CN107645483A - 风险识别方法、风险识别装置、云风险识别装置及系统 - Google Patents

风险识别方法、风险识别装置、云风险识别装置及系统 Download PDF

Info

Publication number
CN107645483A
CN107645483A CN201610587586.5A CN201610587586A CN107645483A CN 107645483 A CN107645483 A CN 107645483A CN 201610587586 A CN201610587586 A CN 201610587586A CN 107645483 A CN107645483 A CN 107645483A
Authority
CN
China
Prior art keywords
risk identification
risk
cloud
business datum
business
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610587586.5A
Other languages
English (en)
Other versions
CN107645483B (zh
Inventor
顾曦
李才伟
夏巨鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced New Technologies Co Ltd
Advantageous New Technologies Co Ltd
Original Assignee
Alibaba Group Holding Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alibaba Group Holding Ltd filed Critical Alibaba Group Holding Ltd
Priority to CN201610587586.5A priority Critical patent/CN107645483B/zh
Priority to TW106119136A priority patent/TW201804392A/zh
Priority to PCT/CN2017/093194 priority patent/WO2018014812A1/zh
Priority to KR1020197005334A priority patent/KR102134547B1/ko
Priority to EP17830446.5A priority patent/EP3490216B1/en
Priority to SG11201900526WA priority patent/SG11201900526WA/en
Priority to JP2019503330A priority patent/JP6692000B2/ja
Publication of CN107645483A publication Critical patent/CN107645483A/zh
Priority to US16/254,473 priority patent/US20190156343A1/en
Priority to US16/725,751 priority patent/US20200250677A1/en
Application granted granted Critical
Publication of CN107645483B publication Critical patent/CN107645483B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1416Event detection, e.g. attack signature detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/51Discovery or management thereof, e.g. service location protocol [SLP] or web services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists
    • G06Q20/401Transaction verification
    • G06Q20/4016Transaction verification involving fraud or risk level assessment in transaction processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/08Insurance

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Computer Security & Cryptography (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Technology Law (AREA)
  • Marketing (AREA)
  • Economics (AREA)
  • Development Economics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

本申请公开了一种风险识别方法、风险识别装置、云风险识别装置及系统,包括:终端设备在采集到业务数据时,基于存储的风险识别规则,对产生业务数据的业务处理请求进行风险识别,并在无法确定风险识别结果时,触发由云风险识别设备对产生所述业务数据的业务处理请求进行风险识别。在本申请实施例中提出了分布式风险识别架构,有效避免了现有技术中风险服务器在对接收到的数据进行处理时耗时较长导致风险控制效率较低的问题,通过这种多层次的风险识别,减轻了风险服务器的运算压力,减少了系统资源的开销,同时在终端设备上完成风险识别,能够缩短风险识别的时间,提升用户的用户体验。

Description

风险识别方法、风险识别装置、云风险识别装置及系统
技术领域
本申请涉及互联网信息处理技术领域,尤其涉及一种风险识别方法、风险识别装置、云风险识别装置及系统。
背景技术
随着互联网技术的发展,出现了各种各样的电子商务平台。在这些电子商务平台中存在一种与金融行业相关的互联网金融业务平台。对于互联网金融业务平台,如何有效地进行风险控制是首要考虑的重要问题。
在实际应用中,随着互联网金融业务平台中业务类型、产品类型以及交易类型的越来越复杂,相继产生的风险控制难度也越来越高。目前,有效地进行风险控制的方式为:
互联网金融业务平台的前端采集各种数据,这里的各种数据包含设备数据、环境数据、行为数据等等,前端将采集到的各种数据通过网络传输给风险控制服务器,由风险控制服务器对接收到的各种数据进行处理或计算,进而对用户端的业务行为进行风险识别和处理,最后将风险识别结果返回给前端,以实现有效地风险控制。
但是,经研究发现,前端在采集各种数据之后,由于采集的数据量比较大,那么对于整个系统的网络传输、后台计算资源以及数据存储等各个方面提出很高要求,使得风险控制服务器在接收到前端发送的大量数据之后,导致数据计算的耗时较长,降低风险控制的效率。
发明内容
有鉴于此,本申请实施例提供了一种风险识别方法、风险识别装置、云风险识别装置及系统,用于解决现有技术中风险控制服务器在对接收到的数据进行处理时耗时较长导致风险控制效率较低的问题。
本申请实施例提供了一种风险识别方法,包括:
采集业务数据,所述业务数据根据业务处理请求产生;
基于存储的风险识别规则或风险识别模型,结合所述业务数据,对所述业务处理请求进行风险识别;
当无法确定风险识别结果时,向云风险识别设备发送包含所述业务数据的风险识别请求,所述风险识别请求用于请求所述云风险识别设备对产生所述业务数据的业务处理请求进行风险识别。
本申请实施例提供了一种风险识别方法,云风险识别设备中存储的风险识别规则与终端设备中存储的风险识别规则不同,所述方法包括:
所述云风险识别设备接收所述终端设备发送的风险识别请求,所述风险识别请求中包含所述业务数据;
所述云风险识别设备基于存储的风险识别规则或风险识别模型,结合所述业务数据,对产生所述业务数据的业务处理请求进行风险识别。
本申请实施例提供了一种应用于终端设备上的风险识别装置,所述风险识别装置包括:
采集单元,采集业务数据,所述业务数据根据业务处理请求产生;
风险识别单元,基于存储的风险识别规则或风险识别模型,结合所述业务数据,对所述业务处理请求进行风险识别;
发送单元,当无法确定风险识别结果时,向云风险识别设备发送包含所述业务数据的风险识别请求,所述风险识别请求用于请求所述云风险识别设备对产生所述业务数据的业务处理请求进行风险识别。
本申请实施例提供了一种云风险识别装置,云风险识别装置中存储的风险识别规则与终端设备中存储的风险识别规则不同,所述云风险识别装置包括:
接收单元,接收所述终端设备发送的风险识别请求,所述风险识别请求中包含所述业务数据;
风险识别单元,基于存储的风险识别规则或风险识别模型,结合所述业务数据,对产生所述业务数据的业务处理请求进行风险识别。
本申请实施例提供了一种风险识别系统,所述风险识别系统包括:终端设备和云风险识别设备,其中:
所述终端设备,采集业务数据,所述业务数据根据业务处理请求产生;基于存储的风险识别规则或风险识别模型,结合所述业务数据,对所述业务处理请求进行风险识别;当无法确定风险识别结果时,向所述云风险识别设备发送包含所述业务数据的风险识别请求;
所述云风险识别设备,接收所述终端设备发送的风险识别请求,并基于存储的风险识别规则和所述风险识别请求中包含的所述业务数据,对产生所述业务数据的业务处理请求进行风险识别。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:
终端设备在采集到业务数据时,基于存储的风险识别规则或风险识别模型,对产生业务数据的业务处理请求进行风险识别,并在无法确定风险识别结果时,触发由云风险识别设备对产生所述业务数据的业务处理请求进行风险识别。在本申请实施例中提出了分布式风险识别架构,有效避免了现有技术中风险服务器在对接收到的数据进行处理时耗时较长导致风险控制效率较低的问题,通过这种多层次的风险识别,减轻了风险服务器的运算压力,减少了系统资源的开销,同时在终端设备上完成风险识别,能够缩短风险识别的时间,提升用户的用户体验。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的一种风险识别方法的流程示意图;
图2为本申请实施例提供的一种风险识别方法的流程示意图;
图3为本申请实施例提供的一种风险识别方法的流程示意图;
图4为本申请实施例提供的一种风险识别方法的场景示意图;
图5为本申请实施例提供的一种应用于终端设备上的风险识别装置的结构示意图;
图6为本申请实施例提供的一种应用于终端设备上的风险识别装置的结构示意图;
图7为本申请实施例提供的一种云风险识别装置的结构示意图;
图8为本申请实施例提供的一种云风险识别装置的结构示意图;
图9为本申请实施例提供的一种风险识别系统的结构示意图;
图10为本申请实施例提供的一种智能平台设备的结构示意图。
具体实施方式
为了实现本申请的目的,本申请实施例提供了一种风险识别方法、风险识别装置、云风险识别装置及系统,终端设备在采集到业务数据时,基于存储的风险识别规则或风险识别模型,对产生业务数据的业务处理请求进行风险识别,并在无法确定风险识别结果时,触发由云风险识别设备对产生所述业务数据的业务处理请求进行风险识别。在本申请实施例中提出了分布式风险识别架构,有效避免了现有技术中风险服务器在对接收到的数据进行处理时耗时较长导致风险控制效率较低的问题,通过这种多层次的风险识别,减轻了风险服务器的运算压力,减少了系统资源的开销,同时在终端设备上完成风险识别,能够缩短风险识别的时间,提升用户的用户体验。
需要说明的是,本申请实施例中所记载的云风险识别装置可以是基于云功能的风险识别设备,也可以是服务端的风控系统,这里不做具体限定。
本申请实施例中所记载的风险识别装置可以是基于用户端的风险识别终端设备,可以集成在用户端的应用软件中,能够支持不同操作系统的要求,这里不做具体限定。
这里的风险识别装置可以承载在移动终端设备,也可以承载在PC设备,本申请实施例中所记载的应用在终端设备上的风险识别方法也可以应用在移动终端设备中安装的App客户端,也可以是PC设备中的控件,这里不做具体限定。
需要说明的是,云风险识别设备中存储的风险识别规则与终端设备中存储的风险识别规则存在差异。
下面结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下结合附图,详细说明本申请各实施例提供的技术方案。
实施例1
图1为本申请实施例提供的一种风险识别方法的流程示意图。所述方法可以如下所示。本申请实施例的执行主体可以为终端设备。
步骤101:采集业务数据,所述业务数据根据业务处理请求产生。
在本申请实施例中,终端设备接收用户发送的业务处理请求,并在接收到该业务处理请求时,启动风险识别操作。这样能够保证业务处理过程中及时进行风险控制。
终端设备在启动风险识别操作时,实时或者周期地采用业务处理请求产生的业务数据。这里的业务数据包括但不限于:设备数据(例如:设备标识、设备运行时产生的数据等)、环境数据、用户执行业务过程中产生的用户行为数据、业务执行过程中产生的交易数据等等。
步骤102:基于存储的风险识别规则或风险识别模型,结合所述业务数据,对所述业务处理请求进行风险识别。
在本申请实施例中,终端设备在采集到业务数据之后,对所述业务数据进行分析;并基于存储的风险识别规则或风险识别模型,结合分析得到的分析结果,对所述业务处理请求进行风险识别。
具体地,终端设备根据采集到所述业务数据,确定所述业务数据对应的业务指标。本申请实施例中所记载的业务指标可以包含但不限于:所述业务数据在预定时间窗口的计数值、加和值、起始值、终止值、区别值、平均值、标准差、最大值和/或最小值。终端设备基于确定的业务指标和所述业务数据,分析所述业务操作请求出现的频率特性和/或终端设备的运行环境特性。终端设备触发规则引擎和/或模型引擎对确定的业务指标进行逻辑分析和/或概率分析,进而得到分析结果。
终端设备根据分析结果,确定所述业务处理请求的风险识别结果。
本申请实施例中所记载的终端设备中存储的风险识别规则可以是后台服务器下发的,也可以是从后台服务器请求的,这里不做限定。此外,本申请实施例所记载的风险识别方案中还可以包含一个智能平台设备,该智能平台设备中存储风险识别规则、风险控制策略等,终端设备也可以从智能平台设备中获取风险识别规则,这里不做具体限定。
需要说明的是,本申请实施例中所记载的智能平台设备与现有技术中所说的后台服务器可以是同一个设备,也可以是不同的设备,若是不同的设备,区别在于:本申请实施例中记载的智能平台设备能够集开发维护为一体的服务平台,能够用来开发、维护变量、规则以及模型等,功能相对于后台服务器更全面一些。
需要说明的是,本申请实施例中终端设备在对所述业务处理请求进行风险识别时,可以采用终端设备所支持的处理方式,具体处理方式不做具体限定。
步骤103:对步骤102的操作结果进行判断,若无法确定风险识别结果,则执行步骤104;若能够确定风险识别结果,则执行步骤105和/或步骤106。
在本申请实施例中,由于终端设备的计算能力等条件限制,或者有些风险识别规则不适宜存在终端设备、或者其他原因,这样,就意味着在步骤102中,终端设备在对所述业务处理请求进行风险识别时,存在以下两种情况:
第一种情况:能够确定风险识别结果;第二种情况:无法确定风险识别结果。
即将业务数据或者分析结果输入规则引擎和/或模型引擎,若输出结果为明确结果的(例如:Accept或Reject),说明能够确定风险识别结果;
若输出结果为不明确结果的(例如:Unknown或者NULL),说明无法确定风险识别结果。
本申请实施例中所记载的明确结果可以理解为能够为下一步风险控制提供明确方向的结果。
那么针对不同的输入结果,终端设备将触发执行不同的操作。
步骤104:当无法确定风险识别结果时,向云风险识别设备发送包含所述业务数据的风险识别请求。
所述风险识别请求用于请求所述云风险识别设备对产生所述业务数据的业务处理请求进行风险识别。
在本申请实施例中,若步骤102中无法确定风险识别结果,则说明终端设备对发生的风险行为不能进行精准识别,需要云风险识别设备进行判断,此时终端设备需要向云风险识别设备发送风险识别请求,并在风险识别请求中携带采集到的业务数据。
步骤105:当能够确定风险识别结果时,将确定的所述风险识别结果以及所述业务数据同步至所述云风险识别设备。
在本申请实施例中,步骤105可以与步骤106中所记载的一种情形同时执行,也可以顺序执行,这里不做具体限定。
需要说明的是,在将确定的所述风险识别结果以及所述业务数据同步至所述云风险识别设备时,可以选择所述业务数据中的关键数据量发送给云风险识别设备,这样既能够达到同步目的,还能够保证传输数据量较小,提升数据传输速率,减少系统资源消耗。
步骤106:根据确定的风险识别结果,对所述业务处理请求进行风险控制。
在本申请实施例中,执行步骤106的操作可以基于以下两种情况:
第一种情况:步骤102中能够确定风险识别结果,即得到明确的风险识别结果。
那么终端设备将得到的明确的风险识别结果发送给终端设备中的业务处理单元,对所述业务处理请求进行有效地风险控制。
同时,还可以触发执行步骤105。
第二种情况:步骤102中无法确定风险识别结果。
那么由于步骤104终端设备在无法确定风险识别结果时,向云风险识别设备发送风险识别请求,一旦终端设备接收到云风险识别设备发送的风险识别结果,则可以根据接收到的所述风险识别结果,对所述业务处理请求进行风险控制。
具体地,终端设备将接收到的风险识别结果发送给终端设备中的业务处理单元,对所述业务处理请求进行有效地风险控制。
通过本申请实施例提供的技术方案,终端设备在采集到业务数据时,基于存储的风险识别或风险识别模型,对产生业务数据的业务处理请求进行风险识别,并在无法确定风险识别结果时,触发由云风险识别设备对产生所述业务数据的业务处理请求进行风险识别。在本申请实施例中提出了分布式风险识别架构,有效避免了现有技术中风险服务器在对接收到的数据进行处理时耗时较长导致风险控制效率较低的问题,通过这种多层次的风险识别,减轻了风险服务器的运算压力,减少了系统资源的开销,同时在终端设备上完成风险识别,能够缩短风险识别的时间,提升用户的用户体验。
实施例2
基于同一个发明构思,图2为本申请实施例提供的一种风险识别方法的流程示意图。本申请实施例的执行主体可以为云风险识别设备。
步骤201:所述云风险识别设备接收所述终端设备发送的风险识别请求,所述风险识别请求中包含所述业务数据。
在本申请实施例中,所述云风险识别设备接收到的所述终端设备发送的风险识别请求是在终端设备无法确定风险识别结果时发送的。
步骤202:所述云风险识别设备基于存储的风险识别规则或风险识别模型,结合所述业务数据,对产生所述业务数据的业务处理请求进行风险识别。
云风险识别设备中存储的风险识别规则与终端设备中存储的风险识别规则存在差异。
在本申请实施例中,由于云风险识别设备能够支持复杂风险行为的风险识别,那么在终端设备无法对风险行为进行识别时,对于接收到的终端设备发送的风险识别请求,提取该风险识别请求中包含的业务数据,并对所述业务数据进行分析;进而基于存储的风险识别规则或风险识别模型,结合分析得到的分析结果,对产生所述业务数据的业务处理请求进行风险识别。
步骤203:所述云风险识别设备向所述终端设备发送风险识别结果,使所述终端设备根据所述风险识别结果,对所述业务处理请求进行风险控制。
可选地,在本申请实施例中,假设终端设备能够确定风险识别结果,那么本申请实施例中所记载的云风险识别设备还可以接收终端设备发送的风险识别结果,并存储风险识别结果和得到该风险识别结果的业务数据,这样后续云风险识别设备可以将存储的风险识别结果和业务数据作为训练样本,优化风险识别规则,进而提升风险识别的精度。
通过本申请实施例所记载的风险识别方案,云风险识别设备在终端设备无法确定某一业务处理请求的风险识别结果时,针对接收到的业务数据和存储的风险识别规则或风险识别模型,对该业务处理请求进行风险识别,这样在本发明实施例提供的风险识别方案中,采用“端+云”的模式,一方面减轻了云风险识别设备的数据计算压力,另一方面借助于云风险识别设备强大的计算能力,对复杂的风险行为进行风险识别,保证了风险识别的精度。
实施例3
基于同一个发明构思,图3为本申请实施例提供的一种风险识别方法的流程示意图。
步骤301:终端设备和云风险识别设备从智能平台设备中获取风险识别策略数据包。
在本申请实施例中智能平台设备实时或者定期更新存储的风险识别策略数据包,并采用推(Push)或者拉(Pull)方式将风险识别策略数据包传输给终端设备和云风险识别设备,使得终端设备和云风险识别设备同步更新本地存储的风险识别策略数据包。
步骤302:终端设备接收用户发送的业务处理请求,并采集该业务处理请求在执行过程中产生的业务数据。
步骤303:终端设备基于存储的风险识别规则或风险识别模型,结合所述业务数据,对业务处理请求进行风险识别。
步骤304:终端设备确定是否能够得到风险识别结果,若是,则执行步骤305;若否,则执行步骤307。
步骤305:终端设备将风险识别结果和业务数据发送至云风险识别设备。
步骤306:终端设备根据风险识别结果,对该业务处理请求进行风险控制。
步骤307:终端设备向云风险识别设备发送风险识别请求,所述风险识别请求中包含业务数据。
步骤308:云风险识别接收所述风险识别请求,并基于存储的风险识别策略数据包和所述业务数据,对产生所述业务数据的业务处理请求进行风险识别。
步骤309:云风险识别将得到的风险识别结果发送给终端设备,跳转执行步骤306。
图4为本申请实施例提供的一种风险识别方法的场景示意图。
从图4中可以看出,终端设备在采集到业务数据时,基于存储的风险识别规则或风险识别模型,对产生业务数据的业务处理请求进行风险识别,并在无法确定风险识别结果时,触发由云风险识别设备对产生所述业务数据的业务处理请求进行风险识别。在本申请实施例中提出了分布式风险识别架构,有效避免了现有技术中风险服务器在对接收到的数据进行处理时耗时较长导致风险控制效率较低的问题,通过这种多层次的风险识别,减轻了风险服务器的运算压力,减少了系统资源的开销,同时在终端设备上完成风险识别,能够缩短风险识别的时间,提升用户的用户体验。
实施例4
图5为本申请实施例提供的一种应用在终端设备的风险识别装置的结构示意图。所述风险识别装置包括:采集单元51、风险识别单元52和发送单元53,其中:
采集单元51,采集业务数据,所述业务数据根据业务处理请求产生;
风险识别单元52,基于存储的风险识别规则或风险识别模型,结合所述业务数据,对所述业务处理请求进行风险识别;
发送单元53,当无法确定风险识别结果时,向云风险识别设备发送包含所述业务数据的风险识别请求,所述风险识别请求用于请求所述云风险识别设备对产生所述业务数据的业务处理请求进行风险识别。
在本申请的另一个实施例中,所述风险识别装置还包括:控制单元54,其中:
所述控制单元54,根据所述风险识别单元确定的风险识别结果,对所述业务处理请求进行风险控制。
在本申请的另一个实施例中,所述风险识别装置还包括:同步单元55,其中:
所述同步单元55,当所述风险识别单元能够确定风险识别结果时,将确定的所述风险识别结果以及所述业务数据同步至所述云风险识别设备。
在本申请的另一个实施例中,所述控制单元54根据确定的风险识别结果,对所述业务处理请求进行风险控制,包括:
接收所述云风险识别设备发送的风险识别结果;
根据接收到的所述风险识别结果,对所述业务处理请求进行风险控制。
在本申请的另一个实施例中,所述风险识别单元52基于存储的风险识别规则或风险识别模型,结合所述业务数据,对所述业务处理请求进行风险识别,包括:
对所述业务数据进行分析;
基于存储的风险识别规则或风险识别模型,结合分析得到的分析结果,对所述业务处理请求进行风险识别。
需要说明的是,本申请实施例提供的风险识别装置可以通过硬件方式实现,也可以通过软件方式实现,这里不做具体限定。该风险识别装置可以承载在终端设备上,终端设备在采集到业务数据时,基于存储的风险识别或风险识别模型,对产生业务数据的业务处理请求进行风险识别,并在无法确定风险识别结果时,触发由云风险识别设备对产生所述业务数据的业务处理请求进行风险识别。基于提出的分布式风险识别架构,有效避免了现有技术中风险服务器在对接收到的数据进行处理时耗时较长导致风险控制效率较低的问题,通过这种多层次的风险识别,减轻了风险服务器的运算压力,减少了系统资源的开销,同时在终端设备上完成风险识别,能够缩短风险识别的时间,提升用户的用户体验。
图6为本申请实施例提供的一种应用在终端设备的风险识别装置的结构示意图。假设将图5中所记载的功能集成在风险识别装置的风险控制模块61中,那么在图6中所示的风险识别装置除了包括风险控制模块61之外,还包括:安全模块62、数据模块63和通信模块64,其中:
数据模块63,支持采集设备数据、环境数据、行为数据、交易数据等,支持采集Socket数据,服务调用信息等;支持对异常环境进行识别,比如模拟器识别等;支持对数据进行安全存储和查询;支持数据处理和数据运算,比如算术运算、逻辑运算、Velocity计算等。
风险控制模块61,支持终端设备上的规则引擎、模型引擎,并基于规则引擎、模型引擎,对采集到的业务处理请求对应的业务数据进行分析和计算,进而对该业务处理请求进行风险识别。
安全模块62,支持反破解、反注入、反调整,并且能为被部署到终端设备上的算法、变量、规则、模型等提供虚拟安全环境(Virtual Secure Environment)。
通信模块64,支持接收由服务器推送到端上的数据、算法、规则、模型等;支持对“云”风控服务的同步调用;支持对“云”风控服务的异步调用;支付与服务器端进行其他形式的通讯,比如状态监测等。
例如:向云风险识别设备发送风险识别请求;接收云风险识别设备发送的风险识别结果等等。
本申请实施例中记载的终端设备又可以称之为Edge端风控设备,可以是一种基于移动设备的风控系统,支持Andriod和ISO操作平台,被部署在用户端运行。这样,终端设备在采集到业务数据时,能够做到“随采随用”,并及时对业务数据对应的业务处理请求的风险进行识别,有效避免了将数据传输至后台服务器所造成的风险识别延时,同时减轻了后台服务器的资源消耗,提升了整个风险识别系统的工作效率。
实施例5
图7为本申请实施例提供的一种云风险识别装置的结构示意图。所述云风险识别装置包括:接收单元71和风险识别单元72,其中:
接收单元71,接收所述终端设备发送的风险识别请求,所述风险识别请求中包含所述业务数据;
风险识别单元72,基于存储的风险识别规则或风险识别模型,结合所述业务数据,对产生所述业务数据的业务处理请求进行风险识别。
在本申请的另一个实施例中,所述云风险识别装置还包括:发送单元73,其中:
所述发送单元73,向所述终端设备发送风险识别结果,使所述终端设备根据所述风险识别结果,对所述业务处理请求进行风险控制。
在本申请的另一个实施例中,所述风险识别单元72基于存储的风险识别规则或风险识别模型,结合所述业务数据,对产生所述业务数据的业务处理请求进行风险识别,包括:
对所述业务数据进行分析;
基于存储的风险识别规则或风险识别模型,结合分析得到的分析结果,对产生所述业务数据的业务处理请求进行风险识别。
在本申请的另一实施例中,云风险识别设备中存储的风险识别规则与终端设备中存储的风险识别规则存在差异。
需要说明的是,本申请实施例所提供的云风险识别装置可以通过软件方式实现,也可以通过硬件方式实现,这里不做具体限定。本申请实施例中所记载的云风险识别装置在终端设备无法确定某一业务处理请求的风险识别结果时,针对接收到的业务数据和存储的风险识别规则或风险识别模型,对该业务处理请求进行风险识别,这样在本发明实施例提供的风险识别方案中,采用“端+云”的模式,一方面减轻了云风险识别设备的数据计算压力,另一方面借助于云风险识别设备强大的计算能力,对复杂的风险行为进行风险识别,保证了风险识别的精度。
基于同一个发明构思,图8为本申请实施例提供的一种云风险识别装置的结构示意图。假设将7中所记载的功能集成在云风险识别设备的风险控制模块81中,那么图8中所示的云风险识别装置除了包含风险控制模块81之外,还包括:数据模块82和通信模块83,其中:
风险控制模块81,支持后台服务器上的规则引擎、模型引擎,基于存储的风险识别规则和接收到的风险识别请求中包含的业务数据,对产生该业务数据的业务处理请求进行风险识别。
数据模块82,支持接收各种类型数据,存储并查询各种类型数据,以及进行数据处理和数据运算。
通信模块83,接收终端设备发送的数据(包含业务数据、请求消息等等),接收智能平台设备发送的风险识别策略数据包、风险识别规则、模型等,支持与终端设备之间的同步或者异步数据调用。
本申请实施例中所记载的云风险识别装置可以是一个基于服务器的风控系统,提供RESTFUL和SOAP的Web service接口。具备强大的计算能力以及大容量的存储空间,安全性能比较高。
实施例6
图9为本申请实施例提供的一种风险识别系统的结构示意图。所述风险识别系统包括:终端设备91和云风险识别设备92,其中:
所述终端设备91,采集业务数据,所述业务数据根据业务处理请求产生;基于存储的风险识别规则或风险识别模型,结合所述业务数据,对所述业务处理请求进行风险识别;当无法确定风险识别结果时,向所述云风险识别设备发送包含所述业务数据的风险识别请求;
所述云风险识别设备92,接收所述终端设备发送的风险识别请求,并基于存储的风险识别规则或风险识别模型,结合所述业务数据,对产生所述业务数据的业务处理请求进行风险识别。
在本申请的另一个实施例中,所述风险识别系统还包括:智能平台设备93,其中:
所述智能平台设备93,监控所述终端设备和所述云风险识别设备的运行状态,并分别向所述终端设备和所述云风险识别设备推送风险识别规则或风险识别模型。
本申请实施例中所记载的终端设备和云风险控制设备具备上述实施例中所记载的功能,这里不在详细赘述。
图10为本申请实施例提供的一种智能平台设备的结构示意图。本申请实施例中风险识别系统中包含的智能平台设备可以包含以下模块:配置模块1001、监控模块1002和通信模块1003,其中:
配置模块1001,配置各种变量、规则和模型等;
监控模块1002,支持监控所述终端设备和所述云风险识别设备的运行状态。
通信模块1003,支持分别向所述终端设备和所述云风险识别设备推送风险识别规则。
本申请实施例中所记载的智能平台设备可以是一个集开发维护为一体的服务平台,能够用来开发、维护变量、规则以及模型等,实现本申请实施例中所记载的风险识别系统所使用的风险识别策略的动态更新。
本申请实施例提供的风险识别方案所带来的有益效果:
1、“端+云”风控解决方案,充分利用终端设备实现数据的“随采随用”,避免了将大量数据传回后台服务器,从而减少网络开销和后台服务器资源;另外本申请实施例中将关键数据和涉及复杂风险行为的数据传回后台服务器,利用“云”后台强大的计算资源来对需要进行大量计算的风险识别请求进行处理,从而保障了风控识别的精度。
2、由于目前大量的业务(例如:大部分正常交易和特别明显的问题交易)可以在“端”上完成风险识别,对于这部分的风控识别将不再产生网络时延和后台运算时间,用户体验将得到明显提升,另一方面也将缓解后台服务拥塞的情况。
3、由于一部分风控计算任务被前置到“端”上,从而降低了“云”后台的计算压力,也降低了后台的成本;另外随着“端”风控的加入,一部分风控请求将不再依赖中心化的后台,因此这种分布式的设计也提升了风控服务的可用性和容灾能力。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (16)

1.一种风险识别方法,其特征在于,该方法应用于终端设备上,包括:
采集业务数据,所述业务数据根据业务处理请求产生;
基于存储的风险识别规则或风险识别模型,结合所述业务数据,对所述业务处理请求进行风险识别;
当无法确定风险识别结果时,向云风险识别设备发送包含所述业务数据的风险识别请求,所述风险识别请求用于请求所述云风险识别设备对所述业务处理请求进行风险识别。
2.根据权利要求1所述的风险识别方法,其特征在于,所述方法还包括:
当能够确定风险识别结果时,将确定的所述风险识别结果以及所述业务数据同步至所述云风险识别设备。
3.根据权利要求1所述的风险识别方法,其特征在于,所述方法还包括:
接收所述云风险识别设备发送的风险识别结果;
根据接收到的所述风险识别结果,对所述业务处理请求进行风险控制。
4.根据权利要求1至3任一项所述的风险识别方法,其特征在于,基于存储的风险识别规则或风险识别模型,结合所述业务数据,对所述业务处理请求进行风险识别,包括:
对所述业务数据进行分析;
基于存储的风险识别规则和分析得到的分析结果,对所述业务处理请求进行风险识别。
5.一种风险识别方法,其特征在于,云风险识别设备中存储的风险识别规则与终端设备中存储的风险识别规则不同,所述方法包括:
所述云风险识别设备接收所述终端设备发送的风险识别请求,所述风险识别请求中包含所述业务数据;
所述云风险识别设备基于存储的风险识别规则或风险识别模型,结合所述业务数据,对产生所述业务数据的业务处理请求进行风险识别。
6.根据权利要求5所述的风险识别方法,其特征在于,所述方法还包括:
所述云风险识别设备向所述终端设备发送风险识别结果,使所述终端设备根据所述风险识别结果,对所述业务处理请求进行风险控制。
7.根据权利要求5或6所述的风险识别方法,其特征在于,所述云风险识别设备基于存储的风险识别规则或风险识别模型,结合所述业务数据,对产生所述业务数据的业务处理请求进行风险识别,包括:
所述云风险识别设备对所述业务数据进行分析;
所述云风险识别设备基于存储的风险识别规则或风险识别模型,结合分析得到的分析结果,对产生所述业务数据的业务处理请求进行风险识别。
8.一种应用于终端设备上的风险识别装置,其特征在于,该装置包括:
采集单元,采集业务数据,所述业务数据根据业务处理请求产生;
风险识别单元,基于存储的风险识别规则或风险识别模型,结合所述业务数据,对所述业务处理请求进行风险识别;
发送单元,当无法确定风险识别结果时,向云风险识别设备发送包含所述业务数据的风险识别请求,所述风险识别请求用于请求所述云风险识别设备对所述业务处理请求进行风险识别。
9.根据权利要求8所述的风险识别装置,其特征在于,所述装置还包括:同步单元,其中:
所述同步单元,当所述风险识别单元能够确定风险识别结果时,将确定的所述风险识别结果以及所述业务数据同步至所述云风险识别设备。
10.根据权利要求8所述的风险识别装置,其特征在于,所述装置还包括:控制单元,其中:
所述控制单元,接收所述云风险识别设备发送的风险识别结果;
根据接收到的所述风险识别结果,对所述业务处理请求进行风险控制。
11.根据权利要求8至10任一项所述的风险识别装置,其特征在于,所述风险识别单元基于存储的风险识别规则或风险识别模型,结合所述业务数据,对所述业务处理请求进行风险识别,包括:
对所述业务数据进行分析;
基于存储的风险识别规则或风险识别模型,结合分析得到的分析结果,对所述业务处理请求进行风险识别。
12.一种云风险识别装置,其特征在于,云风险识别装置中存储的风险识别规则与终端设备中存储的风险识别规则不同,所述云风险识别装置包括:
接收单元,接收所述终端设备发送的风险识别请求,所述风险识别请求中包含所述业务数据;
风险识别单元,基于存储的风险识别规则或风险识别模型,结合所述业务数据,对产生所述业务数据的业务处理请求进行风险识别。
13.根据权利要求12所述的云风险识别装置,其特征在于,所述云风险识别装置还包括:发送单元,其中:
所述发送单元,向所述终端设备发送风险识别结果,使所述终端设备根据所述风险识别结果,对所述业务处理请求进行风险控制。
14.根据权利要求12或13所述的云风险识别装置,其特征在于,所述风险识别单元基于存储的风险识别规则或风险识别模型,结合所述业务数据,对产生所述业务数据的业务处理请求进行风险识别,包括:
对所述业务数据进行分析;
基于存储的风险识别规则或风险识别模型,结合分析得到的分析结果,对产生所述业务数据的业务处理请求进行风险识别。
15.一种风险识别系统,其特征在于,所述风险识别系统包括:终端设备和云风险识别设备,其中:
所述终端设备,采集业务数据,所述业务数据根据业务处理请求产生;基于存储的风险识别规则或风险识别模型,结合所述业务数据,对所述业务处理请求进行风险识别;当无法确定风险识别结果时,向所述云风险识别设备发送包含所述业务数据的风险识别请求;
所述云风险识别设备,接收所述终端设备发送的风险识别请求,并基于存储的风险识别规则或风险识别模型,结合所述业务数据,对产生所述业务数据的业务处理请求进行风险识别。
16.根据权利要求15所述的风险识别系统,其特征在于,所述风险识别系统还包括:智能平台设备,其中:
所述智能平台设备,监控所述终端设备和所述云风险识别设备的运行状态,并分别向所述终端设备和所述云风险识别设备推送风险识别规则。
CN201610587586.5A 2016-07-22 2016-07-22 风险识别方法、风险识别装置、云风险识别装置及系统 Active CN107645483B (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201610587586.5A CN107645483B (zh) 2016-07-22 2016-07-22 风险识别方法、风险识别装置、云风险识别装置及系统
TW106119136A TW201804392A (zh) 2016-07-22 2017-06-08 風險識別方法、風險識別裝置、雲風險識別裝置及系統
KR1020197005334A KR102134547B1 (ko) 2016-07-22 2017-07-17 리스크 식별 방법, 리스크 식별 장치, 및 클라우드 리스크 식별 장치와 시스템
EP17830446.5A EP3490216B1 (en) 2016-07-22 2017-07-17 Risk identification method, risk identification apparatus, and cloud risk identification apparatus and system
PCT/CN2017/093194 WO2018014812A1 (zh) 2016-07-22 2017-07-17 风险识别方法、风险识别装置、云风险识别装置及系统
SG11201900526WA SG11201900526WA (en) 2016-07-22 2017-07-17 Risk identification method, risk identification apparatus, and cloud risk identification apparatus and system
JP2019503330A JP6692000B2 (ja) 2016-07-22 2017-07-17 リスク識別方法、リスク識別装置、クラウドリスク識別装置及びシステム
US16/254,473 US20190156343A1 (en) 2016-07-22 2019-01-22 Processing service requests based on risk identification
US16/725,751 US20200250677A1 (en) 2016-07-22 2019-12-23 Processing service requests based on risk identification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610587586.5A CN107645483B (zh) 2016-07-22 2016-07-22 风险识别方法、风险识别装置、云风险识别装置及系统

Publications (2)

Publication Number Publication Date
CN107645483A true CN107645483A (zh) 2018-01-30
CN107645483B CN107645483B (zh) 2021-03-19

Family

ID=60991898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610587586.5A Active CN107645483B (zh) 2016-07-22 2016-07-22 风险识别方法、风险识别装置、云风险识别装置及系统

Country Status (8)

Country Link
US (2) US20190156343A1 (zh)
EP (1) EP3490216B1 (zh)
JP (1) JP6692000B2 (zh)
KR (1) KR102134547B1 (zh)
CN (1) CN107645483B (zh)
SG (1) SG11201900526WA (zh)
TW (1) TW201804392A (zh)
WO (1) WO2018014812A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109766496A (zh) * 2018-12-28 2019-05-17 北京奇安信科技有限公司 一种内容风险识别方法、系统、设备及介质
CN110033166A (zh) * 2019-03-08 2019-07-19 阿里巴巴集团控股有限公司 风险识别处理方法及装置
CN110059920A (zh) * 2019-03-08 2019-07-26 阿里巴巴集团控股有限公司 风险决策方法及装置
CN110310007A (zh) * 2019-05-22 2019-10-08 菜鸟智能物流控股有限公司 风险识别方法、装置、设备和存储介质
CN110781500A (zh) * 2019-09-30 2020-02-11 口碑(上海)信息技术有限公司 一种数据风控系统以及方法
CN111405563A (zh) * 2020-03-24 2020-07-10 支付宝(杭州)信息技术有限公司 保护用户隐私的风险检测方法和装置
CN111461730A (zh) * 2020-03-31 2020-07-28 支付宝(杭州)信息技术有限公司 一种风控方法、装置、系统和电子设备
CN113705976A (zh) * 2021-08-02 2021-11-26 浪潮天元通信信息系统有限公司 基于业务数据的风险控制方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112365166A (zh) * 2020-11-13 2021-02-12 广东卓志跨境电商供应链服务有限公司 一种跨境电商商品备案风险控制方法及相关装置
CN114638685B (zh) * 2022-03-07 2024-09-06 支付宝(杭州)信息技术有限公司 一种风险识别方法、装置及设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6925452B1 (en) * 2000-05-22 2005-08-02 International Business Machines Corporation Method and system for recognizing end-user transactions
CN101976419A (zh) * 2010-10-19 2011-02-16 中国工商银行股份有限公司 交易数据的风险监控处理方法和系统
CN102447695A (zh) * 2011-11-14 2012-05-09 中国科学院软件研究所 一种识别业务系统中关键攻击路径的方法
CN102663284A (zh) * 2012-03-21 2012-09-12 南京邮电大学 一种基于云计算的恶意代码识别方法
CN102982284A (zh) * 2012-11-30 2013-03-20 北京奇虎科技有限公司 用于恶意程序查杀的扫描设备、云端管理设备及方法和系统
CN103220288A (zh) * 2013-04-12 2013-07-24 苏州通付盾信息技术有限公司 一种社交平台的安全运行方法
CN103888287A (zh) * 2013-12-18 2014-06-25 北京首都国际机场股份有限公司 信息系统一体化运维监控服务预警平台及其实现方法
CN104683984A (zh) * 2015-03-11 2015-06-03 无锡北邮感知技术产业研究院有限公司 无线通信信号实时监测处理方法和系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09114801A (ja) * 1995-10-17 1997-05-02 Nri & Ncc Co Ltd 企業リスク診断支援装置
US20020138371A1 (en) * 2001-03-20 2002-09-26 David Lawrence Online transaction risk management
CN1835014A (zh) 2006-03-28 2006-09-20 阿里巴巴公司 一种对在线业务进行风险监控的方法及系统
CN101674293B (zh) * 2008-09-11 2013-04-03 阿里巴巴集团控股有限公司 一种分布式应用中处理非正常请求的方法及系统
US9058486B2 (en) * 2011-10-18 2015-06-16 Mcafee, Inc. User behavioral risk assessment
US8925092B1 (en) * 2012-03-08 2014-12-30 Amazon Technologies, Inc. Risk assessment for software applications
US8875229B2 (en) * 2012-12-21 2014-10-28 International Business Machines Corporation Quantifying risk based on relationships and applying protections based on business rules
US10692087B2 (en) * 2013-04-03 2020-06-23 Blackhawk Network, Inc. Electronic financial service risk evaluation
US10026049B2 (en) * 2013-05-09 2018-07-17 Rockwell Automation Technologies, Inc. Risk assessment for industrial systems using big data
US9692789B2 (en) * 2013-12-13 2017-06-27 Oracle International Corporation Techniques for cloud security monitoring and threat intelligence
CN104753868A (zh) * 2013-12-30 2015-07-01 腾讯科技(深圳)有限公司 一种安全验证方法、业务服务器及安全验证系统
CN104980402B (zh) * 2014-04-09 2020-02-21 腾讯科技(北京)有限公司 一种识别恶意操作的方法及装置
CN105450598A (zh) * 2014-08-14 2016-03-30 上海坤士合生信息科技有限公司 信息识别方法、信息识别设备及用户终端
CN104901936B (zh) * 2014-10-17 2018-12-07 腾讯科技(深圳)有限公司 一种业务处理方法、装置、终端及服务器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6925452B1 (en) * 2000-05-22 2005-08-02 International Business Machines Corporation Method and system for recognizing end-user transactions
CN101976419A (zh) * 2010-10-19 2011-02-16 中国工商银行股份有限公司 交易数据的风险监控处理方法和系统
CN102447695A (zh) * 2011-11-14 2012-05-09 中国科学院软件研究所 一种识别业务系统中关键攻击路径的方法
CN102663284A (zh) * 2012-03-21 2012-09-12 南京邮电大学 一种基于云计算的恶意代码识别方法
CN102982284A (zh) * 2012-11-30 2013-03-20 北京奇虎科技有限公司 用于恶意程序查杀的扫描设备、云端管理设备及方法和系统
CN103220288A (zh) * 2013-04-12 2013-07-24 苏州通付盾信息技术有限公司 一种社交平台的安全运行方法
CN103888287A (zh) * 2013-12-18 2014-06-25 北京首都国际机场股份有限公司 信息系统一体化运维监控服务预警平台及其实现方法
CN104683984A (zh) * 2015-03-11 2015-06-03 无锡北邮感知技术产业研究院有限公司 无线通信信号实时监测处理方法和系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109766496A (zh) * 2018-12-28 2019-05-17 北京奇安信科技有限公司 一种内容风险识别方法、系统、设备及介质
CN110033166A (zh) * 2019-03-08 2019-07-19 阿里巴巴集团控股有限公司 风险识别处理方法及装置
CN110059920A (zh) * 2019-03-08 2019-07-26 阿里巴巴集团控股有限公司 风险决策方法及装置
CN110059920B (zh) * 2019-03-08 2021-08-06 创新先进技术有限公司 风险决策方法及装置
CN110033166B (zh) * 2019-03-08 2023-04-07 创新先进技术有限公司 风险识别处理方法及装置
CN110310007A (zh) * 2019-05-22 2019-10-08 菜鸟智能物流控股有限公司 风险识别方法、装置、设备和存储介质
CN110781500A (zh) * 2019-09-30 2020-02-11 口碑(上海)信息技术有限公司 一种数据风控系统以及方法
CN111405563A (zh) * 2020-03-24 2020-07-10 支付宝(杭州)信息技术有限公司 保护用户隐私的风险检测方法和装置
CN111461730A (zh) * 2020-03-31 2020-07-28 支付宝(杭州)信息技术有限公司 一种风控方法、装置、系统和电子设备
CN111461730B (zh) * 2020-03-31 2022-08-05 支付宝(杭州)信息技术有限公司 一种风控方法、装置、系统和电子设备
CN113705976A (zh) * 2021-08-02 2021-11-26 浪潮天元通信信息系统有限公司 基于业务数据的风险控制方法及系统

Also Published As

Publication number Publication date
EP3490216B1 (en) 2022-04-20
US20200250677A1 (en) 2020-08-06
TW201804392A (zh) 2018-02-01
US20190156343A1 (en) 2019-05-23
EP3490216A1 (en) 2019-05-29
WO2018014812A1 (zh) 2018-01-25
CN107645483B (zh) 2021-03-19
JP2019523501A (ja) 2019-08-22
JP6692000B2 (ja) 2020-05-13
EP3490216A4 (en) 2019-05-29
KR20190032513A (ko) 2019-03-27
KR102134547B1 (ko) 2020-07-16
SG11201900526WA (en) 2019-02-27

Similar Documents

Publication Publication Date Title
CN107645483A (zh) 风险识别方法、风险识别装置、云风险识别装置及系统
CN107592219A (zh) 服务降级处理方法及装置
CN106656932A (zh) 一种业务处理方法及装置
CN105677615B (zh) 一种基于weka接口的分布式机器学习方法
CN109587125A (zh) 一种网络安全大数据分析方法、系统及相关装置
WO2022142859A1 (zh) 数据处理方法、装置、计算机可读介质及电子设备
CN107168844B (zh) 一种性能监控的方法及装置
CN116506474B (zh) 一种基于云边协同的电力微服务分层系统
CN110347694B (zh) 一种基于物联网的设备监控方法、装置及系统
CN109995787A (zh) 一种数据处理方法及相关设备
CN109345131A (zh) 一种企业经营状况监控方法及系统
CN110390529A (zh) 交易智能路由方法、装置、设备及存储介质
CN110380985A (zh) 基于交易链路的流量控制方法、装置、设备及存储介质
CN109951326A (zh) 数据处理方法、装置、存储介质及处理器
AlOrbani et al. Load balancing and resource allocation in smart cities using reinforcement learning
Kim-Hung et al. A scalable IoT framework to design logical data flow using virtual sensor
CN114610813A (zh) 一种面向联邦学习的分布式存储方法、装置、设备及介质
CN117061147A (zh) 一种工控蜜罐及其应用方法
CN115713395A (zh) 一种基于Flink的用户风控管理方法、装置及设备
CN116204321A (zh) 模型获取、模型部署方法、装置、设备和介质
CN113590217B (zh) 基于引擎的函数管理方法、装置、电子设备及存储介质
EP4060435A1 (en) Method and system for infrastructure monitoring
CN103327071B (zh) 云计算网络智能监控模型数据处理分散分载方法及其系统
CN104268057A (zh) 一种Android平台下的模块化系统的监控系统及方法
CN110474805B (zh) 一种可调用的态势感知分析的方法和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1248935

Country of ref document: HK

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200921

Address after: Cayman Enterprise Centre, 27 Hospital Road, George Town, Grand Cayman, British Islands

Applicant after: Innovative advanced technology Co.,Ltd.

Address before: Cayman Enterprise Centre, 27 Hospital Road, George Town, Grand Cayman, British Islands

Applicant before: Advanced innovation technology Co.,Ltd.

Effective date of registration: 20200921

Address after: Cayman Enterprise Centre, 27 Hospital Road, George Town, Grand Cayman, British Islands

Applicant after: Advanced innovation technology Co.,Ltd.

Address before: A four-storey 847 mailbox in Grand Cayman Capital Building, British Cayman Islands

Applicant before: Alibaba Group Holding Ltd.

GR01 Patent grant
GR01 Patent grant