便针对各自的时间窗口定义单一的不平衡因子。该控制系统可以进一步确定单个的子时间窗口的不平衡相位。这些不平衡相位同样可以被平均,以定义为单一的不平衡相位。通过在预定数量的时间窗口内重复测量步骤或通过增加或减少测量时间窗口的长度,该校正方法的准确度提高,而且任何快速暂时的影响,比如阵风,不太可能影响计算出的校正动作。
根据一个实施例,该方法还包括以下步骤:
-在第一个所述时间窗口内测量转子的振动,并对测得的数据进行分析,以确定至少第一不平衡因子和第一不平衡相位,
-应用第一转子不平衡,
-在第二个所述时间窗口内测量转子的振动,并分析测得的数据,以确定至少第二不平衡因子和第二不平衡相位,
-应用第二转子不平衡,
-在第三个所述时间窗口内测量转子的振动,并分析测得的数据,以确定至少第三不平衡因子和第三不平衡相位,
-其中至少一个应用的校正动作是基于第一、第二和第三不平衡因子中的至少一个和第一、第二和第三不平衡相位中的至少一个。
在第二个实施例中,在初始或第一次校正过程中,上文提到的控制参数在至少三个时间窗口,例如第一个、第二个和第三个时间窗口内进行测量。然后,控制系统针对第一个、第二个和第三个时间窗口的每一个确定不平衡因子和不平衡相位。在第一次测量后,将第一个确定的不平衡或校正动作,例如第一转子不平衡应用于转子。在第二次测量后,将第二个确定的不平衡或校正动作,例如第二转子不平衡应用于转子。确定的不平衡可能是任何的空气动力不平衡和/或质量不平衡。然后,该控制系统根据这些第一个、第二个和第三个不平衡因子和不平衡相位来计算所需的校正动作。这也使这些用于计算校正动作的参数可以随下文描述的变化的转子不平衡而调整。在任何随后进行的(第二次、第三次、第四次等等)校正过程中,控制参数至少在一个时间窗口,例如第四个时间窗口内测量,因此该控制系统可选择地使用这些调整后的参数,基于这第四次测量确定至少一个不平衡因子和/或不平衡相位。
根据一个实施例,该方法进一步包括:
-基于至少一个不平衡因子,校正至少一个用于计算各自的校正动作的参数。
一旦校正过程完成,或者当一个校正动作已经应用时,下面的方程式(1),(3)中的一个或多个参数可以利用一个或多个目前或先前确定的不平衡因子和/或不平衡相位进行调整。例如,这些参数可以根据目前确定的不平衡因子和/或不平衡相位进行调整。在一个简化的实施例中,计算当前的不平衡因子和参考值之间的误差,由此将该误差用于调整各自的参数。可以实施其他校正技术来改善这些参数的值。这样就允许根据变化的转子不平衡更精确地计算出所需的校正动作,因为在每个校正动作之后,参数都经过调整,以更好地反映实际情况。
参数可以包括比例参数k,它取决于风力涡轮机系统的结构特性和转子不平衡的类型。根据该参数的选定单位,参数k可用来计算空气动力不平衡或质量不平衡。该参数可能会进一步包括相位延迟α0,其表示不平衡的旋转位置和测得的不平衡相位之间的偏移量。例如,该控制系统可以确定在轴向上的第一组参数和/或在横向上的第二组参数。
根据一个实施例,计算校正动作的步骤进一步包括基于平衡力矩计算平衡质量块的重量或位置,其中平衡质量块随后被应用至至少一个上述风力涡轮机叶片上。
首先,所需的转子不平衡校正例如但不限于根据不平衡因子和不平衡相位而确定:
其中N是风力涡轮机叶片的数量;μn是风力涡轮机叶片n的转子不平衡;是风力涡轮叶片n的旋转位置;ei限定了欧拉公式,其中i定义为的虚数;f是不平衡因子;α是不平衡相位。根据加速度计的位置,可将一个旋转参照系的系统行为包括在该方程式中。参数的初始值,如方程式(1)的参数k和相位延迟α0可以使用随后描述的模型来确定。
在第一个实施例中,可以在初次运行后,通过用第一个和第二个时间窗口的测量值解下列方程式,来对参数k和α0的初始值进行调整:
其中Δμn是风力涡轮机叶片n的校正动作,f1是第一不平衡因子,f2是第二不平衡因子,α1是第一不平衡相位,α2是第二不平衡相位。
在第二个实施例中,上述方程式(1)如方程式(3)所示进行修改,不需要测量旋转位置:
可以在初次运行后使用第一个、第二个和第三个时间窗口的测量值求解这个方程式(3),来对参数k的初始值和不平衡相位β进行调整。
一旦方程式的初始参数被调整后,可以使用这些各自参数的调整值,通过求解方程式(1)、(3)来计算后续的校正动作。
用方程式(1)、(3)计算空气动力不平衡校正,即校正角;以及质量不平衡校正,即质量矩,其中该方程式各自的参数具有可选择调整的数值。优选地,使用第一组参数来校正任何空气动力不平衡,第二组参数用于校正任何质量不平衡。这简化了校正方法,因为只需要一个方程来计算校正动作,而已知的校正方法则需要两种不同的方法来确定校正动作。
这种校正方法适用于具有两个、三个或更多风力涡轮机叶片的风力涡轮机。为了计算所需的校正动作,对于至少两个选定的风力涡轮机叶片的轴向和横向,分别确定具有至少有两个未知数的至少两个方程,或者具有至少六个未知数的至少三个方程。然后,用克莱默法则、消元法、替换法、绘图法或另外的合适的求解方法求解各自的方程。任何剩余的风力涡轮机叶片的校正动作可以设置为零。之后对于值μn,可以加上、减去、乘以、除以另外的预先确定的或计算的常数,或者共同或单独应用其他方式。在空气动力不平衡的情况下,这可以用于避免应用的校正动作使转子离当前的作业点太远。在示例中,转子不平衡的负值μn可表明应该去除质量块,或者各自的风力涡轮机叶片n应该降低俯仰角。从风力涡轮机叶片去除质量块并不总是可行的。解决这个问题的一种方法是将常数应用至上文所述的μn的所有值,这样使它们的结果值变为正数,并因此能够进行质量不平衡校正。
根据一个实施例,该方法还包括以下步骤:
-在至少一个另外的时间窗口内测量转子的振动,可选地以及旋转位置,
-检测是否存在转子的空气动力不平衡,
-如果存在上述的空气动力不平衡,那么基于至少一个另外的时间窗口的至少一个另外的不平衡因子和至少一个另外的不平衡相位,至少计算出校正角,并将所述校正角应用至至少一个所述风力涡轮机叶片的。
空气动力不平衡测定为轴向和横向的振动,而质量不平衡测定为仅仅是横向的振动。在优选的实施例中,转子在校正任何质量不平衡之前,首先进行空气动力平衡。本控制方法能够区分空气动力不平衡和质量不平衡,并能独立地校正这些不平衡。这进一步允许校正任何质量不平衡,而不论其大小。
该校正方法周期性地监测轴向和/或横向的振动,例如不平衡因子,以检测是否需要校正过程。这可以由控制系统每隔一定时间自动执行,或者由远程操作员发起。如果不需要校正(振动在预设的阈值范围内),那么控制系统将返回至睡眠模式,或者继续进行其他任务。如果需要校正,那么控制系统执行校正过程。这使得该校正方法可以对发生在使用期内变化的转子不平衡进行补偿。
控制系统在第一次测量之前或之后分析振动,以检测测得的不平衡是空气动力不平衡还是质量不平衡。如果控制系统检测到转子是空气动力不平衡,那么它可以用方程式(1)、(3)来计算每个风力涡轮机叶片的校正角。然后,将校正角例如通过变桨系统应用于风力涡轮机叶片上。一旦校正角被应用于所有风力涡轮机叶片上,该控制系统进行新的测量并分析新测得的数据,以检测是否需要进一步的空气动力校正,例如轴向的1P振幅并不在预设阈值范围内。如果是这样,那么控制系统就会进行另一次校正过程。在应用新的校正角之后,又进行另一次测量,然后分析以检测是否还需要另一次空气动力校正。如果需要,校正过程可能会重复一次或连续多次。
根据一个实施例,该方法还包括以下步骤:
-至少在一个额外的时间窗口内,进一步测量转子的振动,可选地以及旋转位置,
-确定转子是否质量平衡,以及
-如果质量不平衡,基于上述一个额外的时间窗口的至少另一不平衡因子以及至少另一不平衡相位,计算另一平衡力矩,其中这个另一平衡力矩表示另外的质量校正。
如果控制系统在上述分析期间检测到转子空气动力平衡,则跳过校正过程的第一部分,即空气动力不平衡校正,或使用方程(1)、(3)继续计算质量校正。基于当前的/最近测得的不平衡因子和不平衡相位,计算所需的平衡力矩或质量矩。这个质量矩表示转子中心的质量不平衡力矩。然后控制系统进一步计算平衡质量块的重量m,和同时平衡质量块相对于转子轮毂的中心轴的位置d,其中un=mn·dn。或者,质量力矩校正被传送至远程操作员,然后该远程操作员计算平衡质量块的所需重量和位置。然后,工作人员前往该点并安装所需的平衡质量块。在平衡质量块应用于各自的风力涡轮机叶片后进行另一次测量,然后进行分析。如果控制系统检测到需要进一步的质量校正,例如,横向的1P振幅不在预设的阈值范围内,然后进行另一次校正过程。之后再进行另一次测量,然后分析检测是否需要再进行一次校正过程。如果需要,该校正过程可能会重复一次或连续多次。
在至少一个风力涡轮叶片上进行这种质量校正,同时至少一个另外的风力涡轮机叶片被选择为参考叶片,其中该参考叶片的质量校正被设置为零时,。优选地,对至少两个风力涡轮机叶片进行质量校正,从而使转子达到如上所述的平衡。
根据一特殊的实施例,将用于计算平衡力矩的至少一个参数传输到至少一个另外的风力涡轮机,其中这个参数用于计算另外的风力涡轮机的质量校正。
在校正过程,例如不平衡校正完成之后,用于计算校正动作的参数已更新,可将一个或多个这些参数,例如常数k和/或相位延迟α0传输至风力涡轮机场内的多个类似的风力涡轮机。同样,控制系统可以从另一个风力涡轮机控制系统接收一个或多个这些参数,然后使用这些参数计算所需的不平衡校正。这使得通过仅使用一台风力涡轮机,就能够使这些参数得到验证,然后在其他风力涡轮机之间散布。这提供了一个简单而容易的方法来计算风力涡轮机场内多个风力涡轮机的不平衡校正,因为这些参数对于具有相同或类似配置的风力涡轮机是有效的。
根据一个实施例,该方法进一步包括以下步骤:
-从风力涡轮机模型推导出至少一个用于计算各自的校正动作的参数,其中该模型至少呈现了具有预定转子不平衡的风力涡轮机中的振动。
例如,参数,例如常数k和/或相位延迟α0的初始值来源于风力涡轮机系统的预先确定模型。风力涡轮系统的建模可以这样选择,在时间域或频率域其他适合的表现形式中,它提供了简单稳定的风力涡轮机系统的表现形式。该模型可为气动弹性模型、阶数X的自回归模型(an autoregressive model of order X)(ARX)、预测误差法(PEM)、有限元模型(FEM)或另外的合适的数学模型。有各种各样的模型用来模拟风力涡轮机顶部的加速度,比如2010年珍妮·尼布希(Jenny Niebsch)或2012年托本·努森(Torben Knudsen)等人提出的模型。转子的转速可作为该模型的输入。这使得对于应用于风力涡轮机的预先确定的质量或空气动力不平衡,可以模拟出测量值,例如至少振动。有时转子的选定频率接近第一和第二风力涡轮固有频率的本征频率,这样,可以将这些谐振频率包含在模型中,以提供更精确的模拟。
根据一个特殊的实施例,该方法进一步包括以下步骤:
-在一个风力涡轮叶片内部的预定位置,放置具有预定重量的平衡质量块。
-(a)在另一个预定时间窗口内测量当前的质量不平衡,
-(b)将当前的质量不平衡与至少之前测量的质量不平衡进行比较,以及
-(c)根据两个测量的质量不平衡的变化,至少调整平衡质量块的重量或位置,其中
-重复步骤(a)到(c),直到质量不平衡降至低于预先确定的阈值范围。
在校正方法的另一实施例中,可以采用试错技术进行质量不平衡校正。首先,在选定的风力涡轮叶片的预先选定的位置上,放置具有预选先定重量的平衡质量块。这种平衡质量块是可以多重调节的平衡质量块系统,其具有一个或多个调节装置,例如轨道、安装支架、耦合装置、流体传输系统或用于调整平衡质量块的重量和/或位置的其他合适的调节装置。例如,这个平衡质量块的重量和位置最初可根据合适的猜测确定。由最近的测量,例如第一次或第三次测量确定的不平衡因子和不平衡相位可以用来选择放置平衡质量块的风力涡轮机叶片,从而提供所需质量校正的合适猜测。
在当前时间窗口内测量振动和旋转位置。然后根据第一个分步测得的数据来确定质量不平衡,例如当前的不平衡因子和/或当前的不平衡相位。在第二个分步中,将当前测量的质量不平衡与一个或多个之前测量的质量不平衡,例如至少一个之前的不平衡因子和/或至少一个之前的不平衡相位,进行比较。在第三分步中,评估质量不平衡的变化,以确定是否应该调整平衡质量块的重量和/或位置。如果质量不平衡,例如不平衡因子仍然在阈值范围之外,则根据变化增加或减少平衡质量块的重量。此外或或者,根据该变化,将平衡质量块朝着尖端或叶片根部移动至新位置。重复这个过程即分步(a)至(c)连续任意次,例如1至5次,或者直到质量不平衡下降到位于阈值范围内的水平。然后,可以将该平衡质量块固定至风力涡轮叶片上的当前位置。或者,将这个平衡质量块移除,将具有相同重量的另一个特别设计的平衡质量块安装在相同的位置。这提供了另一种校正质量不平衡的方法,其限制了用来确定所需质量不平衡校正所需的计算量。
或者,该平衡质量块可以当前的重量固定或者安装在它之前的位置,并且/或者,将平衡质量块的重量降低至之前的重量并固定或安装在它的当前位置。这提供了一种简单的方法来抑制质量不平衡,而不需要工人必须在风力涡轮机叶片的外部走来走去。
这些上述步骤可以只在一个风力涡轮机叶片上进行,优选地,在至少两个风力涡轮机叶片上重复这些步骤。
本发明的一个目的还通过风力涡轮机实现,该风力涡轮机包括风力涡轮机塔架、设置于风力涡轮机塔架顶部的机舱、连接至具有至少两片风力涡轮机叶片的可转动转子的发电机,其中该风力涡轮机还包括配置为控制风力涡轮机运行的控制系统,该控制系统连接至至少一个振动传感器,例如加速度计,该振动传感器配置为测量上述转子在至少一个方向上的振动,其中该控制系统进一步配置为监控至少一个时间窗口内转子的振动,其特点在于,该控制系统进一步配置为检测转子的质量不平衡,并基于测得的数据确定至少一个不平衡因子和至少一个不平衡相位,其中该控制系统进一步配置为,基于至少一个不平衡因子和至少一个不平衡相位确定至少一个校正动作,该至少一个校正动作被应用于至少一个上述的风力涡轮机叶片,其中该至少一个校正动作是平衡力矩,该平衡力矩表明至少一个上述风力涡轮机叶片的质量校正。
这提供一种风力涡轮机,在该风力涡轮机中控制系统配置为监测转子不平衡,并对所有转速和因此所有风速条件下平衡转子需要的所需校正动作进行计算。不需要工人前往风力涡轮机场地,并建立测试设备来确定转子不平衡的类型。用配置为分析测得的数据的内部控制器或分散控制器来计算每个风力涡轮叶片的校正角和/或所需的平衡力矩。或者,将测量值传输到远程监测单元或计算机单元,该远程监测单元或计算机单元配置于分析测得的数据并对校正角和/或平衡力矩进行计算。这减少了校正空气动力不平衡和/或质量不平衡的时间和成本,因为工人只需要在需要安装平衡质量块或调整固定俯仰角时前往风力涡轮机处。如果不需要平衡质量块或风力涡轮机包括变桨系统,则工人、操作人员或控制系统可以远程地实现所需的校正角。
上述校正方法实现为控制系统的处理器的一种算法,或将其编程为控制系统的控制逻辑。该控制系统包括有线或无线通信模块,用于与另一个风力涡轮机控制系统和/或远程单位进行通信。控制系统还包括存储单元,用于存储测得的数据、由控制系统确定或计算的各种数据以及与风力涡轮机运行有关的其他相关数据。
根据一个实施例,至少一个振动传感器设置在转子轮毂或机舱上或附近。
振动通过至少一个振动传感器来测量,该振动传感器设置在风力涡轮机内或上面,例如转子轮毂、风力涡轮机叶片、机舱或风力涡轮机塔架的上端。振动传感器可以是二维的加速度计,其配置为测量机舱的轴向或横向的加速度。或者加速度计可以配置为测量轴向和横向两个方向上的加速度。或者,可用单独的加速度计来测量不同方向的加速度,每个方向都有一个加速度计。旋转位置由至少一个角度传感器例如旋转编码器来测量。角度传感器可包括校准方法或接收校准信号,以补偿测得的角信号的任何偏移。本控制系统确实需要角度传感器和由此的旋转位置测量,以确定所需的校正动作。然而,如果角度传感器或旋转位置测量是可行的,那么这个信号可以被本控制系统用来确定所需的校正动作。
根据一个实施例,控制系统还配置为计算至少一个上述风力涡轮叶片的至少一个校正角,并且可选地,将这个校正角传输至俯仰控制器,该俯仰控制器配置为基于接收到的校正角调整风力涡轮叶片的俯仰角。
该控制系统配置为向变桨系统的俯仰控制器发送变桨控制信号,该变桨系统进而将校正角应用至各自的风力涡轮机叶片上。或者,工人调整在风力涡轮机叶片和转子轮毂之间的安装界面,这样固定的风力涡轮机叶片就会移动,例如旋转至校正角。位于风力涡轮机上的或相对于风力涡轮机的传感器,例如加速度计和角度传感器,测量风力涡轮机在一个或多个时间窗口内的行为,其依次存储在本地存储单元中。该控制系统可配置为将这些测量数据传输到远程监控单元,该监控单元配置为分析接收的数据并计算校正动作。通过如上文描述的用不平衡因子和不平衡相位解方程式(1)、(3),将控制系统配置为确定每个风力涡轮机叶片的校正角。与美国专利8261599B2依赖图像数据处理来确定校正角的的校正方法相比,这使得所需的校正角计算精确。
校正动作完成后,或当整个校正过程完成后,控制系统中的可选优化单元可配置为接收这些已校正的俯仰角,并确定最佳俯仰角以便得到最大的功率生产。然后,这些优化的俯仰角可传输至俯仰控制器,该俯仰控制器配置为将风力涡轮机叶片倾斜成这些校正/优化的俯仰角。
该控制系统进一步配置为,一旦转子是空气动力平衡的,使用不平衡因子和不平衡相位来计算如上所述的质量校正。可以使用数学模型或气动弹性模型来确定参数的初始值,该初始值用来计算校正质量不平衡所需的质量矩。不同于美国专利US 8261599B2中的实施例,该控制系统能够使用与计算校正角相同的方程(1)、(3)来计算这个质量矩,仅通过改变上述方程中的参数组。或者,控制系统配置为从另一个风力涡轮机控制系统接收一个或多个这些参数,然后利用这些参数计算质量矩校正。这使得无需将测试重量放置在风力涡轮叶片外部就能够确定所需的平衡质量块,从而节省了校正过程的时间和成本。此外,这提供了简化的校正过程,因为参数可以在一个风力涡轮机上进行验证,然后用来校正另一个具有类似结构的风力涡轮机的质量不平衡。
在另一个实施例中,如果不需要进行空气动力不平衡校正,则在控制系统中实施一种基于试错的校正方法用于校正质量不平衡。在这个实施例中,工人和一系列预先选定的平衡质量块被运送到风力涡轮机场地。平衡质量块的位置和/或重量根据测量的质量不平衡的不平衡因子和/或不平衡相位的变化而改变,该测量的质量不平衡由控制系统确定。一旦探测到最佳位置和重量,将平衡质量块固定或安装至风力涡轮机内部的该位置。这提供了一种简单的减少质量不平衡的方法,而不需要工人在风力涡轮机叶片的外部走来走去。这还能够确定质量校正,而不需要将质量校正计算重复多次。
根据一个实施例,该控制系统进一步配置为,分析至少不平衡因子以确认转子不平衡的任何变化,其中该控制系统配置为将这些变化与一个或多个预定的时间窗口进行比较,以确定这些变化发生的频率。
校正方法可以进一步用于分析测量的转子不平衡,以确认单次测量之间的转子不平衡的变化。用一个或多个预定时间窗口来确定这些变化发生的频率。可将这些确认的变化以及确定的频率传输给操作员,从而使操作员能够区分短期、中期和长期变化。短期变化定义为例如由风力涡轮机叶片上的冰堆积引起的,在相对较短的时间段例如数小时内发生的变化。中期变化定义为例如由风力涡轮机叶片上的粉尘堆积引起的,在较长时间段例如数日内发生的变化。最后,长期变化定义为例如由叶片磨损引起的,在更长的时间段例如数月内发生的变化。这允许操作员确定必要的行动,例如,风力涡轮机叶片是否需要被清洗或更换。
这种校正方法也可以用来检查安装公差是否在可以接受的范围内,而不需要与风力涡轮机进行任何物理互动。这对于失速运行的风力涡轮机,如固定桨距风力涡轮机特别适用。
附图说明
本发明参照附图仅通过实施例进行描述,其中:
图1示出了具有转子组件的风力涡轮机的示范性实施例,
图2示出了风力涡轮机的转子和机舱,及其各自的俯仰角,旋转位置和偏航角,
图3示出了用于平衡转子的根据本发明的校正方法的第一实施例,
图4示出了示范性测量的转子不平衡的振幅关于旋转位置的函数的图,
图5示出了图4在轴向上测量的转子不平衡的频谱图,
图6示出了根据本发明的校正方法的第二实施例,
图7示出了根据本发明的校正方法的第三实施例,
图8示出了在第一次和第二次的校正过程前后,示范性测量的转子不平衡的振幅的三个图形,
图9示出了在第一次和第二次的校正过程前后,图8的转子不平衡的不平衡因子的三个图形,以及
图10示出了在第一次和第二次的校正过程前后,图8的转子不平衡的不平衡相位的三个图形。
在下列文本中,附图将逐一进行描述,并且在附图中所看到的不同的部分和位置将在不同附图中用相同的数字编号。在特定的附图中,并非所有指出来的部分和位置都必须与这个附图一同进行讨论。
序号列表
1 风力涡轮机
2 风力涡轮机塔架
3 机舱
4 偏航系统
5 转子
6 风力涡轮机叶片
7 轮毂
8 变桨系统
9 控制系统
10 加速度传感器
11 转子不平衡的振幅
12 旋转位置
13 不平衡相位
14 在校正过程前后的振幅图
15 在校正过程前后的不平衡因子图
16 在校正过程前后的不平衡相位图
具体实施例
图1示出了具有转子组件的风力涡轮机1的示范性实施例。该风力涡轮机1包括风力涡轮机塔架2、设置于风力涡轮机塔架2顶部的机舱3。在风力涡轮塔2和机舱3之间提供了至少包括偏航轴承单元的偏航系统4。转子5相对机舱3设置,并可旋转地连接至发电机单元(未示出)。至少两个风力涡轮机叶片6,这里示出3个,安装至转子5的轮毂7。
每个风力涡轮叶片6包括具有尖端和叶片根部的空气动力形主体。此处图示的风力涡轮机具有全翼展(full-span)的可变桨叶片,或者,可用固定的全翼展(full-span)叶片替代。可选的至少包括俯仰轴承单元的变桨系统8设置在轮毂7和风力涡轮叶片6的叶片根部之间。
图2示出的风力涡轮机1为变桨距型风力涡轮机,其中风力涡轮机叶片6配置为通过围绕纵轴例如俯仰轴承的中心轴的变桨系统进行俯仰。每个单独的风力涡轮机叶片6的单个俯仰角θ1、θ2、θ3通过俯仰控制器进行单独控制或同步控制,该俯仰控制器组成控制系统9例如风力涡轮机控制器的一部分。转子5和机舱3设置为围绕纵轴,例如偏航轴承的中心轴,进行偏航。偏航角Γ偏航通过偏航控制器控制,该偏航控制器进一步组成控制系统9的一部分。
控制系统9进一步配置为通过一个或多个相对于转子设置的角度传感器(图中未示出)监控旋转位置θ转子。从角度传感器测得的数据由控制系统9进行处理,以确定风力涡轮机叶片6各自的旋转位置。一个或多个加速度计10设置在风力涡轮机1上或在风力涡轮机1的上部,用于测量结构的振动。从加速度计测得的数据由控制系统9进一步处理。
图3示出了用于校正转子5经受的转子不平衡的校正方法的第一实施例的流程图。首先,控制系统9分析测得的数据,以确定是否需要不平衡校正。如果需要,控制系统9将基于从加速度计轴向测得的数据,检测转子5是空气动力平衡还是空气动力不平衡。参数在预定的时间窗口内进行测量。
如果转子是空气动力不平衡的,则控制系统9基于测得的数据确定在轴向的第一不平衡因子和第一不平衡相位。然后利用方程式中的第一组参数计算平衡风力涡轮机叶片6所需的校正角。优选地,这些参数的初始值来源于风力涡轮机系统的行为模型。校正角应用于各自的风力涡轮机叶片6,然后进行第二次测量。
然后,控制系统9根据这第二次测量确定第二不平衡因子和第二不平衡相位。然后根据第二不平衡因子和不平衡相位计算风力涡轮机叶片6的新校正角。根据第一和第二不平衡因子以及第一和第二不平衡相位,调整用于计算校正角的参数数值,以更好地表明实际情况。这可以在计算各自的风力涡轮机叶片6的新校正角之前或之后进行。将新的校正角应用于各自的风力涡轮机叶片6,然后,进行第三次测量。
控制系统9分析这第三次测量,以确定是否需要额外的校正动作。如果转子5是空气动力平衡的,例如,如果轴向的振动在预定的阈值范围内,那么控制系统9继续检测是否需要进行质量校正。如果需要进一步的空气动力校正,则重复校正过程。
如果转子质量不平衡,则控制系统9基于这第三次测量确定横向的第三不平衡因子和第三不平衡相位。随后,在方程中使用第二组参数来计算表明质量校正的平衡质量矩。然后根据这个平衡力矩计算一个风力涡轮叶片6的平衡质量块的重量和位置。各自的平衡质量块安装至各自的风力涡轮机叶片6上,然后进行第四次测量。
控制系统9分析这第四次测量,以确定是否需要额外的校正动作。如果转子5是质量平衡的,例如,如果横向的振动在预定的阈值范围内,则终止校正过程。否则,如果需要进一步的质量校正,重复校正过程。
图4示出了对于示范性的测量的转子不平衡,其在1P频率上的振幅11为一个风力涡轮机叶片6的旋转位置12的函数的图。如图所示,沿着风力涡轮机叶片的旋转位置,振幅11形成正弦曲线。这幅图示出了风力涡轮机叶片6的五次转动,其中每一次新的转动都是从0度重新开始的。
不平衡相位13被确定为旋转位置,其中振幅11具有其最大值11’,例如最大峰值或最小峰值。优选地,不平衡相位为对于所测量时间窗口的平均值。
图5示出了在轴向上测量的图5转子不平衡的频谱图。这张图示出了振幅11为测量的振动频率的函数。根据转子5的转速确定1P频率,并将其用来确定振幅11的峰值11’。
图6示出了用于校正转子5经历的转子不平衡的校正方法的第二实施例的流程图。这个实施例与图3的实施例不同,因为不需要测量旋转位置,也不需要分别在第一次和第二次测量之后执行校正动作。
如果检测到转子空气动力不平衡,基于振动的第一次测量,控制系统9确定轴向的第一不平衡因子和第一不平衡相位。然后将确定的不平衡应用于转子,然后进行振动的第二次测量。
基于这第二次测量,控制系统9确定第二不平衡因子和第二不平衡相位,然后将另一确定的不平衡应用于转子。随后,进行振动的第三次测量,并且基于这第三次测量,控制系统9确定第三不平衡因子和第三不平衡相位。
然后,用这三次测量的不平衡因子和不平衡相位来计算并更新用于计算所需校正动作的参数值。控制系统9用这些调整后的参数计算风力涡轮机叶片6的校正角,该校正角随后应用于风力涡轮叶片6。
然后再进行另一次测量,该测量随后由控制系统9进行分析,以确定是否需要额外的校正动作。如果转子5是空气动力平衡的,那么控制系统9使用这些调整后的参数,来继续校正如图3所示的任何质量不平衡。如果不是,则进行另一次校正过程。
图7示出了在不首先进行空气动力校正时,校正质量不平衡的第二种示范性校正方法。首先,将具有预先选定质量的平衡质量块暂时放置在一个风力涡轮叶片6内部的预先选定位置。
在预定时间窗口内测量旋转位置、振动和其他相关控制参数,然后控制系统9基于这些测量数据确定不平衡因子和不平衡相位。控制系统9分析不平衡因子和不平衡相位,以检测质量不平衡的任何变化,例如相对于至少一组先前测量的数据。如果这些变化表明质量不平衡发生了变化,例如减少了,但仍然在阈值范围之外,那么调整平衡质量块的位置和/或重量。
重复这个过程,直到控制系统9检测到质量不平衡在阈值范围之内。然后,将具有当前重量的平衡质量块永久安装在其当前位置上。或者,在同一位置安装另一个具有相同重量的平衡质量块。
图8示出了在进行第一次和第二次的校正过程前后,对于示范性的测得的转子不平衡,其振幅的三个图形。
第一个图形14表示在校正动作应用于转子5之前,测得的转子不平衡的振幅。如图形14所示,振幅从约0,005m/s2以指数方式增长到约0,04m/s2,这表示转子5内的示范性的转子不平衡。第二个图形14’示出了将第一次校正动作应用于转子5之后测量的振幅。在这次校正过程中,方程式中参数值的合适猜测用来计算所需的校正动作。
第三个图形14”示出了在第二次校正动作应用于转子5之后测量的振幅。在此次校正过程中,方程式中的参数值在计算所需的校正动作之前已经进行了调整。如图形14”所示,振幅显著减小,以至于其保持在约0,04m/s2以下。不平衡因子(如图8所示)使1P振幅正常化,并允许准确计算所需的校正动作。
图9示出了在第一次和第二次校正过程前后,图8的转子不平衡的不平衡因子的三个图形。在这个例子中,转子5的转速12提高至4次方。
第一个图形15示出了在应用任何校正动作之前,根据图8所示的振幅所确定的不平衡因子。如该图形15所示,数值相对于约1,4m/s2/rpm4集中。第二个图形15’和第三个图形15”进一步示出了参照图8所提及的,将第一次和第二次校正动作应用于转子5之后的不平衡因子。如第三个图形15”所示,不平衡因子显著减小,以至于其现在位于约0,5m/s2/rpm4以下,从而表明转子不平衡已降低到可接受的公差范围内。
图10在第一次和第二次校正过程前后,图8的转子不平衡的不平衡相位的三个图形。
第一个图形16示出了在应用任何校正行动之前,转子不平衡的不平衡相位。如该图形16所示,数值位于20度以下或左右。第二个图形16’和第三个图形16”进一步示出了参照图8中所提及的,将第一次和第二次校正动作应用于转子5之后的不平衡相位。如该图形所示,第三个图形16”的值分布在一个大范围内。这是由于不平衡相位被测得信号中的噪声显著影响。这也提供了一个表明转子不平衡已降低至可以接受的公差范围内的指示。
本发明不限于本文所描述的实施例,并可在不偏离下文专利权利要求书所述的本发明范围的情况下,对其进行修改或调整。

Claims (16)

1.一种校正风力涡轮机的转子不平衡的方法,所述风力涡轮机包括风力涡轮机塔架、设置于风力涡轮机塔架顶部的机舱、连接至具有至少两片风力涡轮机叶片的可转动转子的发电机,其中所述方法包括以下步骤:
-在至少一个时间窗口内测量所述转子的振动,
-检测所述转子的质量不平衡,
-分析测得的数据,以确定至少一个不平衡因子和至少一个不平衡相位,
-应用至少一种校正动作至至少一个所述风力涡轮机叶片,其中至少一种校正动作基于至少一个不平衡因子和至少一个不平衡相位来确定,所述至少一种校正动作包括计算平衡力矩,其表示所述至少一个所述风力涡轮机叶片的质量校正。
2.根据权利要求1所述的方法,其特征在于,所述转子具有由每个风力涡轮机叶片确定的质量分布,其中所述质量不平衡表示转子具有临时未更改的质量分布。
3.根据权利要求1或2所述的方法,其特征在于,分析测得的数据的步骤进一步包括基于测得的数据确定至少一个不平衡振幅,其中所述至少一个不平衡因子计算为所述至少一个不平衡振幅的函数。
4.根据权利要求1至3中任一项所述的方法,其特征在于,所述方法进一步包括步骤:
-在第一个所述时间窗口内测量所述转子的振动和旋转位置,并分析测得的数据以确定至少第一不平衡因子和第一不平衡相位,
-基于至少第一不平衡因子和第一不平衡相位,应用第一个所述校正动作,
-在第二个所述时间窗口内测量转子的振动和旋转位置,并分析测得的数据,以确定至少第二不平衡因子和第二不平衡相位,
-基于至少第二不平衡因子和第二不平衡相位,应用第二个所述校正动作。
5.根据权利要求1至3中任一项所述的方法,其特征在于,所述方法进一步包括步骤:
-在第一个所述时间窗口内测量所述转子的振动,并对测得的数据进行分析,以确定至少第一不平衡因子和第一不平衡相位,
-应用第一转子不平衡,
-在第二个所述时间窗口内测量转子的振动,并分析测得的数据,以确定至少第二不平衡因子和第二不平衡相位,
-应用第二转子不平衡,
-在第三个所述时间窗口内测量转子的振动,并分析测得的数据,以确定至少第三不平衡因子和第三不平衡相位,
-其中应用的至少一个校正动作基于第一、第二和第三不平衡因子中的至少一个和第一、第二和第三不平衡相位中的至少一个。
6.根据权利要求1至5中任一项所述的方法,其特征在于,所述方法进一步包括步骤:
-基于至少一个不平衡因子,校正至少一个用于计算各自的校正动作的参数。
7.根据权利要求1至6任一项所述的方法,其特征在于,应用所述至少一个校正动作的步骤还包括:基于平衡力矩计算平衡质量块的重量或位置,其中所述平衡质量块随后被应用至至少一个所述风力涡轮机叶片上。
8.根据权利要求1至7中任一项所述的方法,其特征在于,所述方法进一步包括步骤:
-在至少一个另外的时间窗口内测量转子的振动,可选择地以及旋转位置,
-检测是否存在转子的空气动力不平衡,
-如果存在所述空气动力不平衡,那么基于至少一个另外的时间窗口内的至少一个另外的不平衡因子和至少一个另外的不平衡相位,至少计算校正角,并将所述校正角应用至至少一个所述风力涡轮机叶片。
9.根据权利要求8所述的方法,其特征在于,所述方法进一步包括步骤:
-在至少一个额外的时间窗口内,进一步测量转子的振动,可选地以及旋转位置,
-确定转子是否质量平衡,以及
-如果质量不平衡,基于所述一个额外的时间窗口的至少另外的不平衡因子以及至少另外的不平衡相位,计算另外的平衡力矩,其中这个另外的平衡力矩表示另外的质量校正。
10.根据权利要求1至9中任一项所述的方法,其特征在于,将至少一个用于计算平衡力矩的参数传输到至少一个另外的风力涡轮机,其中这个参数用于计算另外的风力涡轮机的质量校正。
11.根据权利要求1至10中任一项所述的方法,其特征在于,所述方法进一步包括步骤:
-从风力涡轮机模型获得至少一个用于计算各自的校正动作的参数,其中该模型至少呈现了具有预定的转子不平衡的风力涡轮机中的振动。
12.根据权利要求1至8中任一项所述的方法,其特征在于,所述方法进一步包括步骤:
-在一个风力涡轮叶片内部的预定位置放置具有预定重量的平衡质量块。
-(a)在另一个预定时间窗口内测量当前的质量不平衡,
-(b)将当前的质量不平衡与至少之前测量的质量不平衡进行比较,以及
-(c)根据两个测量的质量不平衡的变化,至少调整平衡质量块的重量或位置,其中
-重复步骤(a)到(c),直到质量不平衡降至预先确定的阈值范围内。
13.一种风力涡轮机,包括风力涡轮机塔架、设置于风力涡轮机塔架顶部的机舱、连接至具有至少两片风力涡轮机叶片的可转动转子的发电机,其中该风力涡轮机还包括配置为控制风力涡轮机运行的控制系统,该控制系统连接至至少一个振动传感器,例如加速度计,该振动传感器配置为测量所述转子在至少一个方向的振动,其中所述控制系统进一步配置为监控至少一个时间窗口内转子的振动,其特征在于,所述控制系统进一步配置为检测转子的质量不平衡,并基于测得的数据确定至少一个不平衡因子和至少一个不平衡相位,其中所述控制系统进一步配置为,基于至少一个不平衡因子和至少一个不平衡相位确定至少一个校正动作,所述至少一个校正动作被应用于至少一个所述风力涡轮机叶片,其中所述至少一个校正动作是平衡力矩,其表明至少一个所述风力涡轮机叶片的质量校正。
14.根据权利要求13所述的风力涡轮机,其特征在于,所述至少一个振动传感器设置在转子轮毂或机舱上或附近。
15.根据权利要求13或14所述的风力涡轮机,其特征在于,控制系统还配置为计算至少一个所述风力涡轮叶片的至少一个校正角,并且可选地将这个校正角传输至俯仰控制器,所述俯仰控制器配置为基于接收到的校正角调整所述风力涡轮叶片的俯仰角。
16.根据权利要求13至15中任一项所述的风力涡轮机,其特征在于,所述控制系统进一步设置为至少分析不平衡因子,以确认转子不平衡的任意变化,其中所述控制系统设置为将这些变化与一个或多个预定的时间窗口进行比较以确定这些变化发生的频率。
CN201680023626.1A 2015-04-23 2016-04-20 校正转子不平衡的方法及其风力涡轮机 Active CN107667221B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DKPA201570239 2015-04-23
DKPA201570239 2015-04-23
DKPA201570465 2015-07-14
DKPA201570465 2015-07-14
PCT/EP2016/058723 WO2016169963A1 (en) 2015-04-23 2016-04-20 Method of correcting rotor imbalance and wind turbine thereof

Publications (2)

Publication Number Publication Date
CN107667221A true CN107667221A (zh) 2018-02-06
CN107667221B CN107667221B (zh) 2019-11-05

Family

ID=55794979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680023626.1A Active CN107667221B (zh) 2015-04-23 2016-04-20 校正转子不平衡的方法及其风力涡轮机

Country Status (6)

Country Link
US (1) US10907615B2 (zh)
EP (1) EP3286430B1 (zh)
CN (1) CN107667221B (zh)
CA (1) CA2983208C (zh)
DK (1) DK3286430T3 (zh)
WO (2) WO2016169964A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109101722A (zh) * 2018-08-09 2018-12-28 东方电气集团东方汽轮机有限公司 一种涡轮机叶片复合成型设计方法
CN112922781A (zh) * 2021-01-29 2021-06-08 中材科技风电叶片股份有限公司 风力发电机及其叶片质量分布控制系统、方法及设备
CN114466971A (zh) * 2019-07-30 2022-05-10 维斯塔斯风力系统集团公司 修正风力涡轮机中的叶片桨距
CN114838872A (zh) * 2022-05-10 2022-08-02 浙江大学 一种超重力离心机动平衡长期监测方法
CN117804677A (zh) * 2024-02-29 2024-04-02 中国空气动力研究与发展中心高速空气动力研究所 一种复杂压缩机轴系的分步骤动平衡方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6405324B2 (ja) * 2016-01-29 2018-10-17 三菱重工業株式会社 風力発電装置及びその運転方法
US10550823B2 (en) * 2016-08-10 2020-02-04 General Electric Company Method for balancing segmented wind turbine rotor blades
US10781792B2 (en) 2017-05-18 2020-09-22 General Electric Company System and method for controlling a pitch angle of a wind turbine rotor blade
US10781795B2 (en) * 2017-11-13 2020-09-22 General Electric Company Method and system for detecting a mass imbalance in a wind turbine rotor
FR3073496B1 (fr) * 2017-11-15 2020-11-20 Sereema Systeme et procede de diagnostic d'un desequilibre rotor d'une eolienne
US11319925B2 (en) * 2017-12-14 2022-05-03 Vestas Wind Systems A/S Tower damping in wind turbine power production
DK201870058A1 (en) * 2018-01-29 2019-09-09 Envision Energy (Denmark) Aps Stall Induced Vibration Control
US10823146B2 (en) * 2018-06-14 2020-11-03 General Electric Company System and method for controlling a wind turbine to minimize rotor blade damage
WO2020011323A1 (en) * 2018-07-11 2020-01-16 Vestas Wind Systems A/S Method and system for controlling a wind turbine to reduce nacelle vibration
CN109740260B (zh) * 2019-01-04 2023-07-21 岭澳核电有限公司 汽轮机转子动平衡处理方法及装置
CN110131109A (zh) * 2019-04-25 2019-08-16 浙江大学 一种基于卷积神经网络的风力机叶片不平衡检测方法
CN110259637B (zh) * 2019-06-25 2021-03-23 中国船舶重工集团海装风电股份有限公司 风力发电机组的叶片气动不平衡矫正方法、装置及设备
US10975841B2 (en) 2019-08-02 2021-04-13 Uptake Technologies, Inc. Computer system and method for detecting rotor imbalance at a wind turbine
US20210108618A1 (en) * 2019-10-11 2021-04-15 The Aes Corporation System and method for determining an operating condition of a wind turbine
CN113007034B (zh) * 2019-12-20 2024-04-12 金风科技股份有限公司 矫正叶轮气动不平衡的方法及装置
CN113494418A (zh) 2020-04-08 2021-10-12 通用电气可再生能源西班牙有限公司 用于减轻作用于风力涡轮的转子叶片的负载的系统和方法
CN111476679A (zh) * 2020-04-14 2020-07-31 四川北控清洁能源工程有限公司 根据大气稳定度修正风电机组功率曲线的方法
CN113586356B (zh) * 2020-04-30 2023-03-10 北京金风科创风电设备有限公司 风力发电机组的净空监测系统和方法
EP3974645A1 (en) * 2020-09-29 2022-03-30 Siemens Gamesa Renewable Energy A/S Imbalance estimation for the wind rotor of a wind turbine
CN112145376B (zh) * 2020-09-29 2021-06-22 沈阳航空航天大学 一种风力机全时效率测定方法
CN113217296A (zh) * 2021-03-08 2021-08-06 明阳智慧能源集团股份公司 一种风电机组风轮不平衡的检测和修正方法
DE102021211045A1 (de) 2021-09-30 2023-03-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Flettner-Rotor-System und Verfahren zum aktiven Dämpfen eines Flettner-Rotor-Systems
CN114627115B (zh) * 2022-05-13 2022-08-30 济宁安泰矿山设备制造有限公司 一种动平衡检测系统及使用其的流体泵叶轮生产线

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219454A (en) * 1992-04-22 1993-06-15 Denis Class Method and apparatus for balancing wind turbine rotors
CN101092931A (zh) * 2006-06-19 2007-12-26 通用电气公司 用于平衡转子的方法和装置
EP1978246A1 (en) * 2007-04-04 2008-10-08 Siemens Aktiengesellschaft Method of reducing an unbalance in a wind turbine rotor and device for performing the method
WO2009129617A1 (en) * 2008-04-24 2009-10-29 Mike Jeffrey A method and system for determining an imbalance of a wind turbine rotor
US20110229300A1 (en) * 2010-03-16 2011-09-22 Stichting Energieonderzoek Centrum Nederland Apparatus and method for individual pitch control in wind turbines
CN102338034A (zh) * 2010-05-28 2012-02-01 通用电气公司 用于验证风力涡轮的方法和系统
CN102483037A (zh) * 2009-09-21 2012-05-30 西门子公司 对安装在风力涡轮机轮毂上的转子进行平衡的方法
US20120183399A1 (en) * 2011-01-19 2012-07-19 Hamilton Sundstrand Corporation Method and apparatus for balancing wind turbines
CN102954858A (zh) * 2011-08-17 2013-03-06 通用电气公司 风力发电机以及检测风力发电机异常运行条件的方法
US20130325373A1 (en) * 2012-05-29 2013-12-05 Wei Qiao Detecting Faults in Wind Turbines
CN103573552A (zh) * 2012-08-02 2014-02-12 通用电气公司 风力涡轮机及其降低转子不平衡的控制方法
CN104454350A (zh) * 2013-09-23 2015-03-25 通用电气公司 风力涡轮机及其降低转子不平衡载荷的控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140856A (en) 1990-12-03 1992-08-25 Dynamic Rotor Balancing, Inc. In situ balancing of wind turbines
DE102007063082B4 (de) 2007-12-21 2010-12-09 Repower Systems Ag Verfahren zum Betreiben einer Windenergieanlage
ES2376815B1 (es) * 2008-12-29 2013-02-15 Acciona Windpower, S.A. Método para evaluar el desequilibrio del rotor de un aerogenerador.
SE534957C2 (sv) * 2009-05-20 2012-02-28 Ge Wind Energy Norway As Metod för att bestämma ett balanserat läge hos en vindturbin
DE102010023887A1 (de) 2010-06-15 2011-12-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Verhinderung einer Querschwingung einer Windenergieanlage

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219454A (en) * 1992-04-22 1993-06-15 Denis Class Method and apparatus for balancing wind turbine rotors
CN101092931A (zh) * 2006-06-19 2007-12-26 通用电气公司 用于平衡转子的方法和装置
US20090035136A1 (en) * 2006-06-19 2009-02-05 General Electric Company Methods and apparatus for balancing a rotor
EP1978246A1 (en) * 2007-04-04 2008-10-08 Siemens Aktiengesellschaft Method of reducing an unbalance in a wind turbine rotor and device for performing the method
WO2009129617A1 (en) * 2008-04-24 2009-10-29 Mike Jeffrey A method and system for determining an imbalance of a wind turbine rotor
CN102483037A (zh) * 2009-09-21 2012-05-30 西门子公司 对安装在风力涡轮机轮毂上的转子进行平衡的方法
US20110229300A1 (en) * 2010-03-16 2011-09-22 Stichting Energieonderzoek Centrum Nederland Apparatus and method for individual pitch control in wind turbines
CN102338034A (zh) * 2010-05-28 2012-02-01 通用电气公司 用于验证风力涡轮的方法和系统
US20120183399A1 (en) * 2011-01-19 2012-07-19 Hamilton Sundstrand Corporation Method and apparatus for balancing wind turbines
CN102954858A (zh) * 2011-08-17 2013-03-06 通用电气公司 风力发电机以及检测风力发电机异常运行条件的方法
US20130325373A1 (en) * 2012-05-29 2013-12-05 Wei Qiao Detecting Faults in Wind Turbines
CN103573552A (zh) * 2012-08-02 2014-02-12 通用电气公司 风力涡轮机及其降低转子不平衡的控制方法
CN104454350A (zh) * 2013-09-23 2015-03-25 通用电气公司 风力涡轮机及其降低转子不平衡载荷的控制方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109101722A (zh) * 2018-08-09 2018-12-28 东方电气集团东方汽轮机有限公司 一种涡轮机叶片复合成型设计方法
CN109101722B (zh) * 2018-08-09 2022-03-22 东方电气集团东方汽轮机有限公司 一种涡轮机叶片复合成型设计方法
CN114466971A (zh) * 2019-07-30 2022-05-10 维斯塔斯风力系统集团公司 修正风力涡轮机中的叶片桨距
CN112922781A (zh) * 2021-01-29 2021-06-08 中材科技风电叶片股份有限公司 风力发电机及其叶片质量分布控制系统、方法及设备
CN112922781B (zh) * 2021-01-29 2023-02-17 中材科技风电叶片股份有限公司 风力发电机及其叶片质量分布控制系统、方法及设备
CN114838872A (zh) * 2022-05-10 2022-08-02 浙江大学 一种超重力离心机动平衡长期监测方法
CN117804677A (zh) * 2024-02-29 2024-04-02 中国空气动力研究与发展中心高速空气动力研究所 一种复杂压缩机轴系的分步骤动平衡方法
CN117804677B (zh) * 2024-02-29 2024-05-14 中国空气动力研究与发展中心高速空气动力研究所 一种复杂压缩机轴系的分步骤动平衡方法

Also Published As

Publication number Publication date
DK3286430T3 (da) 2020-04-06
CA2983208A1 (en) 2016-10-27
CA2983208C (en) 2023-03-28
WO2016169964A1 (en) 2016-10-27
CN107667221B (zh) 2019-11-05
US10907615B2 (en) 2021-02-02
EP3286430B1 (en) 2020-01-15
US20180142676A1 (en) 2018-05-24
EP3286430A1 (en) 2018-02-28
WO2016169963A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
CN107667221B (zh) 校正转子不平衡的方法及其风力涡轮机
US20120183399A1 (en) Method and apparatus for balancing wind turbines
EP3237873B1 (en) Fatigue testing
US9004862B2 (en) Calibration of wind turbine sensor
EP3189231B1 (en) Improvements relating to the determination of rotor imbalances in a wind turbine
CN109563812A (zh) 沿边风力涡轮机叶片振动的减振
CN103003565A (zh) 用于确定风力涡轮机的转子叶片的弯曲角的方法和装置
CN112424470A (zh) 用于控制风力涡轮机以减少机舱振动的方法和系统
US10233907B2 (en) Operating a wind turbine by reducing an acoustic emission during operation
US20180354630A1 (en) Methods for Optimized Engine Balancing Based on Flight Data
CN109812382A (zh) 一种风电机组塔架振动控制方法及系统
EP2728332A1 (en) Test rig
CN102459888B (zh) 用于平衡风力涡轮机的方法
EP2000667A1 (en) Method and device for controlling load reduction for a wind turbine rotor
Bertelè et al. Automatic detection and correction of pitch misalignment in wind turbine rotors
US20210148336A1 (en) A method for determining wind turbine blade edgewise load recurrence
CN111238729A (zh) 一种大尺寸光电经纬仪俯仰轴的精密静平衡配平方法
CN108225783A (zh) 航空涡轮风扇发动机风扇转子配平方法和装置
Boorsma et al. New MEXICO experiment
EP4185770B1 (en) Imbalance estimation for the wind rotor of a wind turbine
Lee et al. Experimental hover performance evaluation on a small-scale rotor using a rotor test stand
EP4004364B1 (en) Correcting blade pitch in a wind turbine
CN118067305A (zh) 一种基于安全生产的机械部件平衡测试系统及方法
CN103184937A (zh) 一种喷流控制系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant