CN107665270A - 基于Lu模型的大坝下游河岸带热流耦合模拟构建方法 - Google Patents

基于Lu模型的大坝下游河岸带热流耦合模拟构建方法 Download PDF

Info

Publication number
CN107665270A
CN107665270A CN201710711576.2A CN201710711576A CN107665270A CN 107665270 A CN107665270 A CN 107665270A CN 201710711576 A CN201710711576 A CN 201710711576A CN 107665270 A CN107665270 A CN 107665270A
Authority
CN
China
Prior art keywords
soil
model
temperature
field
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710711576.2A
Other languages
English (en)
Other versions
CN107665270B (zh
Inventor
任杰
张文兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201710711576.2A priority Critical patent/CN107665270B/zh
Publication of CN107665270A publication Critical patent/CN107665270A/zh
Application granted granted Critical
Publication of CN107665270B publication Critical patent/CN107665270B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

基于Lu模型的大坝下游河岸带热流耦合模拟构建方法,包括以下步骤:步骤1,构建河岸带饱和‑非饱和渗流场‑温度场全耦合模型,包括建立渗流场,并建立饱和‑非饱和热量运移模型,描述温度场和渗流场的关系;步骤2,对所述河岸带饱和‑非饱和渗流场‑温度场全耦合模型设置边界条件,包括对渗流场设置边界条件以及对温度场设置边界条件;步骤3,求解所述河岸带饱和‑非饱和渗流场‑温度场全耦合模型,求解的过程中采用Lu模型来描述土体的等效热传导系数与含水率之间的关系,从而得到渗流过程中温度随时间的变化规律。解决了现有技术中存在的不能够准确的模拟大坝下泄低温水对河岸带饱和‑非饱和热流耦合的影响机理的问题。

Description

基于Lu模型的大坝下游河岸带热流耦合模拟构建方法
技术领域
本发明属于水利工程技术领域,涉及一种基于Lu模型的大坝下游河岸带热流耦合模拟构建方法。
背景技术
在河流上筑坝建库,是开发利用水资源中最常见的工程措施。然而,水库建成蓄水后,形成了庞大的水域,改变了原天然河流的水域环境,形成了特有的温度场。水库发电为主的引水主要取自水温偏低的滞温层,以利用发电尾水进行农业灌溉、生态补水、水厂取水等为主的生产生活性用水水温,在每年绝大多数月份中比河道自然水温低。低温水泄入下游河道,沿程流动并通过侧向潜流交换作用,改变了河岸带潜流层天然温度场和水分场的分布,从而对依存其中的动物群落、作物生长、土壤呼吸等生存环境产生较大的影响,这对河流的可持续健康发展十分不利。
虽然国内外学者基于水库水温或下游河道水温模型进行了大量的研究,同时也有学者利用饱和多孔介质水热耦合运移数学模型分析了水库下泄低温水水位和水温对地表水-地下水交错带温度场的影响规律,已取得了一些研究成果,但目前尚缺少水库下泄低温水造成的河岸带饱和-非饱和热流耦合特性及模型方面的研究成果。
发明内容
本发明的目的是提供一种基于Lu模型的大坝下游河岸带热-流耦合模拟构建方法,解决了现有技术中存在的不能够准确的模拟大坝下泄低温水对河岸带饱和-非饱和热-流耦合的影响机理的问题。
本发明所采用的技术方案是,基于Lu模型的大坝下游河岸带热流耦合模拟构建方法,包括以下步骤:
步骤1,构建河岸带饱和-非饱和渗流场-温度场全耦合模型,包括建立渗流场,并建立饱和-非饱和热量运移模型,描述温度场和渗流场的关系;
步骤2,对河岸带饱和-非饱和渗流场-温度场全耦合模型设置边界条件,包括对渗流场设置边界条件以及对温度场设置边界条件;
步骤3,求解河岸带饱和-非饱和渗流场-温度场全耦合模型,求解的过程中采用Lu模型来描述土体的等效热传导系数与含水率之间的关系,从而得到渗流过程中温度随时间的变化规律。
步骤1中,建立的渗流场具体为河岸带饱和-非饱和瞬态渗流场,采用 Richards方程进行描述:
式中:θ为含水量,k为土渗透系数,k在饱和区域为初始温度场T的函数,k在非饱和区域为土体基质吸力或含水率的函数;h为压力水头,H为总水头,C为土体容水度,n为多孔介质的孔隙率,Ss为弹性贮水率,Qs为渗流源汇项,为拉普拉斯方程,DT为水动力弥散系数,t为时间。
在河岸带饱和-非饱和瞬态渗流场中,采用Van Genuchten模型来描述非饱和带土壤水分特征曲线:
上式中,h(θ)为土壤基质吸力,k(θ)为非饱和土渗透系数;θs和θr分别为土壤饱和含水率和土壤残余含水率,与土壤质地有关;α和nv为VG模型参数,m=1-1/nv;ks为饱和土体渗透率。
步骤1中,采用热对流方程描述饱和-非饱和热量运移模型:
式中:c为土体比热容,ρ为土体等效密度,为拉普拉斯方程,λ为土体的等效热传导系数,cw为水的比热容,ρw为水的密度,v为水的平均流速, T为初始温度场,Qh为温度场源汇项。
步骤2具体为:
对于渗流场,河岸上下游的边界分别设置为定水头边界,河岸非上下游的边界设置为零通量边界;
对于温度场,河岸水面以下位置设置为定温度边界,河岸底部边界设置为绝热边界,与大气接触的位置取日平均气温值作为边界值。
步骤3的具体步骤为:
步骤3.1,输入参数:土体的等效热传导系数λ、石英含量q、多孔介质的孔隙度n、干土的导热系数λdry、水的导热系数λw、石英的导热系数λq、差值系数Ke、其他矿物质的导热系数λ0、土中固体颗粒的导热系数λs、饱和土体的导热系数λsat
步骤3.2,输入渗流场和温度场的边界条件,并给出水的黏度与温度的关系:μ(T)=0.00002414×10(247.8/(T+133.16)
步骤3.3,建立Lu模型,将土体的等效热传导系数λ修改为非饱和土的导热系数表达式;
步骤3.4,更新河岸带饱和-非饱和渗流场-温度场全耦合模型的参数分布,即在每个时间步长更新步骤3.1输入参数中的变量,直至河岸带饱和-非饱和渗流场-温度场的求解收敛,得到每个时间步长内的温度值,从而得到渗流过程中温度随时间的变化规律。
步骤3.3中建立Lu模型具体为:
通过在干土的导热系数和饱和土的导热系数间插值,得到非饱和土的等效热传导系数λeq
λeq=(λsatdry)Kedry (5)
式中,Ke为插值系数,λdry为干土的导热系数,λsat为饱和土的导热系数:
λdry=-0.56n+0.51 (7)
其中:α对于砂土、壤土、粘土分别为1.05、0.9、0.58,Sr为饱和度,n 表示多孔介质的孔隙度,λw为水的导热系数,λs为土中固体颗粒的导热系数,λs=λq qλ0 1-q,其中:q为石英含量,λq为石英的导热系数,λ0为其它矿物的导热系数。
本发明的有益效果是:
(1)基于Lu模型的河岸带饱和-非饱和渗流场-温度场全耦合模型模拟的温度与实测值比较吻合,均方根误差(RESM)比较小,模型的模拟结果可靠; Pearson相关系数(PCC)变化范围在0.51~1.0之间,其中有88.24%的模拟值与实验值呈强相关,剩下的11.76%均处于中等相关,模拟值与实验值相关性比较好;Nash-Sutcliffe模型效率系数(NSE)大于0.6占76.47%,土壤温度的模拟值与实测值之间具有较好的一致性;采用Lu模型计算的各项指标均优于未采用Lu模型的模拟值;Lu模型对土壤导热率具有较好的拟合效果,采用Lu模型能够较为精确的刻画河岸带土体在受到大坝下泄低温水时温度的动态变化过程;
(2)离入渗边界和底边界附近的土体在比较短的时间内快速下降并达到稳态,其温度大致接近于入渗水温,相反,靠近上边界和右边界的温度则需要较长的时间达到稳态;离入渗边界越近的区域受到水温的影响越明显,随着入渗水头增加,土壤内部平均温度降低,土壤深层低温区域逐渐扩大,温度梯度增加;
(3)基于Lu模型的大坝下游河岸带热流耦合模拟构建方法,阐明了水库低温水入渗条件下外界环境因素变化与和河岸带饱和-非饱和热流动态特征的内在联系,揭示水库下泄低温水对河岸带饱和-非饱和热流耦合的影响机理,对研究地下动植物受低温水影响的生存环境条件所可能采取的工程或非工程措施,具有重要的学术价值和实际应用意义。
附图说明
图1是求解河岸带饱和-非饱和渗流场-温度场全耦合模型的流程图;
图2室内试验采用的装置的示意图;
图3是室内试验中温度传感器布置示意图;
图4是低温水入渗土壤水热模拟求解区域的示意图;
图5是基于Lu模型和无Lu模型的模拟与实测在距离入渗边界不同位置纵剖面各点处温度随时间的变化曲线图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
取实际工程的河岸带土料的热特性参数,如表1所示,运用基于Lu模型的大坝下游河岸带热流耦合模拟构建方法进行热流耦合特性模拟,以保证数值模拟的结果能够对实际工程具指导意义。
表1实际工程的河岸带土料的热特性参数
其中,VG模型参数l属于软件默认值;
基于Lu模型的大坝下游河岸带热流耦合模拟构建方法,其特征在于,包括以下步骤:
步骤1,构建河岸带饱和-非饱和渗流场-温度场全耦合模型,包括建立渗流场,并建立饱和-非饱和热量运移模型,描述温度场和渗流场的关系;
步骤1中,建立的渗流场具体为河岸带饱和-非饱和瞬态渗流场,采用 Richards方程进行描述:
式中:θ为含水量,k为土渗透系数,k在饱和区域为初始温度场T的函数,k在非饱和区域为土体基质吸力或含水率的函数;h为压力水头,H为总水头,C为土体容水度,n为多孔介质的孔隙率,Ss为弹性贮水率,Qs为渗流源汇项,为拉普拉斯方程,DT为水动力弥散系数,t为时间;
在河岸带饱和-非饱和瞬态渗流场中,采用Van Genuchten模型来描述非饱和带土壤水分特征曲线:
上式中,h(θ)为土壤基质吸力,k(θ)为非饱和土渗透系数;θs和θr分别为土壤饱和含水率和土壤残余含水率,与土壤质地有关;α和nv为VG模型参数,m=1-1/nv;ks为土体饱和渗透率;
步骤1中,采用热对流方程描述饱和-非饱和热量运移模型:
式中:c为土体比热容,ρ为土体等效密度,为拉普拉斯方程,λ为土体的等效热传导系数,cw为水的比热容,ρw为水的密度,v为水的平均流速, T为初始温度场,Qh为温度场源汇项。
步骤2,对河岸带饱和-非饱和渗流场-温度场全耦合模型设置边界条件,包括对渗流场设置边界条件以及对温度场设置边界条件:
对于渗流场,河岸上下游的边界分别设置为定水头边界,河岸非上下游的边界设置为零通量边界;
对于温度场,河岸水面以下位置设置为定温度边界,河岸底部边界设置为绝热边界,与大气接触的位置,其温度具有季节波动,取日平均气温值作为边界值。
步骤3,如图1所示,求解河岸带饱和-非饱和渗流场-温度场全耦合模型,本实施例以COMSOL Mutiphsic软件为基础,修改相关模块,实现温度场与渗流场耦合的数值模拟;采用多孔介质和地下水流动模块中的Richards’ Equation组件和热传递模块下的HeatTransfer in Porous Media组件,设置对流传热方程的流速项为饱和-非饱和渗流模块计算得到的水流流速;由于热传递模块默认的热参数是采用体积平均法,即假设多孔介质的热参数是固液两相物质热参数的体积加权平均,描述多孔介质导热参数与饱和度的关系,这就需要修改相关选项,即求解的过程中采用Lu模型来描述土体的等效热传导系数与含水率之间的关系,从而得到渗流过程中温度随时间的变化规律;
步骤3.1,输入参数:土体的等效热传导系数λ、石英含量q、多孔介质的孔隙度n、干土的导热系数λdry、水的导热系数λw、石英的导热系数λq、差值系数Ke、其他矿物质的导热系数λ0、土中固体颗粒的导热系数λs、饱和土体的导热系数λsat
步骤3.2,输入渗流场和温度场的边界条件;并给出水的黏度与温度的关系:μ(T)=0.00002414×10(247.8/(T+133.16)
如图2所示,计算区域为一个高(垂直方向)80cm,长(水平方向)60cm 的矩形区域,图中OD为低温水入渗的土壤左边界,OE为入渗水面,OA、 CD和AC分别为土体的下边界、上边界和右边界;假定整个模拟区域内的土壤质地是均一的,且各向同性,对于饱和-非饱和渗流场,上游河岸OE为定水头边界,设置25cm水头;AC边界为自由出流边界;其他边界零通量。对于温度场,OE为定温度边界,底部边界OA为绝热边界;EDCA边界与大气接触,设置为大气边界,这里设置与室内相同的温度20℃;渗流场的初始条件假设压力水头为0,温度场假设初始温度为土壤初始温度;
步骤3.3,建立Lu模型,将土体的等效热传导系数λ修改为非饱和土的导热系数表达式;
土体的等效热传导系数是进行岩土工程中有关传热分析的关键参数,其大小会随土体含水量的空间分布差异而产生变化,温度的变化会影响水体粘度和土体孔隙结构,进而影响导热过程,采用Lu模型能有效刻画热传导系数与含水率之间的关系,从而提高计算精度;
建立Lu模型具体为:通过在干土的导热系数和饱和土的导热系数间插值,得到非饱和土的等效热传导系数λeq
λeq=(λsatdry)Kedry (5)
式中,Ke为插值系数,λdry为干土的导热系数,λsat为饱和土的导热系数:
λdry=-0.56n+0.51 (7)
其中:α对于砂土、壤土、粘土分别为1.05、0.9、0.58,Sr为饱和度,常数1.33为形状参数,n表示多孔介质的孔隙度,λw为水的导热系数,λs为土中固体颗粒的导热系数,λs=λq qλ0 1-q,其中:q为石英含量,λq为石英的导热系数,λq=7.7W/(m·℃),λ0为其它矿物的导热系数,当q>0.2时,λ0=2.0W/(m·℃),当q≤0.2时,λ0=3.0W/(m·℃);
建立Lu模型,修改模块后,河岸带饱和-非饱和渗流场-温度场全耦合模型的参数如表2所示:
表2修改模块后河岸带饱和-非饱和渗流场-温度场全耦合模型的参数表
步骤3.4,更新河岸带饱和-非饱和渗流场-温度场全耦合模型的参数分布,即在每个时间步长更新步骤3.1输入的变量,直至河岸带饱和-非饱和渗流场 -温度场的求解收敛,得到每个时间步长内的温度值,从而得到渗流过程中温度随时间的变化规律。
模型验证:
一.进行室内试验:
取实际工程的河岸带土料作为试样,对其进室内河岸带的热-流耦合试验,试验采用有机玻璃制成的二维砂槽,长70cm、宽20cm、高80cm,砂槽左右两端用有机玻璃挡板对称隔成宽5cm的水槽,并在有机玻璃挡板上对称钻有直径5mm左右的透水孔,间距为1cm;上游水槽边壁垂直方向分别设有高25cm的溢流口,保证稳定的上游入渗水头,并在右水槽垂直方向设有高5cm的出水口。砂箱模型的结构如图3所示。试验所用的材料为中细砂土,经风干、去除杂物,过孔径为2mm的筛,混合均匀后,按设定干容重 1.56g/cm3分层均匀装入试验砂槽;在填砂土过程中,每填入9cm厚度的砂土就进行压实,并且在砂土层之间进行刨毛。
在土槽前壁均匀埋设了6排共30个温度传感器,从中选取17个温度传感器用于数值模拟分析,17个传感器的位置如图4所示;对于河岸带,环境的因素变化对土壤中的温度场的影响很大,本试验只考虑入渗水温和入渗水头两个影响因素,试验选用入渗水头为25cm,入渗水温为10℃的工况。砂土的初始温度保持在20℃。根据试验方案,在试验开始之前,通过高精度恒温水循环系统制备试验所需的低温水水温,再通过水位升降控制台调节供水强度的大小,并使其稳定。当水温稳定后,同时打开秒表和进水口阀门,进行入渗试验,采样间隔为1分钟,传感器通过采集仪和电脑相连,实时采集,得到温度场数据。
二.进行模型精度评估:
本发明采用均方根误差(RMSE),Pearson相关系数(PCC)和Nash-Sutcliffe 模型效率系数(NSE)对河岸带饱和-非饱和渗流场-温度场全耦合模型的模拟精度进行评估:
式中:m为实验温度数据的样本容量,Tobs,i和Tmodel,i分别是第i时刻实验测得的温度与模型模拟值,分别表示试验和模拟的平均温度。RESM的值在0到+∞范围内变化,RESM的值越小,表示模拟值与实验值之间的偏差越小,模型的模拟结果越可靠。PCC的值在-1到1范围内变化,PCC的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱;通常情况下相关系数0.8-1.0极强相关,0.6-0.8表示强相关,0.4-0.6表示中等程度相关。NSE的值从-∞到1 之间变化可以作为Lu模型模拟的标准,当NSE接近1.0时,表示实测值和模拟值的完美匹配;当NSE>0.6时,认为模拟值和实验值之间一致性比较好;当NSE接近0,表明该模型模拟结果等同于实测值的均值系列,即总体结果可信,但过程模拟误差大,而NSE远远小于0,则模型是不可信的。
根据室内试验测得的温度场数据和Comsol Multiphysics软件模型(分 Lu模型和无Lu模型)得到的温度场数据,图5(a)、5(b)、5(c)、5(d)、5(e) 给出了基于Lu模型和无Lu模型的模拟与实测在距离入渗边界依次为5米、 15米、30米、45米、55米位置纵剖面各点处温度随时间的变化曲线,结果的一致性通过表2给出。
表2采用Lu和无Lu模型的均方根误差(RMSE),Pearson相关系数(PCC)和 Nash-Sutcliffe模型效率系数(NSE)的模拟结果
从表2可以看出,基于Lu模型的RESM变化范围在0.14~1.1,平均值为0.51,模拟值与实验值之间偏差比较小。PCC变化范围在0.51~1.0之间,其中88.24%的PCC的值是大于0.8,平均值为0.92,可以看出模拟值与实测值极强相关。NSE的值在-4.12~1.0范围变化,平均值为0.31,其中NSE>0.6 占76.47%,其他的值均在合理范围内,表明模拟值与观测值的一致性比较好。无Lu模型的RESM变化范围在0.2~1.85,平均值为0.75,PCC变化范围在0.28~1.0之间,平均值为0.86,其中70.59%的PCC的值是大于0.8, NSE的值在-5.48~1.0范围变化,平均值为-0.15,其中NSE>0.6仅占58.82%,采用Lu模型的模拟值各项指标均优于未采用Lu模型的模拟值。由此可见,Lu模型对土壤导热率具有较好的拟合效果,采用Lu导热模型能够较为精确的刻画河岸带土体在受到大坝下泄低温水时温度的动态变化过程。
通过上述方式,本发明基于Lu模型的大坝下游河岸带热流耦合模拟构建方法:
(1)基于Lu模型的河岸带饱和-非饱和渗流场-温度场全耦合模型模拟的温度与实测值比较吻合,均方根误差(RESM)比较小,模型的模拟结果可靠; Pearson相关系数(PCC)变化范围在0.51~1.0之间,其中有88.24%的模拟值与实验值呈强相关,剩下的11.76%均处于中等相关,模拟值与实验值相关性比较好;Nash-Sutcliffe模型效率系数(NSE)大于0.6占76.47%,土壤温度的模拟值与实测值之间具有较好的一致性;采用Lu模型计算的各项指标均优于未采用Lu模型的模拟值;Lu模型对土壤导热率具有较好的拟合效果,采用Lu模型能够较为精确的刻画河岸带土体在受到大坝下泄低温水时温度的动态变化过程;
(2)离入渗边界和底边界附近的土体在比较短的时间内快速下降并达到稳态,其温度大致接近于入渗水温,相反,靠近上边界和右边界的温度则需要较长的时间达到稳态;离入渗边界越近的区域受到水温的影响越明显,随着入渗水头增加,土壤内部平均温度降低,土壤深层低温区域逐渐扩大,温度梯度增加;
(3)阐明了水库低温水入渗条件下外界环境因素变化与和河岸带饱和- 非饱和热流动态特征的内在联系,揭示水库下泄低温水对河岸带饱和-非饱和热流耦合的影响机理,对研究地下动植物受低温水影响的生存环境条件所可能采取的工程或非工程措施,具有重要的学术价值和实际应用意义。

Claims (7)

1.基于Lu模型的大坝下游河岸带热流耦合模拟构建方法,其特征在于,包括以下步骤:
步骤1,构建河岸带饱和-非饱和渗流场-温度场全耦合模型,包括建立渗流场,并建立饱和-非饱和热量运移模型,描述温度场和渗流场的关系;
步骤2,对所述河岸带饱和-非饱和渗流场-温度场全耦合模型设置边界条件,包括对渗流场设置边界条件以及对温度场设置边界条件;
步骤3,求解所述河岸带饱和-非饱和渗流场-温度场全耦合模型,求解的过程中采用Lu模型来描述土体的等效热传导系数与含水率之间的关系,从而得到渗流过程中温度随时间的变化规律。
2.根据权利要求1所述的基于Lu模型的大坝下游河岸带热流耦合模拟构建方法,其特征在于,所述步骤1中,建立的渗流场具体为河岸带饱和-非饱和瞬态渗流场,采用Richards方程进行描述:
<mrow> <mo>&amp;dtri;</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>(</mo> <mrow> <mi>h</mi> <mo>,</mo> <mi>T</mi> </mrow> <mo>)</mo> <mo>&amp;dtri;</mo> <mi>H</mi> <mo>)</mo> </mrow> <mo>+</mo> <mo>&amp;dtri;</mo> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mi>T</mi> </msub> <mo>&amp;dtri;</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mi>s</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mi>C</mi> <mo>+</mo> <mfrac> <mi>&amp;theta;</mi> <mi>n</mi> </mfrac> <msub> <mi>S</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>h</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
式中:θ为含水量,k为土渗透系数,k在饱和区域为初始温度场T的函数,k在非饱和区域为土体基质吸力或含水率的函数;h为压力水头,H为总水头,C为土体容水度,n为多孔介质的孔隙率,Ss为弹性贮水率,Qs为渗流源汇项,▽为拉普拉斯方程,DT为水动力弥散系数,t为时间。
3.根据权利要求2所述的基于Lu模型的大坝下游河岸带热流耦合模拟构建方法,其特征在于,在所述河岸带饱和-非饱和瞬态渗流场中,采用VanGenuchten模型来描述非饱和带土壤水分特征曲线:
<mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>&amp;alpha;</mi> </mfrac> <msup> <mrow> <mo>&amp;lsqb;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;theta;</mi> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> </mrow> <mrow> <msub> <mi>&amp;theta;</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> </mrow> </msup> <mo>-</mo> <mn>1</mn> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>k</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msup> <mrow> <mo>{</mo> <mn>1</mn> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mi>&amp;alpha;</mi> <mi>h</mi> <mo>)</mo> </mrow> <mrow> <msub> <mi>n</mi> <mi>v</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>&amp;alpha;</mi> <mi>h</mi> <mo>)</mo> </mrow> <msub> <mi>n</mi> <mi>v</mi> </msub> </msup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>-</mo> <mi>m</mi> </mrow> </msup> <mo>}</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>&amp;alpha;</mi> <mi>h</mi> <mo>)</mo> </mrow> <msub> <mi>n</mi> <mi>v</mi> </msub> </msup> <mo>&amp;rsqb;</mo> </mrow> <mfrac> <mi>m</mi> <mn>2</mn> </mfrac> </msup> </mfrac> <msub> <mi>k</mi> <mi>s</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
上式中,h(θ)为土壤基质吸力,k(θ)为非饱和土渗透系数;θs和θr分别为土壤饱和含水率和土壤残余含水率,与土壤质地有关;α和nv为VG模型参数,m=1-1/nv;ks为饱和土体渗透率。
4.根据权利要求3所述的基于Lu模型的大坝下游河岸带热流耦合模拟构建方法,其特征在于,所述步骤1中,采用热对流方程描述饱和-非饱和热量运移模型:
<mrow> <mi>c</mi> <mi>&amp;rho;</mi> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>T</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>&amp;dtri;</mo> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>&amp;dtri;</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>c</mi> <mi>w</mi> </msub> <msub> <mi>&amp;rho;</mi> <mi>w</mi> </msub> <mo>&amp;dtri;</mo> <mrow> <mo>(</mo> <mi>v</mi> <mi>T</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mi>h</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
式中:c为土体比热容,ρ为土体等效密度,▽为拉普拉斯方程,λ为土体的等效热传导系数,cw为水的比热容,ρw为水的密度,v为水的平均流速,T为初始温度场,Qh为温度场源汇项。
5.根据权利要求4所述的基于Lu模型的大坝下游河岸带热流耦合模拟构建方法,其特征在于,所述步骤2具体为:
对于渗流场,河岸上下游的边界分别设置为定水头边界,河岸非上下游的边界设置为零通量边界;
对于温度场,河岸水面以下位置设置为定温度边界,河岸底部边界设置为绝热边界,与大气接触的位置取日平均气温值作为边界值。
6.根据权利要求5所述的基于Lu模型的大坝下游河岸带热流耦合模拟构建方法,其特征在于,所述步骤3的具体步骤为:
步骤3.1,输入参数:土体的等效热传导系数λ、石英含量q、多孔介质的孔隙度n、干土的导热系数λdry、水的导热系数λw、石英的导热系数λq、差值系数Ke、其他矿物质的导热系数λ0、土中固体颗粒的导热系数λs、饱和土体的导热系数λsat
步骤3.2,输入所述渗流场和温度场的边界条件,并给出水的黏度与温度的关系:μ(T)=0.00002414×10(247.8/(T+133.16)
步骤3.3,建立Lu模型,将土体的等效热传导系数λ修改为非饱和土的导热系数表达式;
步骤3.4,更新河岸带饱和-非饱和渗流场-温度场全耦合模型的参数分布,即在每个时间步长更新步骤3.1输入参数中的变量,直至河岸带饱和-非饱和渗流场-温度场的求解收敛,得到每个时间步长内的温度值,从而得到渗流过程中温度随时间的变化规律。
7.根据权利要求6所述的基于Lu模型的大坝下游河岸带热流耦合模拟构建方法,其特征在于,所述步骤3.3中建立Lu模型具体为:
通过在干土的导热系数和饱和土的导热系数间插值,得到非饱和土的等效热传导系数λeq
λeq=(λsatdry)Kedry (5)
式中,Ke为插值系数,λdry为干土的导热系数,λsat为饱和土的导热系数:
<mrow> <msub> <mi>K</mi> <mi>e</mi> </msub> <mo>=</mo> <mi>exp</mi> <mo>{</mo> <mi>&amp;alpha;</mi> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>S</mi> <mi>r</mi> <mrow> <mo>(</mo> <mi>&amp;alpha;</mi> <mo>-</mo> <mn>1.33</mn> <mo>)</mo> </mrow> </msubsup> <mo>&amp;rsqb;</mo> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
λdry=-0.56n+0.51 (7)
<mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>s</mi> <mi>a</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&amp;lambda;</mi> <mi>s</mi> <mrow> <mn>1</mn> <mo>-</mo> <mi>n</mi> </mrow> </msubsup> <msubsup> <mi>&amp;lambda;</mi> <mi>w</mi> <mi>n</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
其中:α对于砂土、壤土、粘土分别为1.05、0.9、0.58,Sr为饱和度,n表示多孔介质的孔隙度,λw为水的导热系数,λs为土中固体颗粒的导热系数,λs=λq qλ0 1-q,其中:q为石英含量,λq为石英的导热系数,λ0为其它矿物的导热系数。
CN201710711576.2A 2017-08-18 2017-08-18 基于Lu模型的大坝下游河岸带热流耦合模拟构建方法 Active CN107665270B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710711576.2A CN107665270B (zh) 2017-08-18 2017-08-18 基于Lu模型的大坝下游河岸带热流耦合模拟构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710711576.2A CN107665270B (zh) 2017-08-18 2017-08-18 基于Lu模型的大坝下游河岸带热流耦合模拟构建方法

Publications (2)

Publication Number Publication Date
CN107665270A true CN107665270A (zh) 2018-02-06
CN107665270B CN107665270B (zh) 2018-07-20

Family

ID=61097922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710711576.2A Active CN107665270B (zh) 2017-08-18 2017-08-18 基于Lu模型的大坝下游河岸带热流耦合模拟构建方法

Country Status (1)

Country Link
CN (1) CN107665270B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109726464A (zh) * 2018-12-25 2019-05-07 西安理工大学 一种土石坝流热耦合模型参数敏感性分析构建方法
CN110598287A (zh) * 2019-08-30 2019-12-20 西安理工大学 一种基于Ren模型的库区洲滩水热运移模型构建方法
CN110728064A (zh) * 2019-10-18 2020-01-24 河海大学 基于comsol数学模块的河岸潜流带水热耦合建模方法
CN110929377A (zh) * 2019-10-24 2020-03-27 西安理工大学 基于Morris法的洲滩水热运移影响敏感性分析方法
CN111368460A (zh) * 2020-03-26 2020-07-03 西安理工大学 一种模拟潜流带温度场时空分布规律的方法
CN113075250A (zh) * 2021-01-11 2021-07-06 太原碧蓝水利工程设计有限公司 常温导热系数预测模型
CN115659598A (zh) * 2022-09-27 2023-01-31 哈尔滨工业大学 一种基于Sigmoid函数的土体热导率预测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130158874A1 (en) * 2011-12-14 2013-06-20 The Government Of The United States, As Represente D By The Secretary Of Navy Automated system and method for vertical gradient correction
CN103439475A (zh) * 2013-08-21 2013-12-11 国家电网公司 具有圆形隧道的准饱和粘弹性土振动响应的检测方法
CN106960089A (zh) * 2017-03-14 2017-07-18 清华大学 含内部复杂边界结构体的温度场和热流同时重构方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760089B (zh) * 2014-01-29 2015-12-02 山东农业大学 非饱和土相对渗透系数的试验-数值分析联合测定法
CN105865746B (zh) * 2016-05-29 2018-11-02 三峡大学 一种检测渗流与压力温度关系的实验装置及方法
CN106596283A (zh) * 2016-11-15 2017-04-26 广州市香港科大霍英东研究院 一种可精确测量非饱和土变形规律的温控三轴系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130158874A1 (en) * 2011-12-14 2013-06-20 The Government Of The United States, As Represente D By The Secretary Of Navy Automated system and method for vertical gradient correction
CN103439475A (zh) * 2013-08-21 2013-12-11 国家电网公司 具有圆形隧道的准饱和粘弹性土振动响应的检测方法
CN106960089A (zh) * 2017-03-14 2017-07-18 清华大学 含内部复杂边界结构体的温度场和热流同时重构方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
中国农业大学工学院: "《曾德超院士文集》", 31 May 2015 *
任杰: "基于HYDRUS模型低温水入渗下土壤水热运移模拟", 《干旱区研究》 *
韦立德: "考虑饱和-非饱和渗流、温度和应力耦合的三维有限元程序研制", 《岩土力学》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109726464A (zh) * 2018-12-25 2019-05-07 西安理工大学 一种土石坝流热耦合模型参数敏感性分析构建方法
CN110598287A (zh) * 2019-08-30 2019-12-20 西安理工大学 一种基于Ren模型的库区洲滩水热运移模型构建方法
CN110728064A (zh) * 2019-10-18 2020-01-24 河海大学 基于comsol数学模块的河岸潜流带水热耦合建模方法
CN110728064B (zh) * 2019-10-18 2021-11-30 河海大学 基于comsol数学模块的河岸潜流带水热耦合建模方法
CN110929377A (zh) * 2019-10-24 2020-03-27 西安理工大学 基于Morris法的洲滩水热运移影响敏感性分析方法
CN110929377B (zh) * 2019-10-24 2021-03-23 西安理工大学 基于Morris法的洲滩水热运移影响敏感性分析方法
CN111368460A (zh) * 2020-03-26 2020-07-03 西安理工大学 一种模拟潜流带温度场时空分布规律的方法
CN111368460B (zh) * 2020-03-26 2022-03-11 西安理工大学 一种模拟潜流带温度场时空分布规律的方法
CN113075250A (zh) * 2021-01-11 2021-07-06 太原碧蓝水利工程设计有限公司 常温导热系数预测模型
CN115659598A (zh) * 2022-09-27 2023-01-31 哈尔滨工业大学 一种基于Sigmoid函数的土体热导率预测方法

Also Published As

Publication number Publication date
CN107665270B (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
CN107665270A (zh) 基于Lu模型的大坝下游河岸带热流耦合模拟构建方法
Tan et al. Simulating soil water regime in lowland paddy fields under different water managements using HYDRUS-1D
CN205898792U (zh) 多状态原状土柱降雨入渗模块化模拟装置
CN109117452B (zh) 改进的基于土壤物理基本参数的导热系数模型设计方法
CN105911257A (zh) 多状态原状土柱入渗模拟系统及非饱和渗透系数测定方法
Zhang et al. Simulation of soil water dynamics for uncropped ridges and furrows under irrigation conditions
Bougoul et al. Hydraulic and physical properties of stonewool substrates in horticulture
Li et al. Numerical simulation and experimental study on farmland nitrogen loss to surface runoff in a raindrop driven process
CN106093347A (zh) 多种强度煤矸石淋滤液入渗模拟系统及特征参数测定方法
CN103823040B (zh) 一种模拟土体受极端气候作用的装置及运用该装置测试的方法
CN207992175U (zh) 二氧化碳地质封存泄露人工控制模拟装置
CN206096001U (zh) 一种模拟测试装置
CN106442603A (zh) 一种模拟不同热负荷下土体热物性参数的测试方法
CN110954350B (zh) 一种海底管道散热的室内模拟装置及方法
CN110598287A (zh) 一种基于Ren模型的库区洲滩水热运移模型构建方法
CN205898790U (zh) 模块化多种强度煤矸石淋滤液入渗土柱实验装置
Trautz et al. Development of an experimental approach to study coupled soil‐plant‐atmosphere processes using plant analogs
Chen et al. Effect of Different Chloride Salts on the Transport of Water, Heat, and Solutes in Sandy Soil under Freezing Conditions
CN110728064B (zh) 基于comsol数学模块的河岸潜流带水热耦合建模方法
CN113933345A (zh) 一种粘性土导热系数评估模型构建方法
Abenney-Mickson et al. Water balance of field plots planted with soybean and pumpkin
CN113820097A (zh) 一种研究河岸带潜流交换的试验装置及试验方法
Qing et al. Research Progress of Soil Water Infiltration
Araki et al. Changes of vertical soil moisture conditions of a dry evergreen forest in Kampong Thom, Cambodia
CN111368460B (zh) 一种模拟潜流带温度场时空分布规律的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant