CN107651906B - 一种轻质导电砂浆材料及其制备方法与应用 - Google Patents

一种轻质导电砂浆材料及其制备方法与应用 Download PDF

Info

Publication number
CN107651906B
CN107651906B CN201710812074.9A CN201710812074A CN107651906B CN 107651906 B CN107651906 B CN 107651906B CN 201710812074 A CN201710812074 A CN 201710812074A CN 107651906 B CN107651906 B CN 107651906B
Authority
CN
China
Prior art keywords
conductive
parts
mortar material
lightweight
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710812074.9A
Other languages
English (en)
Other versions
CN107651906A (zh
Inventor
胡捷
郭文昊
余其俊
朱洋洋
章稷尧
张漳敏
韦江雄
李方贤
马玉玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710812074.9A priority Critical patent/CN107651906B/zh
Priority to PCT/CN2017/118425 priority patent/WO2019047426A1/zh
Priority to US16/644,508 priority patent/US11254614B2/en
Priority to JP2020511928A priority patent/JP6968466B2/ja
Publication of CN107651906A publication Critical patent/CN107651906A/zh
Application granted granted Critical
Publication of CN107651906B publication Critical patent/CN107651906B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/023Chemical treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • C04B14/024Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1066Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/062Oxides, Hydroxides of the alkali or alkaline-earth metals
    • C04B22/064Oxides, Hydroxides of the alkali or alkaline-earth metals of the alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/38Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/64Insulation or other protection; Elements or use of specified material therefor for making damp-proof; Protection against corrosion
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/64Insulation or other protection; Elements or use of specified material therefor for making damp-proof; Protection against corrosion
    • E04B1/642Protecting metallic construction elements against corrosion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • C04B2111/00155Sprayable, i.e. concrete-like, materials able to be shaped by spraying instead of by casting, e.g. gunite
    • C04B2111/00172Sprayable, i.e. concrete-like, materials able to be shaped by spraying instead of by casting, e.g. gunite by the wet process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00525Coating or impregnation materials for metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00577Coating or impregnation materials applied by spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • C04B2111/94Electrically conducting materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Building Environments (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明公开了一种轻质导电砂浆材料及其制备方法与应用。本发明的轻质导电砂浆材料,按重量份数计,包括如下组分:水泥100份,负载改性琼脂凝胶的导电多孔轻骨料25~60份,水30~45份。本发明的轻质导电砂浆材料能够满足抹面砂浆的力学性能要求,抗压性能以及抗折性能好,同时具备较高的导电均匀性且能维持砂浆内部的高碱度,在阴极保护过程中能有效抑制阳极酸化效应造成的阳极酸化侵蚀和主阳极与砂浆之间的局部劣化开裂,具有碱环境稳定能力,在提高阴极保护系统保护效率的同时延长阳极服役寿命。

Description

一种轻质导电砂浆材料及其制备方法与应用
技术领域
本发明涉及钢筋混凝土结构防护领域,具体涉及一种轻质导电砂浆材料及其制备方法与应用。
背景技术
钢筋混凝土因其优良的力学性能在土木工程领域应用广泛,然而在滨海构筑物中,由钢筋腐蚀造成的钢筋混凝土结构劣化会严重影响其结构安全性,缩短构筑物服役寿命。钢筋混凝土腐蚀破坏的主要诱因为混凝土中钢筋钝化膜层在氯离子侵蚀或者混凝土层碳化作用下遭到破坏,进而在含氧条件下发生腐蚀反应。
针对钢筋混凝土结构的腐蚀防治,业内已经开发出了诸多腐蚀手段,包括钢筋涂层、混凝土涂层、阴极保护或阻锈剂等等。在上述这些方法中,阴极保护技术被众多权威机构鉴定认为是在氯盐侵蚀环境下唯一有效的腐蚀控制技术。阴极保护技术是结合外部阳极以及电源与钢筋构成电回路系统,使得钢筋得到充分保护。在该技术中,外加阳极材料通常采用含有惰性金属氧化物涂层的惰性金属条或者丝网作为主阳极电极,并采用砂浆或者导电砂浆将主阳极掩埋固定于所保护结构中。
但是,在阴极保护技术运行过程中,保护系统中的阳极在极化条件下将发生4OH-→O2+2H2O+4e-或2H2O→O2+4H++4e-为主的阳极反应,使得导电砂浆中水泥基材料发生酸化溶解,提高了主阳极金属与导电水泥砂浆的接触电阻,导致主阳极金属的腐蚀破坏以及二次阳极砂浆的结构破坏,并最终造成系统保护效率的降低;该阳极酸化效应严重局限了阴极保护系统在钢筋混凝土结构中的应用。
目前阳极导电砂浆材料大多采用外掺碳纤维、石墨粉、金属或金属氧化物(牺牲阳极)以及焦炭颗粒等与水泥浆体拌和制备,所制得砂浆的电阻率范围为1.0~0.05Ω·m。但此类阳极导电砂浆材料存在诸如成本高昂、制备过程繁琐等局限性。此外,该阳极导电砂浆虽然能够对阳极金属电极起到固定埋覆的作用,但是对于阳极酸化电极反应产生的酸化溶解效应没有抑制效果,所添加的导电增强组分也并不能够起到补充阳极反应所消耗的碱性电解质。
发明内容
本发明的目的在于针对现有阴极保护技术的不足,提供了一种轻质导电砂浆材料。该轻质导电砂浆材料以低电阻率且负载有功能性改性琼脂的导电多孔轻质骨料为原料,替代传统石英质骨料作为砂浆的导电增强相。
本发明的目的还在于提供制备所述的一种轻质导电砂浆材料的方法。
本发明的目的还在于提供所述的一种轻质导电砂浆材料在钢筋混凝土结构阴极保护技术中的应用。将轻质导电砂浆材料作为固定主阳极金属的二次阳极材料涂覆在钢筋混凝土结构的表面,或用于填充包含有主阳极金属电极的混凝土凿除凹槽,与主阳极金属作为复合阳极并通过外加电流对钢筋混凝土结构进行阴极保护。
本发明的目的通过如下技术方案实现。
一种轻质导电砂浆材料,按重量份数计,包括如下组分:水泥100份,负载改性琼脂凝胶的导电多孔轻骨料25~60份,水30~45份。
进一步地,所述水泥为强度等级42.5(PII 42.5R)以上的普通硅酸盐水泥或复合型硅酸盐水泥。
进一步地,所述负载改性琼脂凝胶的导电多孔轻骨料通过如下方法制备得到:
(1)将琼脂粉加入水中,并加热直至琼脂粉完全溶解后,加入无机盐类电解质,保持溶液的温度在90℃以上并持续搅拌30s以上,补充蒸发损失相应质量沸水,制备得到改性琼脂水溶液;再将石墨粉加入改性琼脂水溶液中,以60r/min以上转速强制搅拌,使石墨粉均匀分散于改性琼脂水溶液中;
(2)将多孔陶粒浸没于分散有石墨粉的改性琼脂水溶液中,保持温度在80℃以上并持续搅拌2min以上,取出多孔陶粒,风冷至多孔陶粒表面的琼脂凝固为凝胶状,剥离多余的琼脂凝胶,得到所述负载改性琼脂凝胶的导电多孔轻骨料。
更进一步地,步骤(1)中,所述无机盐类电解质包括氢氧化钠、氢氧化钾和氢氧化钙。
无机盐氢氧化钠、氢氧化钾和氢氧化钙是水泥基复合材料浆体中的主要电解质,通过控制掺量,实现改性琼脂材料与浆体的离子交换或平衡,达到通过调整改性琼脂材料配比与导电多孔轻骨料添加量实现对于浆体以及水化相的调控。
更进一步地,步骤(1)中,按重量份数计,水100份,琼脂粉4-10份,石墨粉2-10份,氢氧化钠1.8-0.1份,氢氧化钾2.8-1.0份,氢氧化钙8.9-1.0份。
更进一步地,步骤(2)中,所述多孔陶粒为表观密度不高于1.19g/cm3,吸水率达6.48%以上,平均粒径不低于3.26mm且筒压强度不低于2MPa的粘土质多孔陶粒。
制备得到的负载改性琼脂凝胶的导电多孔轻骨料在使用前采用密封储存。
进一步地,所述负载改性琼脂凝胶的导电多孔轻骨料的粒径在3.5~4.0mm之间。
进一步地,所述负载改性琼脂凝胶的导电多孔轻骨料的导电多孔轻骨料电阻率ρ(Ω·m)为0.5±0.2Ω·m,电阻率ρ(Ω·m)通过测量骨料含气量A(%)并使用方程:ρ=exp1.36×10-7×A2+0.037×A-3.29进行定量表征计算。
采用负载改性琼脂凝胶的导电多孔轻骨料作为导电砂浆材料的导电增强相,使得导电砂浆材料内部电流分布较纤维类增强组分更均匀;同时,通过负载改性琼脂凝胶的导电多孔轻骨料内部改性琼脂凝胶中过载的电解质及碱性离子,对主阳极金属电极反应所述消耗的氢氧根离子进行补充,进而抑制阳极反应的酸化侵蚀作用,提高阳极系统工作效率的同时延长阳极服役寿命。
制备所述的一种轻质导电砂浆材料的方法,包括如下步骤:
按所述重量份,将水泥与水加入搅拌机中预搅拌,再加入负载改性琼脂凝胶的导电多孔轻骨料充分搅拌混合均匀,得到所述轻质导电砂浆材料。
所述的一种轻质导电砂浆材料在钢筋混凝土结构阴极保护技术中的应用,将所述轻质导电砂浆材料覆盖在钢筋混凝土结构的表面,或将所述轻质导电砂浆材料用于填充包含有主阳极惰性金属电极的混凝土凿除凹槽。
进一步地,所述覆盖的施工方法包括人工涂抹或机械喷涂,覆盖形成20~40mm厚的导电砂浆层。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明的轻质导电砂浆材料能够满足抹面砂浆的基本力学性能要求,抗压性能以及抗折性能好,且采用负载改性琼脂凝胶的导电多孔轻骨料作为导电增强相,有利于降低砂浆材料的容重;
(2)本发明的轻质导电砂浆材料通过添加负载改性琼脂凝胶的导电多孔轻骨料作为导电增强相,有效降低了导电砂浆材料的电阻率,同时导电砂浆材料的电阻率随龄期以及负载改性琼脂凝胶的导电多孔轻骨料的添加量的变化而变化,各配比各龄期电阻率变化规律符合有效介质模型的球形填料复合导电材料电学性质规律;
(3)本发明的轻质导电砂浆材料具备较高的导电均匀性且能维持砂浆内部的高碱度,在阴极保护过程中能有效抑制阳极酸化效应造成的阳极酸化侵蚀和主阳极与砂浆之间的局部劣化开裂,具有碱环境稳定能力,在提高阴极保护系统保护效率的同时延长阳极服役寿命;
(4)本发明的轻质导电砂浆材料的制备方法简单,原材料价格相对低廉,应用方便。
附图说明
图1为实施例1中混凝土孔溶液模拟阴极保护实验测试装置的结构示意图;
图2为实施例1中含有导电多孔轻骨料的模拟阴极保护实验测试结果图;
图3为实施例1中插入电极片的轻质导电砂浆材料成型试样尺寸图;
图4为实施例1中轻质导电砂浆材料各配比的电阻率与龄期的关系图;
图5为实施例2中普通骨料砂浆样品通电后主阳极-砂浆界面扫描电镜图;
图6为实施例2中轻质导电砂浆材料通电后主阳极-砂浆界面扫描电镜图。
具体实施方式
以下结合具体实施例及附图对本发明技术方案作进一步详细的描述,但本发明不限于此。
通过调整导电砂浆配合比,满足不同的施工方法和使用环境。
本发明具体实施例中,负载改性琼脂凝胶的导电多孔轻骨料通过如下方法制备得到:
(1)将6g琼脂粉加入100mL水中,并加热直至琼脂粉溶解完全后,加入无机盐类电解质(氢氧化钠0.33g、氢氧化钾1.40g和氢氧化钙8.62g),保持溶液的温度在100℃并保持120r/min转速搅拌90s,待强制搅拌均匀后添加蒸发损失相应质量沸水以保持配比设计组分质量,得到改性琼脂水溶液;再将5.0g石墨粉加入改性琼脂水溶液中,继续以60r/min搅拌10s,使石墨粉均匀分散于改性琼脂水溶液中;
(2)将多孔陶粒(表观密度为0.73g/cm3,吸水率(1h)11.0%,平均粒径低于3.26mm,筒压强度为2.2MPa)浸没于分散有石墨粉的改性琼脂水溶液中,保持温度在80℃并持续搅拌2min,取出多孔陶粒,风冷至多孔陶粒表面的琼脂凝固为凝胶状,剥离多余的琼脂凝胶,得到粒径在3.5~4.0mm的负载改性琼脂凝胶的导电多孔轻骨料,电阻率为0.5Ω·m。
实施例1
一种轻质导电砂浆材料,按重量份数计,包括如下组分:
水泥(PII 42.5R)100份,负载改性琼脂凝胶的导电多孔轻骨料5、10、20、30、35、40、45及50份,水35份。
采用混凝土孔溶液模拟负载改性琼脂凝胶的导电多孔轻骨料为5、10、20、40份的阴极保护实验测试,混凝土孔溶液实验为使用混凝土微观孔结构中的溶液离子种类与浓度代替真实水泥基复合材料浆体进行的实验,实验结果与真实水泥基复合材料实际应用过程相关性高,测试轻质导电砂浆材料对砂浆酸化效应的抑制效果;
采用的装置的结构示意图如图1所示,包括恒定电流仪1、阳极池2、阴极池3和盐桥4;阳极池2内设置与恒定电流仪1的正极连接的Ti-MMO金属主阳极5,在阳极池2装有按所述重量份添加的负载改性琼脂凝胶的导电多孔轻骨料6;阴极池3内设置有与恒定电流仪1的负极连接的钢筋阴极7;同时在阳极池2和阴极池3内均装有按所述重量份添加的水泥与水混合形成的混凝土孔溶液8;
同时,采用同体积参比阳极砂浆(参比阳极砂浆为采用与40份导电多孔轻骨料等体积的ISO标准砂替代导电多孔轻骨料)作为对比;
实验测量结果如图2所示,实验结果表明,在通电电流密度为200mA/m2的加速侵蚀条件下,含有负载改性琼脂凝胶的导电多孔轻骨料的阳极池模拟孔溶液的pH较含有参比阳极砂浆阳极池模拟孔溶液的pH下降更为缓慢;且阳极池模拟孔溶液pH值降低速率与导电多孔轻骨料添加份数成反比关系:以孔溶液pH下降至9的通电龄期进行对比,参比阳极砂浆的阳极池为21天,含有导电多孔轻骨料5份、10份、20份的阳极池均超过40天,而含有40份导电多孔轻骨料的阳极池在同等通电时间下依然能够维持12.6的碱度。
通过孔溶液模拟酸化实验,说明含有导电多孔轻骨料的砂浆系统具备在阴极保护通电工作状态下通过内部改性琼脂组分的平衡调节作用,达到抑制阳极酸化效应的功能,即具备碱环境稳定能力;且轻质导电砂浆材料碱环境稳定能力的大小与砂浆体系中导电多孔轻骨料的质量份数成正比,这是由于本发明轻质导电砂浆碱环境稳定性维持效果机理是由导电多孔轻骨料内部负载的改性琼脂凝胶材料与孔溶液联通,再通过孔溶液中的离子迁移以中和阳极电极反应所消耗的碱性物质,达到维持正常孔溶液碱度以及离子浓度延缓酸化溶解的效果,因此砂浆体系中导电多孔轻骨料的质量份数越高,砂浆的碱环境稳定性能越好。
上述所述轻质导电砂浆材料的制备,包括如下步骤:
按所述重量份,将水泥与水加入搅拌机中预搅拌,再加入负载改性琼脂凝胶的导电多孔轻骨料充分搅拌混合均匀,得到所述轻质导电砂浆材料。
将制备的轻质导电砂浆材料经标准砂浆搅拌机搅拌60s后灌入40*40*160mm标准砂浆模具中成膜后,再按照图3所示尺寸间距插入网孔直径为2mm的Ti金属电极片,制得用于测量砂浆电阻率数值的样品;
20±2℃、相对湿度95%条件养护至特定龄期后采用直流四点法(ASTM G57-06(2012))获得不同轻质导电砂浆材料的电阻率,制备的不同轻质导电砂浆材料各龄期电阻率的测量结果如图4所示,由图4可知,制备的轻质导电砂浆材料电阻率随龄期以及负载改性琼脂凝胶的导电多孔轻骨料添加量的变化而变化,轻质导电砂浆材料的电阻率随着导电多孔轻骨料掺加质量份数的提高而降低,且均有效降低了砂浆的电阻率;同时,各配比各龄期电阻率变化规律符合有效介质模型(General Effective Media)的球形填料复合导电材料电学性质规律,计算结果表明各配比砂浆中的导电增强相(导电多孔轻骨料)在各监测龄期均保持在0.5Ω·m水平,导电多孔轻骨料的电阻率并未随着水泥浆体水化密实而受到破坏,导电多孔轻骨料在水泥基复合材料中的渗流阈值为45份质量份数,具有显著降低砂浆电阻率的改性效果,且在负载改性琼脂凝胶的导电多孔轻骨料掺量达到40份时出现较为明显的渗流效应,在掺量为50份条件下28天龄期砂浆电阻率低于2Ω·m。
负载改性琼脂凝胶的导电多孔轻骨料为20、30、40、45份制得的轻质导电砂浆材料通过人工涂抹制成40mm厚的导电砂浆层,在28天龄期标准养护条件(20±2℃、相对湿度95%)下,各砂浆配比的性能如表1所示。
表1不同导电多孔轻骨料质量份数的砂浆标养28d性能数据
Figure BDA0001404139170000091
负载改性琼脂凝胶的导电多孔轻骨料为20、30、40、45份制得的轻质导电砂浆材料能够满足基本抹面砂浆的力学性能要求,且由表1可知,负载改性琼脂凝胶的导电多孔轻骨料为20、30、40、45份制得的轻质导电砂浆材料抗压性能以及抗折性能好。
实施例2
一种轻质导电砂浆材料的制备,按重量份数计,包括如下组分:
水泥(PII 42.5R)100份,负载改性琼脂凝胶的导电多孔轻骨料40份(相当于体积分数35vol.%),水40份。
制备上述的轻质导电砂浆材料,具体包括如下步骤:
按所述重量份,将水泥与水加入搅拌机中预搅拌,再加入负载改性琼脂凝胶的导电多孔轻骨料充分搅拌混合均匀,得到所述轻质导电砂浆材料。
制备的轻质导电砂浆材料流动性能较好,可免振捣填充于40*40*40mm模具;在每个砂浆试样中距离侧面20mm处插入阳极钛网(主阳极金属),20±2℃、相对湿度95%标准养护7天后,对主阳极进行通电,电流密度为66mA/m2,加速主阳极界面与砂浆界面之间的酸化腐蚀进程;
将该样品与同样体积的普通骨料砂浆(水泥PII 42.5R质量份数为100份,ISO标准砂质量份数100份)进行通电酸化后(通电56d),对该两试样取样后制备SEM背散射模式观测样品,扫面电镜观测结果可见采用普通骨料的砂浆中主阳极界面附近有明显溶解现象(如图5所示),相同通电条件下使用导电多孔轻骨料的砂浆的阳极金属界面未见明显酸化溶蚀(如图6所示),说明制备的轻质导电砂浆材料能够抑制阴极保护通电时所产生的阳极酸化效应。
以上实施例仅为本发明较优实施例,而本发明保护范围不限于此,本领域技术人员在不脱离本发明精神实质的基础上所做的一切修改、替换或改进等,均将落在本发明的保护范围内。

Claims (7)

1.一种轻质导电砂浆材料,其特征在于,按重量份数计,包括如下组分:水泥100份,负载改性琼脂凝胶的导电多孔轻骨料25~60份,水30~45份;所述水泥为强度等级42.5以上的普通硅酸盐水泥或复合型硅酸盐水泥;所述负载改性琼脂凝胶的导电多孔轻骨料通过如下方法制备得到:
(1)将琼脂粉加入水中,并加热直至琼脂粉完全溶解后,加入无机盐类电解质,保持溶液的温度在90℃以上并持续搅拌30s以上,补充蒸发损失相应质量沸水,制备得改性琼脂水溶液;再将石墨粉加入改性琼脂水溶液中,以60 r/min以上转速强制搅拌,使石墨粉均匀分散于改性琼脂水溶液中;按重量份数计,水100份,琼脂粉4-10份,石墨粉2-10份,氢氧化钠1.8-0.1份,氢氧化钾2.8-1.0份,氢氧化钙8.9-1.0份;
(2)将多孔陶粒浸没于分散有石墨粉的改性琼脂水溶液中,保持温度在80℃以上并持续搅拌2min以上,取出多孔陶粒,风冷至多孔陶粒表面的琼脂凝固为凝胶状,剥离多余琼脂凝胶,得到所述负载改性琼脂凝胶的导电多孔轻骨料。
2.根据权利要求1所述的一种轻质导电砂浆材料,其特征在于,步骤(1)中,所述无机盐类电解质包括氢氧化钠、氢氧化钾和氢氧化钙。
3.根据权利要求1所述的一种轻质导电砂浆材料,其特征在于,步骤(2)中,所述多孔陶粒为表观密度不高于1.19g/cm3,吸水率达6.48%以上,平均粒径不低于3.26mm且筒压强度不低于2.0 MPa的粘土质多孔陶粒。
4.根据权利要求1所述的一种轻质导电砂浆材料,其特征在于,所述负载改性琼脂凝胶的导电多孔轻骨料的粒径在3.5~4.0mm之间。
5.制备权利要求1~4任一项所述的一种轻质导电砂浆材料的方法,其特征在于,包括如下步骤:
按所述重量份,将水泥与水加入搅拌机中预搅拌,再加入负载改性琼脂凝胶的导电多孔轻骨料充分搅拌混合均匀,得到所述轻质导电砂浆材料。
6.权利要求1~5任一项所述的一种轻质导电砂浆材料在钢筋混凝土结构阴极保护技术中的应用,其特征在于,将所述轻质导电砂浆材料覆盖在钢筋混凝土结构的表面,或将所述轻质导电砂浆材料用于填充包含有主阳极惰性金属电极的混凝土凿除凹槽。
7.根据权利要求6所述的应用,其特征在于,所述覆盖的施工方法包括人工涂抹或机械喷涂,覆盖形成20~40mm厚的导电砂浆层。
CN201710812074.9A 2017-09-11 2017-09-11 一种轻质导电砂浆材料及其制备方法与应用 Active CN107651906B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201710812074.9A CN107651906B (zh) 2017-09-11 2017-09-11 一种轻质导电砂浆材料及其制备方法与应用
PCT/CN2017/118425 WO2019047426A1 (zh) 2017-09-11 2017-12-26 一种轻质导电砂浆材料及其制备方法与应用
US16/644,508 US11254614B2 (en) 2017-09-11 2017-12-26 Lightweight conductive mortar material, preparation method therefor and method of using thereof
JP2020511928A JP6968466B2 (ja) 2017-09-11 2017-12-26 軽量導電性モルタル材料、その製造方法及び使用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710812074.9A CN107651906B (zh) 2017-09-11 2017-09-11 一种轻质导电砂浆材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN107651906A CN107651906A (zh) 2018-02-02
CN107651906B true CN107651906B (zh) 2020-01-14

Family

ID=61129368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710812074.9A Active CN107651906B (zh) 2017-09-11 2017-09-11 一种轻质导电砂浆材料及其制备方法与应用

Country Status (4)

Country Link
US (1) US11254614B2 (zh)
JP (1) JP6968466B2 (zh)
CN (1) CN107651906B (zh)
WO (1) WO2019047426A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194439B (zh) * 2020-09-15 2022-05-27 亚士创能科技(上海)股份有限公司 抹面砂浆、外墙涂层及其制备方法
CN115353337B (zh) * 2022-08-25 2023-04-11 广东复特新型材料科技有限公司 一种石墨烯纸复合填料导电砂浆及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109087A (zh) * 2007-08-22 2008-01-23 青岛双瑞防腐防污工程有限公司 钢筋混凝土桥墩的牺牲阳极保护方法
CN103469212A (zh) * 2013-08-05 2013-12-25 青岛双瑞海洋环境工程股份有限公司 用于钢筋混凝土阴极保护系统的阳极导电填充物
CN105130302A (zh) * 2015-08-25 2015-12-09 华南理工大学 一种负载改性琼脂凝胶的导电多孔轻骨料及制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176850A (ja) * 1986-01-31 1987-08-03 Nec Home Electronics Ltd ドツトマトリクスラインプリンタの印字方法
CN1093520C (zh) * 1995-12-29 2002-10-30 王家君 一种可用作电发热材料的导电混凝土
JP4579724B2 (ja) * 2005-03-08 2010-11-10 住友大阪セメント株式会社 軽量導電性セメントモルタル硬化体及び当該導電性セメントモルタル硬化体からなる電気防食用陽極保護材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101109087A (zh) * 2007-08-22 2008-01-23 青岛双瑞防腐防污工程有限公司 钢筋混凝土桥墩的牺牲阳极保护方法
CN103469212A (zh) * 2013-08-05 2013-12-25 青岛双瑞海洋环境工程股份有限公司 用于钢筋混凝土阴极保护系统的阳极导电填充物
CN105130302A (zh) * 2015-08-25 2015-12-09 华南理工大学 一种负载改性琼脂凝胶的导电多孔轻骨料及制备方法和应用

Also Published As

Publication number Publication date
WO2019047426A1 (zh) 2019-03-14
JP6968466B2 (ja) 2021-11-17
CN107651906A (zh) 2018-02-02
US20200308053A1 (en) 2020-10-01
US11254614B2 (en) 2022-02-22
JP2020531398A (ja) 2020-11-05

Similar Documents

Publication Publication Date Title
Anwar et al. Light-weight cementitious conductive anode for impressed current cathodic protection of steel reinforced concrete application
Jin et al. Electrochemical chloride extraction (ECE) based on the high performance conductive cement-based composite anode
Guo et al. The application of novel lightweight functional aggregates on the mitigation of acidification damage in the external anode mortar during cathodic protection for reinforced concrete
Goyal et al. Performance assessment of specialist conductive paint for cathodic protection of steel in reinforced concrete structures
CN107651906B (zh) 一种轻质导电砂浆材料及其制备方法与应用
CN101306936A (zh) 可用于钢筋混凝土结构中的导电砂浆材料及其制备方法
CN110467378B (zh) 一种结构与腐蚀控制功能于一体的混凝土
Aguirre-Guerrero et al. Assessment of corrosion protection methods for reinforced concrete
Durstewitz et al. Cement based anode in the electrochemical realkalisation of carbonated concrete
CA2398022C (en) Process for the protection of reinforcement in reinforced concrete
Pushpakumara et al. Investigation on efficiency of repairing and retrofitting methods for chloride induced corrosion of reinforced concrete structures
Ann et al. Effect of Electrochemical Treatment in Inhibiting Corrosion of Steel in Concrete.
Goyal et al. Electrochemical Performance of Concrete Conductive Anode Paint Used as an Impressed Current Anode Material
JP2017066655A (ja) コンクリート構造物の断面修復工法
Cervantes et al. Conductive cement pastes with carbon fibers as anodes in the electrochemical chloride extraction
Yu et al. Usability of Conductive based Cement Anode for Impressed Current Cathodic Protection of Reinforced Concrete Structures
JP2017014567A (ja) コンクリート構造物における犠牲陽極工法のモニタリング方法
JP6482969B2 (ja) コンクリート構造物の断面修復工法
Daniyal et al. Effect of ethanolamine and nano-TiO 2 on the properties of ferrocement composites under different exposure environments
Saraswathy et al. Effectiveness of fly ash activation on the corrosion performance of steel embedded in concrete
EP1155165B1 (en) Use of a conductive mineralic coating for electrochemical corrosion protection of steel reinforcement in concrete
Runci et al. Mortar resistivity as a parameter for monitoring steel corrosion in alkali-activated materials
KR100412977B1 (ko) 철근 강화 콘크리이트 구조물의 전기방식용 전도성 고분자조성물
Oleiwi et al. Experimental study of cathodic protection for reinforced concrete submerged in saline water
Daniyal et al. Influence of Ethanolamine and Nano-TiO 2 on the Fresh, Hardened, Microstructural and Corrosion Resistance Properties of Cementitious Composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant