CN107657095A - A method for optimizing the structure and operating parameters of a porous media solar heat absorber - Google Patents

A method for optimizing the structure and operating parameters of a porous media solar heat absorber Download PDF

Info

Publication number
CN107657095A
CN107657095A CN201710828897.0A CN201710828897A CN107657095A CN 107657095 A CN107657095 A CN 107657095A CN 201710828897 A CN201710828897 A CN 201710828897A CN 107657095 A CN107657095 A CN 107657095A
Authority
CN
China
Prior art keywords
mrow
msub
porous media
mover
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710828897.0A
Other languages
Chinese (zh)
Other versions
CN107657095B (en
Inventor
何雅玲
杜燊
李明佳
杨卫卫
刘占斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201710828897.0A priority Critical patent/CN107657095B/en
Publication of CN107657095A publication Critical patent/CN107657095A/en
Application granted granted Critical
Publication of CN107657095B publication Critical patent/CN107657095B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Genetics & Genomics (AREA)
  • Artificial Intelligence (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention discloses a kind of porous media solar heat absorber structure and optimization of operating parameters method applied to solar energy optical-thermal transformation technology field.The heat transfer characteristic of porous media solar heat absorber is calculated using Thermal Non-equilibrium Model, coupling genetic algorithm optimizes to the structural parameters and operational factor of heat dump, to obtain the parameter combination for causing heat dump best performance.The present invention has considered heat dump heat absorption, heat exchange links, and the automatic screening of parameter is realized using intelligent optimization algorithm, realizes multi-parameter while the function of optimization.The present invention has high efficiency, accuracy and versatility, can largely save the manpower and time cost of design, improve the precision of optimization, while can be used in design optimization parameter difference, optimization object function difference, the different porous media heat dump of geometry.

Description

一种多孔介质太阳能吸热器结构和运行参数优化方法A method for optimizing the structure and operating parameters of a porous media solar heat absorber

技术领域technical field

本发明属于太阳能热利用领域,具体涉及一种多孔介质太阳能吸热器结构和运行参数优化方法。The invention belongs to the field of solar heat utilization, and in particular relates to a structure and an operation parameter optimization method of a porous medium solar heat absorber.

背景技术Background technique

聚光型太阳能热发电技术是一种清洁、安全、可靠并且具有广阔前景的可再生能源利用技术。太阳能吸热器作为光能到热能转化的关键部件,针对其换热性能的优化研究为整个系统的高效运行提供了重要保障。作为一种新型的容积式吸热器,多孔介质吸热器近年来受到了国内外学者的高度关注。其较高的通孔率使得太阳辐射在吸热器内部被吸收,形成“体吸收”效应;而其复杂无序的三维结构,增大了换热表面,增强了换热流体和吸热器之前的对流换热效率。然而,多孔介质太阳能吸热器的实际安装商业化运行,依然面临一系列挑战。其中包括:(1)多孔介质太阳能吸热器的研究集中在单一变量对吸热器性能的影响,缺少多变量分析的方法;(2)缺少多孔介质吸热器的设计方法。在指定条件下,缺少合理选择吸热器结构参数和运行参数的方法,以保证吸热器高效地运行。Concentrating solar thermal power generation technology is a clean, safe, reliable and promising renewable energy utilization technology. As a key component in the conversion of light energy to heat energy, the solar thermal absorber is optimized for its heat transfer performance to provide an important guarantee for the efficient operation of the entire system. As a new type of volumetric heat absorber, porous media heat absorber has attracted great attention from scholars at home and abroad in recent years. Its high porosity allows solar radiation to be absorbed inside the heat absorber, forming a "bulk absorption" effect; and its complex and disordered three-dimensional structure increases the heat transfer surface, enhancing the heat exchange fluid and heat absorber. The previous convective heat transfer efficiency. However, the actual installation and commercial operation of porous media solar thermal absorbers still face a series of challenges. These include: (1) The research on porous media solar heat absorbers focuses on the influence of a single variable on the performance of the heat absorber, and there is a lack of multivariate analysis methods; (2) There is a lack of design methods for porous media heat absorbers. Under the specified conditions, there is no method to reasonably select the structural parameters and operating parameters of the heat sink to ensure the efficient operation of the heat sink.

目前国内外学者针对多孔介质太阳能吸热器开展了一系列研究。Wu等人采用非热平衡模型(LTNE)耦合P1模型,求解多孔介质太阳能吸热器的换热特性。分别研究了多孔介质的孔隙率、孔径、热导率以及吸热器入口流速对吸热器内部温度分布特性的影响。Chen等利用蒙特卡罗光线追踪(MCRT)技术,获取太阳辐射能量在多孔介质吸热体内部的分布情况,耦合非热平衡模型和P1模型,求解了多孔介质太阳能吸热器内部的流动换热过程。分析了不同太阳辐射模型对计算结果的影响。S.Mey-Cloutier等人实验研究了不同材料的陶瓷多孔介质作为太阳能吸热的光热转换效率。同时,分析了多孔介质几何结构参数(孔隙率、孔径等)对吸热器整体性能的影响。从以上的分析可以看出,针对多孔介质太阳能吸热器的研究多集中在单一参数对吸热器性能影响的分析,为了筛选性能优异的吸热器需要进行大量的数值模拟和实验工作。同时,在多参数同时变化情况下,现有研究工作未能给出吸热器参数的优选方法。At present, scholars at home and abroad have carried out a series of research on porous media solar heat absorbers. Wu et al. used the non-thermal equilibrium model (LTNE) coupled with the P1 model to solve the heat transfer characteristics of porous media solar heat absorbers. The effects of the porosity, pore size, thermal conductivity of the porous media and the flow velocity at the inlet of the absorber on the temperature distribution inside the absorber were studied respectively. Chen et al. used Monte Carlo ray tracing (MCRT) technology to obtain the distribution of solar radiation energy inside the porous media heat absorber, and coupled the non-heat balance model and P1 model to solve the flow heat transfer process inside the porous media solar heat absorber. . The influence of different solar radiation models on the calculation results is analyzed. S. Mey-Cloutier et al. experimentally studied the photothermal conversion efficiency of ceramic porous media of different materials as solar heat absorption. At the same time, the influence of geometric structure parameters (porosity, pore diameter, etc.) of porous media on the overall performance of the heat sink is analyzed. From the above analysis, it can be seen that the research on porous media solar heat absorbers mostly focuses on the analysis of the influence of a single parameter on the performance of the heat absorber. In order to screen heat absorbers with excellent performance, a lot of numerical simulation and experimental work are required. At the same time, in the case of multiple parameters changing at the same time, the existing research work fails to provide an optimal method for the parameters of the heat sink.

发明内容Contents of the invention

本发明的目的在于针对目前多孔介质太阳能吸热器研究和设计中存在的不足,提出了一种适用于单变量和多变量的高效优化,可以实现吸热器参数的自动优选,以获得满足优化需求的多孔介质结构参数和吸热器运行参数的多孔介质太阳能吸热器结构和运行参数优化方法。The purpose of the present invention is to address the deficiencies in the current research and design of porous media solar heat absorbers, and propose a high-efficiency optimization suitable for single-variable and multi-variable, which can realize the automatic optimization of heat absorber parameters, so as to meet the optimization requirements. A method for optimizing the structure and operating parameters of porous media solar heat absorbers for the required porous media structure parameters and heat absorber operating parameters.

为达到上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:

步骤1):确定待优化的多孔介质太阳能吸热器的非优化几何参数和运行参数;Step 1): Determine the non-optimized geometric parameters and operating parameters of the porous media solar heat absorber to be optimized;

步骤2):初始化待优化的多孔介质太阳能吸热器的几何参数和运行参数;Step 2): Initialize the geometric parameters and operating parameters of the porous media solar heat absorber to be optimized;

步骤3):根据初始化或遗传算法优化的几何参数和运行参数,采用Beer定律和多孔介质反射特性,计算多孔介质吸热器的透射损失和反射损失,从而确定吸收率;根据Beer定律导出太阳辐射能流密度在吸热体内部的分布:Step 3): According to the geometric parameters and operating parameters optimized by initialization or genetic algorithm, using Beer's law and the reflection characteristics of porous media, calculate the transmission loss and reflection loss of the porous media heat absorber, so as to determine the absorption rate; derive solar radiation according to Beer's law Distribution of energy flux density inside the absorber:

I(x)=I(0)Cβe-βx I(x)=I(0)Cβe -βx

I(x)是x位置处的辐射能流密度,C是根据透射和反射损失计算得到的修正系数,β是多孔介质的衰减系数;I(x) is the radiation energy flux density at position x, C is the correction coefficient calculated according to the transmission and reflection losses, and β is the attenuation coefficient of porous media;

步骤4):采用非热平衡模型耦合Rosseland扩散方程,求解多孔介质太阳能吸热器内部的流动换热:Step 4): Using the non-heat balance model to couple the Rosseland diffusion equation to solve the flow heat transfer inside the porous media solar heat absorber:

式中:ρ、u、μ、cp、Tf、λfe分别是换热流体的密度、速度、动力粘性系数、比定压热容、温度和有效热导率;ε、K、CF、λse、Ts、n、kr是多孔介质骨架的孔隙率、渗透率、惯性系数、有效热导率、温度、折射率和等效辐射热导率。hv多孔介质和换热流体之间的体对流换热系数;In the formula: ρ, u, μ, c p , T f , λ fe are the density, velocity, dynamic viscosity coefficient, specific heat capacity at constant pressure, temperature and effective thermal conductivity of the heat exchange fluid respectively; ε, K, C F , λ se , T s , n, k r are the porosity, permeability, inertia coefficient, effective thermal conductivity, temperature, refractive index and equivalent radiation thermal conductivity of the porous medium skeleton. h v volumetric convective heat transfer coefficient between the porous medium and the heat transfer fluid;

步骤5)计算收敛,得到多孔介质太阳能吸热器的流动换特性,计算吸热器热效率评价参数:Step 5) Calculate the convergence, obtain the flow transfer characteristics of the porous media solar heat absorber, and calculate the thermal efficiency evaluation parameters of the heat absorber:

为质量流量、qin为太阳辐射强度、Sin为吸热器前端面积。并将评价参数传递给遗传算法; is the mass flow rate, q in is the solar radiation intensity, and S in is the front area of the heat sink. And pass the evaluation parameters to the genetic algorithm;

步骤6)遗传算法根据步骤5)中的评价参数进行交叉、变异、迁移遗传运算,更新待优化变量,重复步骤3)、步骤4)、步骤5),逐步获得使得热效率更高的多孔介质结构参数和吸热器运行参数,最终遗传算法达到收敛,获得最优参数值。Step 6) The genetic algorithm performs crossover, mutation, and migration genetic calculations based on the evaluation parameters in step 5), updates the variables to be optimized, repeats steps 3), 4), and 5), and gradually obtains a porous medium structure with higher thermal efficiency parameters and the operating parameters of the heat sink, and finally the genetic algorithm reaches convergence and obtains the optimal parameter value.

所述的多孔介质的几何参数包括多孔介质的几何尺寸即长、宽、高,多孔介质的孔隙率,多孔介质的孔径;运行参数包括入口流速、入口温度、太阳辐射能流密度。The geometric parameters of the porous medium include the geometric dimensions of the porous medium, namely length, width, and height, the porosity of the porous medium, and the aperture of the porous medium; the operating parameters include inlet flow velocity, inlet temperature, and solar radiation energy flow density.

本发明提适用吸热器的特征为:以金属泡沫或者多孔陶瓷材料为吸热核心的吸热器,金属泡沫或者多孔陶瓷材料具有立体联通的三维通孔结构、具有较高的通孔率和良好的导热性能。The characteristics of the heat absorber provided by the present invention are: a heat absorber with metal foam or porous ceramic material as the heat absorbing core, the metal foam or porous ceramic material has a three-dimensional through-hole structure connected in three dimensions, and has a relatively high through-hole ratio and Good thermal conductivity.

由于影响多孔介质太阳能吸热器的因素众多,各因素之间存在着相互制约,因此,本发明充分利用了遗传算法高效的最优解搜索特性。非热平衡模型用于计算指定条件下的多孔介质太阳能吸热器的换热特性和热效率,遗传算法用于自动高效地搜索满足优化条件的最优解。通过耦合费热平衡模型和遗传算法,从而实现多孔介质太阳能吸热器的自动评估和筛选,提高优化设计的效率。Since there are many factors affecting the porous medium solar heat absorber, and there are mutual constraints among the factors, the present invention makes full use of the efficient optimal solution search characteristic of the genetic algorithm. The non-heat balance model is used to calculate the heat transfer characteristics and thermal efficiency of the porous media solar heat absorber under specified conditions, and the genetic algorithm is used to automatically and efficiently search for the optimal solution that meets the optimization conditions. By coupling the thermal balance model and the genetic algorithm, the automatic evaluation and screening of porous media solar heat absorbers can be realized, and the efficiency of optimal design can be improved.

附图说明Description of drawings

图1为本发明优化方法流程图;Fig. 1 is a flowchart of the optimization method of the present invention;

具体实施方式Detailed ways

下面结合附图,以同时优化多孔介质孔隙率、孔径和吸热器入口流速为例,对本发明进行详细说明:Below in conjunction with the accompanying drawings, the present invention will be described in detail by taking the simultaneous optimization of the porous medium porosity, aperture and heat absorber inlet flow velocity as an example:

如图1所示,本发明优化多孔介质太阳能吸热器结构和运行参数的方法如下:As shown in Figure 1, the method for optimizing the structure and operating parameters of the porous medium solar heat absorber of the present invention is as follows:

首先,明确多孔介质吸热器的非优化几何结构参数和运行参数。选取二维的计算区域表征多孔介质太阳能吸热器,分别设置其宽度和厚度分别为5cm和4cm;多孔介质材料选为碳化硅,换热流体选为空气;入口空气的温度设定为300K;入口太阳辐射能流密度设置为600kW/m2。同时,限定待优化参数的取值方位。这里,多孔介质的孔隙率设定为0.65-0.95,孔径为0.5mm–2.0mm,入口流速为0.5–2m/s。First, the non-optimized geometric structure parameters and operating parameters of the porous media heat absorber are clarified. The two-dimensional calculation area is selected to represent the porous medium solar heat absorber, and its width and thickness are respectively set to 5cm and 4cm; the porous medium material is selected as silicon carbide, and the heat exchange fluid is selected as air; the temperature of the inlet air is set to 300K; The inlet solar radiation flux density is set to 600kW/m 2 . At the same time, the value direction of the parameters to be optimized is limited. Here, the porosity of the porous medium is set at 0.65-0.95, the pore diameter is 0.5mm-2.0mm, and the inlet flow velocity is 0.5-2m/s.

其次,根据指定的吸热器结构参数(厚度、孔隙率、孔径)计算多孔介质的反射损失R和透射损失T。反射损失依据Simon Guévelou等人的数值模拟结果进行计算;透射损失利用Beer定律推导得到:Second, the reflection loss R and transmission loss T of the porous medium are calculated according to the specified heat absorber structural parameters (thickness, porosity, pore size). The reflection loss is calculated based on the numerical simulation results of Simon Guévelou et al.; the transmission loss is derived using Beer's law:

T=1-e-βx T=1-e- βx

式中,衰减系数利用几何光学假设进行计算:In the formula, the attenuation coefficient is calculated using the assumption of geometric optics:

式中dp是多孔介质的孔径。修正系数C=1-R-T。太阳辐射能流密度在吸热器内部的分布为:where d p is the pore diameter of the porous medium. Correction coefficient C=1-RT. The distribution of solar radiation energy flux density inside the heat absorber is:

I(x)=I(0)Cβe-βx I(x)=I(0)Cβe -βx

然后,求解多孔介质太阳能吸热器流动换热控制方程:Then, solve the flow heat transfer governing equation of the porous media solar heat absorber:

式中的经验参数均使用与多孔介质结构参数相关的经验关联式进行计算。这里采用Wu等人的经验公式:The empirical parameters in the formula are all calculated using the empirical correlation formulas related to the structural parameters of porous media. The empirical formula of Wu et al. is adopted here:

控制方程求解后获得该多孔介质太阳能吸热器的换热特性,选择热效率作为吸热器的评价指标:After solving the governing equation, the heat transfer characteristics of the porous media solar heat absorber are obtained, and the thermal efficiency is selected as the evaluation index of the heat absorber:

接下来,将该吸热器的热效率值反馈给遗传算法,遗传算法进行交叉、变异、迁移等遗传运算,更新被保留的待优化参数组合。然后重复太阳辐射吸收率的计算、太阳辐射能流密度分布的计算和吸热器热效率的计算,直到遗传算法收敛。Next, the thermal efficiency value of the heat sink is fed back to the genetic algorithm, and the genetic algorithm performs genetic operations such as crossover, mutation, and migration to update the reserved parameter combinations to be optimized. Then, the calculation of the solar radiation absorption rate, the calculation of the solar radiation energy flow density distribution and the calculation of the thermal efficiency of the heat absorber are repeated until the genetic algorithm converges.

最后,获得使得吸热器热效率最优的多孔介质孔隙率、孔径和吸热器入口流速。优化结果表明,该实验条件下,吸热器的最优孔隙率为0.95,最优孔径为1.78mm,最优入口流速为2.0m/s。Finally, the porosity, pore size, and absorber inlet flow rate of the porous medium that optimize the thermal efficiency of the absorber are obtained. The optimization results show that under the experimental conditions, the optimum porosity of the heat absorber is 0.95, the optimum pore diameter is 1.78mm, and the optimum inlet velocity is 2.0m/s.

表1给出了采用本发明提出的优化方法,在不同多孔介质太阳能吸热器厚度条件下,最优的孔隙率、孔径和入口流速参数组合。Table 1 shows the optimal combination of porosity, pore diameter and inlet velocity parameters under different thickness conditions of porous medium solar heat absorbers using the optimization method proposed by the present invention.

表1不同厚度多孔介质太阳能吸热器最优孔隙率、孔径和入口流速组合Table 1 Optimal combination of porosity, pore size and inlet velocity for solar heat absorbers with different thicknesses of porous media

可以看出,本发明提出的多孔介质太阳能吸热器结构和运行参数优化方法可以同时优化多个变量,能够高效地获得吸热器最优参数组合。在吸热器厚度较大的情况下,高孔隙率和高流速有利于提升吸热器的效率。这是因为高孔隙率有利于增加太阳辐射透射深度,降低吸热器表面能流密度,从而降低吸热器表面温度减少辐射热损失。而高流速有利于强化对流换热,同样有利于降低吸热器表面温度。而最优孔径随着吸热器厚度的增大而逐渐增大。而在厚度较小的情况下,最优孔隙率和孔径都相对减小。更小的孔隙率和孔径能够减弱吸热器的透射热损失同时减小固液相达到热平衡时的区间。以此能够使得流体在更短的换热区间内达到更高的温度。It can be seen that the porous media solar heat absorber structure and operation parameter optimization method proposed by the present invention can optimize multiple variables at the same time, and can efficiently obtain the optimal parameter combination of the heat absorber. In the case of a thicker heat absorber, high porosity and high flow rate are beneficial to improve the efficiency of the heat absorber. This is because high porosity is conducive to increasing the penetration depth of solar radiation and reducing the energy flux density on the surface of the heat absorber, thereby reducing the surface temperature of the heat absorber and reducing radiation heat loss. The high flow rate is conducive to strengthening convective heat transfer, and is also conducive to reducing the surface temperature of the heat absorber. And the optimal pore size gradually increases with the increase of the thickness of the heat sink. In the case of smaller thickness, the optimal porosity and pore size are relatively reduced. Smaller porosity and pore size can reduce the transmission heat loss of the heat absorber and reduce the interval when the solid-liquid phase reaches thermal equilibrium. In this way, the fluid can reach a higher temperature in a shorter heat exchange interval.

本发明通过耦合多孔介质非热平衡模型和遗传算法,提出了一种多孔介质太阳能吸热器结构和运行参数优化方法。本发明能够方便地对多孔介质太阳能吸热器进行设计,为吸热器结构参数和运行参数的筛选提供了一种新思路。The invention proposes a method for optimizing the structure and operating parameters of a porous medium solar heat absorber by coupling the non-heat balance model of the porous medium and the genetic algorithm. The invention can conveniently design the porous medium solar heat absorber, and provides a new idea for the screening of the structural parameters and operating parameters of the heat absorber.

Claims (2)

1. a kind of porous media solar heat absorber structure and optimization of operating parameters method, it is characterised in that comprise the following steps:
Step 1):Determine the unoptimizable geometric parameter and operational factor of porous media solar heat absorber to be optimized;
Step 2):Initialize the geometric parameter and operational factor of porous media solar heat absorber to be optimized;
Step 3):According to initialization or the geometric parameter and operational factor of genetic algorithm optimization, using Beer laws and porous Jie Matter reflection characteristic, the transmission loss and reflection loss of porous media heat dump are calculated, so that it is determined that absorptivity;According to Beer laws Export distribution of the solar radiation energy-flux density inside absorber:
I (x)=I (0) C β e-βx
I (x) is the radiant emittance at x position, and C is the correction factor being calculated according to transmission and reflection loss, and β is more The attenuation coefficient of hole medium;
Step 4):Rosseland diffusion equations are coupled using Thermal Non-equilibrium Model, solved inside porous media solar heat absorber Fluid interchange:
<mrow> <mo>&amp;dtri;</mo> <mrow> <mo>(</mo> <mi>&amp;rho;</mi> <mover> <mi>u</mi> <mo>&amp;RightArrow;</mo> </mover> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow>
<mrow> <mo>&amp;dtri;</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>&amp;rho;</mi> <mover> <mi>u</mi> <mo>&amp;RightArrow;</mo> </mover> <mover> <mi>u</mi> <mo>&amp;RightArrow;</mo> </mover> </mrow> <mi>&amp;epsiv;</mi> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mi>&amp;epsiv;</mi> <mo>&amp;dtri;</mo> <mi>p</mi> <mo>+</mo> <mo>&amp;dtri;</mo> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mo>&amp;dtri;</mo> <mover> <mi>u</mi> <mo>&amp;RightArrow;</mo> </mover> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <mi>&amp;mu;</mi> <mi>&amp;epsiv;</mi> </mrow> <mi>K</mi> </mfrac> <mover> <mi>u</mi> <mo>&amp;RightArrow;</mo> </mover> <mo>-</mo> <mfrac> <mrow> <msub> <mi>&amp;rho;&amp;epsiv;C</mi> <mi>F</mi> </msub> <mrow> <mo>|</mo> <mover> <mi>u</mi> <mo>&amp;RightArrow;</mo> </mover> <mo>|</mo> </mrow> </mrow> <msqrt> <mi>K</mi> </msqrt> </mfrac> <mover> <mi>u</mi> <mo>&amp;RightArrow;</mo> </mover> </mrow>
<mrow> <mo>&amp;dtri;</mo> <mrow> <mo>(</mo> <msub> <mi>&amp;rho;c</mi> <mi>p</mi> </msub> <mover> <mi>u</mi> <mo>&amp;RightArrow;</mo> </mover> <msub> <mi>T</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mo>&amp;dtri;</mo> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>f</mi> <mi>e</mi> </mrow> </msub> <mo>&amp;dtri;</mo> <msub> <mi>T</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>h</mi> <mi>v</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>T</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </mrow>
<mrow> <mn>0</mn> <mo>=</mo> <mo>&amp;dtri;</mo> <mrow> <mo>(</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>&amp;dtri;</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>h</mi> <mi>v</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>f</mi> </msub> <mo>-</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>S</mi> <mi>r</mi> </msub> </mrow>
<mrow> <msub> <mi>q</mi> <mi>r</mi> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>k</mi> <mi>r</mi> </msub> <mfrac> <mrow> <mi>d</mi> <mi>T</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mn>16</mn> <msup> <mi>n</mi> <mn>2</mn> </msup> <msup> <mi>&amp;sigma;T</mi> <mn>3</mn> </msup> </mrow> <mrow> <mn>3</mn> <mi>&amp;beta;</mi> </mrow> </mfrac> <mfrac> <mrow> <mi>d</mi> <mi>T</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow>
In formula:ρ、u、μ、cp、Tf、λfeIt is density, speed, dynamic viscosity coefficient, specific heat capacity at constant pressure, the temperature of heat exchanging fluid respectively And efficient thermal conductivity;ε、K、CF、λse、Ts、n、krIt is porosity, permeability, inertia coeffeicent, the effective thermal conductivity of porous media skeleton Rate, temperature, refractive index and equivalent radiated power thermal conductivity.hvBody convection transfer rate between porous media and heat exchanging fluid;
Step 5) calculates convergence, and characteristic is changed in the flowing for obtaining porous media solar heat absorber, calculates the evaluation of the heat dump thermal efficiency Parameter:
<mrow> <mi>&amp;eta;</mi> <mo>=</mo> <mfrac> <mrow> <mover> <mi>m</mi> <mo>&amp;CenterDot;</mo> </mover> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>T</mi> <mrow> <mi>f</mi> <mo>,</mo> <mi>i</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>T</mi> <mrow> <mi>f</mi> <mo>,</mo> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> </msubsup> <msub> <mi>c</mi> <mi>p</mi> </msub> <msub> <mi>dT</mi> <mi>f</mi> </msub> </mrow> <mrow> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> </mfrac> </mrow>
For mass flow, qinFor intensity of solar radiation, SinFor heat dump front end area.And evaluating is passed into hereditary calculation Method;
Step 6) genetic algorithm is intersected according to the evaluating in step 5), made a variation, migrating genetic operation, and renewal is to be optimized Variable, repeat step 3), step 4), step 5), progressively obtain and cause the higher porous media structure parameter of the thermal efficiency and heat absorption Device operational factor, final genetic algorithm reach convergence, obtain optimal value of the parameter.
2. porous media solar heat absorber structure according to claim 1 and optimization of operating parameters method, its feature exist In:The physical dimension of the geometric parameter of described porous media including porous media is length, the porosity of porous media, The aperture of porous media;Operational factor includes inlet flow rate, inlet temperature, solar radiation energy-flux density.
CN201710828897.0A 2017-09-14 2017-09-14 A kind of porous media solar heat absorber structure and optimization of operating parameters method Active CN107657095B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710828897.0A CN107657095B (en) 2017-09-14 2017-09-14 A kind of porous media solar heat absorber structure and optimization of operating parameters method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710828897.0A CN107657095B (en) 2017-09-14 2017-09-14 A kind of porous media solar heat absorber structure and optimization of operating parameters method

Publications (2)

Publication Number Publication Date
CN107657095A true CN107657095A (en) 2018-02-02
CN107657095B CN107657095B (en) 2019-07-23

Family

ID=61130164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710828897.0A Active CN107657095B (en) 2017-09-14 2017-09-14 A kind of porous media solar heat absorber structure and optimization of operating parameters method

Country Status (1)

Country Link
CN (1) CN107657095B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109697315A (en) * 2018-12-21 2019-04-30 浙江大学 The optimization method of radiation energy hot spot analytic modell analytical model parameter
CN114623609A (en) * 2022-03-04 2022-06-14 辽宁石油化工大学 Efficient photo-thermal conversion method based on foam material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150153072A1 (en) * 2013-12-03 2015-06-04 Mark W. Miles Insulated Solar Thermal System
TW201616071A (en) * 2014-10-28 2016-05-01 Univ Chienkuo Technology High-temperature resistant high efficiency solar heat receiver
CN106440418A (en) * 2016-12-07 2017-02-22 福建工程学院 Glass tube bundle and porous medium composite structure solar absorber
CN106839474A (en) * 2017-01-19 2017-06-13 西安交通大学 A kind of porous media solar heat absorber and its method for designing
CN107084541A (en) * 2017-05-27 2017-08-22 南京航空航天大学 A kind of new and effective solar porous medium heat dump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150153072A1 (en) * 2013-12-03 2015-06-04 Mark W. Miles Insulated Solar Thermal System
TW201616071A (en) * 2014-10-28 2016-05-01 Univ Chienkuo Technology High-temperature resistant high efficiency solar heat receiver
CN106440418A (en) * 2016-12-07 2017-02-22 福建工程学院 Glass tube bundle and porous medium composite structure solar absorber
CN106839474A (en) * 2017-01-19 2017-06-13 西安交通大学 A kind of porous media solar heat absorber and its method for designing
CN107084541A (en) * 2017-05-27 2017-08-22 南京航空航天大学 A kind of new and effective solar porous medium heat dump

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG-JING ZHENG 等: "Optimization of porous insert configurations for heat transfer enhancement in tubes based on genetic algorithm and CFD", 《INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER》 *
许昌 等: "一种多孔介质太阳能吸热器传热研究", 《能源研究与利用》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109697315A (en) * 2018-12-21 2019-04-30 浙江大学 The optimization method of radiation energy hot spot analytic modell analytical model parameter
CN114623609A (en) * 2022-03-04 2022-06-14 辽宁石油化工大学 Efficient photo-thermal conversion method based on foam material
CN114623609B (en) * 2022-03-04 2023-08-22 辽宁石油化工大学 Efficient photo-thermal conversion method based on foam material

Also Published As

Publication number Publication date
CN107657095B (en) 2019-07-23

Similar Documents

Publication Publication Date Title
Fayaz et al. Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate
Fan et al. A comparative study on the performance of liquid flat-plate solar collector with a new V-corrugated absorber
Zheng et al. Thermal analysis of a solar parabolic trough receiver tube with porous insert optimized by coupling genetic algorithm and CFD
Jiandong et al. Numerical simulation for structural parameters of flat-plate solar collector
Selmi et al. Validation of CFD simulation for flat plate solar energy collector
Zheng et al. Thermal characteristics of a glazed transpired solar collector with perforating corrugated plate in cold regions
Chamoli et al. A review of the performance of double pass solar air heater
Shi et al. Improving overall heat transfer performance of parabolic trough solar receiver by helically convex absorber tube
Yousef et al. Performance analysis for flat plate collector with and without porous media
CN106839474B (en) A kind of design method of porous media solar heat absorber
Ramírez-Minguela et al. Comparison of the thermo-hydraulic performance and the entropy generation rate for two types of low temperature solar collectors using CFD
Manjunath et al. Three dimensional numerical analysis of conjugate heat transfer for enhancement of thermal performance using finned tubes in an economical unglazed solar flat plate collector
CN107657095A (en) A method for optimizing the structure and operating parameters of a porous media solar heat absorber
Li et al. Application of entransy theory in the heat transfer optimization of flat-plate solar collectors
CN107084541A (en) A kind of new and effective solar porous medium heat dump
CN104036084A (en) Distributed parametric modeling method for tubular receiver of tower solar thermal power plant
CN111651909A (en) Performance optimization method for photovoltaic/thermal heat collector based on thermodynamic model
Marathe et al. Mathematical Modelling of Solar Air Heater
Mathur et al. Thermal performance investigation and optimisation of fin type solar air heater-a CFD approach
Brondani et al. Friction factor for ducts of sinusoidal walls with a layer of porous material
Fadhel et al. Numerical simulation of heat exchanger inside the single solar still with PTC
Sultana et al. Heat loss from cavity receiver for solar micro-concentrating collector
CN101922811A (en) Cylindrical array volume heat exchanger
Jebaraj et al. A review on solar flat plate collectors
Chaudhari et al. Heat Transfer Enhancement of Solar Flat Plate Collector by Using V Corrugated Fins and Various Parameters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant