CN107615549B - 电化学储能装置及制备电化学储能装置的方法 - Google Patents

电化学储能装置及制备电化学储能装置的方法 Download PDF

Info

Publication number
CN107615549B
CN107615549B CN201580080052.7A CN201580080052A CN107615549B CN 107615549 B CN107615549 B CN 107615549B CN 201580080052 A CN201580080052 A CN 201580080052A CN 107615549 B CN107615549 B CN 107615549B
Authority
CN
China
Prior art keywords
energy storage
storage device
electrochemical energy
adhesive layer
packaging shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580080052.7A
Other languages
English (en)
Other versions
CN107615549A (zh
Inventor
鲍晋珍
方宏新
阳超
喻鸿钢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Contemporary Amperex Technology Co Ltd
Original Assignee
Contemporary Amperex Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Contemporary Amperex Technology Co Ltd filed Critical Contemporary Amperex Technology Co Ltd
Publication of CN107615549A publication Critical patent/CN107615549A/zh
Application granted granted Critical
Publication of CN107615549B publication Critical patent/CN107615549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供一种电化学储能装置及制备电化学储能装置的方法。所述电化学储能装置包括电芯、电解液以及包装壳。所述电化学储能装置还包括胶黏剂层。胶黏剂层位于电芯和包装壳之间并将电芯和包装壳固定连接;胶黏剂层在固化前为流动态且与包装壳之间的粘结力小于等于0.1N/mm,胶黏剂层固化后将电芯和包装壳固定连接。本发明的电化学储能装置能在不影响其其它性能的情况下改善其滥用的安全性问题。

Description

电化学储能装置及制备电化学储能装置的方法
技术领域
本发明涉及电池技术领域,尤其涉及一种电化学储能装置及制备电化学储能装置的方法。
背景技术
目前的电池几乎很难通过跌落测试,因为在跌落过程中,裸电芯的各层极片之间有时会出现滑动从而正、负极片接触而导致电池内部短路,裸电芯甚至会冲开包装壳的封边(顶封边或侧封边)而导致电解液的泄漏。传统的改进方法常常不能满足新的测试条件,而且从传统的材料体系及制备工艺上进行继续改进的难度和技术成本也大大增加。在裸电芯与包装壳之间设置胶带捆绑和粘接,又会带来增加电池厚度、入壳困难、局部应力不均导致裸电芯表面撕裂等问题。
有鉴于此,确有必要提供一种在不影响电池其它性能的情况下改善其滥用的安全性问题(如跌落、挤压、滚动等)的电池。
发明内容
鉴于背景技术中存在的问题,本发明的目的在于提供一种电化学储能装置及制备电化学储能装置的方法,所述电化学储能装置能在不影响其其它性能的情况下改善其滥用的安全性问题(如跌落、挤压、滚动等)。
为了实现上述发明目的,在本发明的第一方面,本发明提供了一种电化学储能装置,其包括电芯、电解液以及包装壳。电芯包括正极片、负极片以及间隔于正极片、负极片之间的隔离膜;电解液浸渍电芯;包装壳容纳电芯及电解液。所述电化学储能装置还包括胶黏剂层。胶黏剂层位于电芯和包装壳之间并将电芯和包装壳固定连接;胶黏剂层在固化前为流动态且与包装壳之间的粘结力小于等于0.1N/mm,胶黏剂层固化后将电芯和包装壳固定连接。
在本发明的第二方面,本发明提供了一种制备电化学储能装置的方法,用于制备本发明第一方面的电化学储能装置,包括步骤:将正极片、负极片以及间隔于正极片、负极片之间的隔离膜制成电芯;在电芯和包装壳之间设置胶黏剂层,胶黏剂层为流动态且胶黏剂层与包装壳之间粘结力小于等于0.1N/mm;将电芯装入包装壳、灌注电解液并封口,再对包装壳的外表面加热或加压实现胶黏剂层的固化以将电芯和包装壳固定连接。
相对于现有技术,本发明的有益效果为:
1.本发明的制备电化学储能装置的方法工艺简单、操作易于实现,可适应不同温湿度环境且作用条件要求较低。
2.在本发明的电化学储能装置中,在胶黏剂层固化前可以在电化学储能装置内重新排布,有利于提高电化学储能装置的外观平整度和能量密度。
3.在本发明的电化学储能装置中,胶黏剂层与电芯和包装壳之间的界面更好,不会出现胶黏剂层起皱、电芯表面起皱等界面粘接问题。
4.在本发明的电化学储能装置中,胶黏剂层与电芯和包装壳之间的粘结力更均匀,可避免跌落、挤压、滚动测试过程中撕裂电芯的表面。
5.在本发明的电化学储能装置中,胶黏剂层的可流动性可以将异型电芯的多面交界处或交接点粘住,有效解决交界处边缘起翘问题。
附图说明
图1是根据本发明一实施例的电化学储能装置的局部剖开的立体图;
图2是根据本发明另一实施例的电化学储能装置的局部剖开的立体图;
图3是由图1的A-A线作出的以截面夸张示意的根据本发明的电化学储能装置的一实施例的结构示意图。
其中,附图标记说明如下:
1 电芯
11 收尾处
2 包装壳
3 胶黏剂层
31 子层
32 子层
具体实施方式
下面说明根据本发明的电化学储能装置及制备电化学储能装置的方法以及实施例、对比例及测试过程以及测试结果。
首先说明根据本发明第一方面的电化学储能装置。
参照图1和图2,根据本发明第一方面的电化学储能装置包括:电芯1、电解液以及包装壳2。电芯1包括正极片、负极片以及间隔于正极片、负极片之间的隔离膜;电解液浸渍电芯1;包装壳2容纳电芯1及电解液。所述电化学储能装置还包括胶黏剂层3。胶黏剂层3位于电芯1和包装壳2之间并将电芯1和包装壳2固定连接。胶黏剂层3在固化前为流动态且与包装壳2之间的粘结力小于等于0.1N/mm,胶黏剂层3固化后将电芯1和包装壳2固定连接。
在根据本发明第一方面所述的电化学储能装置中,由于胶黏剂层3为流动态,因此在胶黏剂层3固化前可以在电化学储能装置内重新排布,有利于提高电化学储能装置的外观平整度;由于胶黏剂层3为流动态,胶黏剂会流向电化学储能装置整体厚度较小的位置,涂胶位置最后只留下微量胶黏剂,从而可以不增加电化学储能装置的整体厚度,相对于粘贴同等胶量的胶纸,电化学储能装置的整体厚度减小,有助于提高电化学储能装置的能量密度;胶黏剂层3的流动可使得其与电芯1和包装壳2之间的界面更好,不会出现胶黏剂层3起皱、电芯1表面起皱等界面粘接问题,且胶黏剂层3与电芯1和包装壳2之间的粘结力更均匀,可避免跌落、挤压、滚动测试过程中撕裂电芯1的表面;胶黏剂层3的流动特性尤其适用于异型电池中,可以将异型电芯的多面交界处或交接点粘住,解决交界处边缘起翘问题。
在根据本发明第一方面所述的电化学储能装置中,胶黏剂层3在固化前与包装壳2之间的粘结力小于等于0.1N/mm,方便入壳。当胶黏剂层3与包装壳2之间的粘结力大于0.1N/mm,在入壳时容易造成胶黏剂层3与包装壳2直接粘结,无法使胶黏剂层3在电化学储能装置内重新排布,进而电化学储能装置的外观平整度得不到保证。
在根据本发明第一方面所述的电化学储能装置中,胶黏剂层3在固化前的粘度可小于等于10万mp.s,以保证胶黏剂层3为流动态。
在根据本发明第一方面所述的电化学储能装置中,胶黏剂层3的材料可选自常温下无初粘性的压敏型胶黏剂、常温下无初粘性的热敏型胶黏剂以及反应型胶黏剂中的一种或几种。所述常温下无初粘性的压敏型胶黏剂可选自苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS)、苯乙烯-丁二烯嵌段共聚物(SEPS)以及环氧化苯乙烯-异戊二烯-苯乙烯嵌段共聚物(ESIS)中的一种或几种。所述常温下无初粘性的热敏型胶黏剂可选自聚烯烃、聚乙烯醇缩丁醛(PVB)、聚酰胺(PA)以及聚酯(PES)中的一种或几种。所述聚烯烃的单体可选自乙烯、丙烯、异戊二烯、醋酸乙烯、丁烯、丙烯酸、丙烯酸酯、丁二烯以及苯乙烯中的一种或几种。具体地,所述聚烯烃可选自聚乙烯(PE)、聚丙烯(PP)、聚异戊二烯(PI)、聚苯乙烯(PS)、乙烯-醋酸乙烯共聚物(EVA)、乙烯-丙烯酸乙酯共聚物(EEA)、乙烯-丙烯酸共聚物(EAA)、苯乙烯-异戊二烯-苯乙烯共聚物(SIS)以及苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)中的一种或几种。所述反应型胶黏剂可选自环氧树脂、酚醛树脂以及脲醛树脂中的一种或几种。
所述常温下无初粘性的压敏型胶黏剂是指在常温下,当物体和压敏型胶黏剂之间在指压下发生短暂接触时,不会对物体产生粘结作用的压敏型胶黏剂。热敏型胶黏剂在本申请中是指加热后可以熔融,待冷却后即可粘结固化的一类胶。所述常温下无初粘性的热敏型胶黏剂是指在常温下,当物体和热敏型胶黏剂之间发生短暂接触时,不会对物体产生粘结作用的热敏型胶黏剂。所述反应型胶黏剂是指胶层初始状态无粘结性,在遇热、有机溶剂或酸性条件下,胶层组分之间或与接触的环境物质之间发生化学反应从而产生粘结性的胶黏剂。
在根据本发明第一方面所述的电化学储能装置中,胶黏剂层3可为单层结构。
参照图3,在根据本发明第一方面所述的电化学储能装置中,胶黏剂层3可为N层结构,N为大于等于2的整数。靠近电芯1的外表面的胶黏剂层3的子层31的材料可选自常温下无初粘性的压敏型胶黏剂或常温下无初粘性的热敏型胶黏剂,方便在电芯1的外表面常温施胶和后续通过对包装壳2的外表面进行加热或加压而实现与电芯1的外表面的快速粘接。靠近包装壳2的内表面的胶黏剂层3的子层32的材料可选自常温下无初粘性的热敏型胶黏剂或反应型胶黏剂,即便在施胶工艺过程中有施压也不会使该子层32产生粘接性,方便入壳。其余的胶黏剂层3的子层的材料不受限制,优选可选自常温下无初粘性的压敏型胶黏剂、常温下无初粘性的热敏型胶黏剂以及反应型胶黏剂中的一种或几种,以起到增强粘接的作用。
在根据本发明第一方面所述的电化学储能装置中,优选地,所述常温下无初粘性的压敏型胶黏剂可选自苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS)。所述常温下无初粘性的热敏型胶黏剂可选自苯乙烯-异戊二烯-苯乙烯嵌段共聚物(SIS)、聚苯乙烯(PS)或聚异戊二烯(PI)。所述反应型胶黏剂可选自环氧树脂。
在根据本发明第一方面所述的电化学储能装置中,胶黏剂层3中还可包括电解液添加剂。电解液添加剂可选自硫酸亚乙酯、硫酸丙烯酯、联苯、碳酸乙烯酯、碳酸亚乙烯酯、氟代碳酸乙烯酯、丙磺酸内酯以及己二腈中的一种或几种,不仅可以促进电解液的浸润,而且在循环过程中电解液添加剂还可以逐步从胶黏剂层3中释放到电解液中以改善电化学储能装置的电化学性能。
在根据本发明第一方面所述的电化学储能装置中,胶黏剂层3面向电芯1的外表的表面积可不大于电芯1的外表面的表面积,胶黏剂层3面向包装壳2的内表面的表面积可不大于电芯1的外表面的表面积。
在根据本发明第一方面所述的电化学储能装置中,胶黏剂层3的最厚位置处的厚度可不大于电芯1的最厚位置与最薄位置的厚度差,以便于利用胶黏剂层3的流动特性提高电化学储能装置的外观平整度。
在根据本发明第一方面所述的电化学储能装置中,胶黏剂层3可设置于电芯1和包装壳2之间的任何位置。例如,胶黏剂层3可设置于电芯1的长度、宽度、高度方向的表面、极耳区域、隔离膜超出正负极片的区域中的一个或几个位置上。
在根据本发明第一方面所述的电化学储能装置中,胶黏剂层3的厚度可为2μm~100μm。
在根据本发明第一方面所述的电化学储能装置中,电化学储能装置可选自锂离子二次电池、超级电容器、燃料电池以及太阳能电池中的一种。
在根据本发明第一方面所述的电化学储能装置中,电芯1可为卷绕式电芯、叠片式电芯或叠加卷式电芯。
在根据本发明第一方面所述的电化学储能装置中,电芯1还可为异型电芯。
在根据本发明第一方面所述的电化学储能装置中,包装壳2可为软包装壳或硬包装壳。包装壳2可选自铝塑膜、钢塑膜、铝合金壳或镁合金壳。
其次说明根据本方面第二方面的制备电化学储能装置的方法。
根据本方面第二方面的制备电化学储能装置的方法,用于制备本发明第一方面的电化学储能装置,包括步骤:步骤1:将正极片、负极片以及间隔于正极片、负极片之间的隔离膜制成电芯1;步骤2:在电芯1和包装壳2之间设置胶黏剂层3,胶黏剂层3为流动态且胶黏剂层3与包装壳2之间的粘结力小于等于0.1N/mm;步骤3:将电芯1装入包装壳2、灌注电解液并封口,再对包装壳2的外表面加热或加压实现胶黏剂层3的固化以将电芯1和包装壳2固定连接。
对包装壳2的外表面加热或加压除了使胶黏剂层3固化以将电芯1和包装壳2固定连接,还可以使胶黏剂层3在电芯1和包装壳2之间粘接界面上重新排布,即使胶黏剂层3向电化学储能装置整体厚度较小的位置流动,使界面平整,进而提高电化学储能装置的能量密度。
在根据本发明第二方面所述的制备电化学储能装置的方法中,在步骤2中,可通过涂覆或点胶的方式将胶黏剂层3设置在电芯1的外表面或包装壳2的内表面上。其中涂覆方式单位时间施胶面积较大,对于表面积较大的电芯1,有利于提高产能;点胶的方式动作更灵活,对施胶位置无选择性,尤其适合用于异型电池中,可以将异型电芯的多面交界处或交接点粘住,解决交界处边缘起翘问题。
在根据本发明第二方面所述的制备电化学储能装置的方法中,在步骤2中,设置胶黏剂层3时的温度可为10℃~200℃、相对湿度(RH)可为10%~80%。
在根据本发明第二方面所述的制备电化学储能装置的方法中,在步骤3中,加热固化时的温度可为45℃~90℃,加压固化时的压力可为0.2MPa~2MPa。
接下来说明根据本发明的电化学储能装置及制备电化学储能装置的方法的实施例和对比例。
实施例1
1.正极片的制备
将LiCoO2、导电碳、聚偏氟乙烯按重量比95:1:4分散到N-甲基吡咯烷酮中制成正极浆料,然后经涂布压实成厚度为102μm的正极片。
2.负极片的制备
将石墨、导电碳、羧甲基纤维素钠、丁苯橡胶按重量比96:1:2:1分散在去离子水中制成负极浆料,然后经涂布压实制成厚度为90μm的负极片。
3.电解液的制备
将碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)按重量比20:20:45:15配制成非水有机溶剂,之后加入1.5mol/L的LiPF6作为锂盐,完成电解液的制备。
4.电芯的制备
将制备的正极片、PE隔离膜以及负极片依次卷绕制备成厚度为4.0mm、宽度为52mm、长度为60mm的卷绕式电芯。
5.锂离子二次电池的制备
在25℃,RH为20%的条件下,将由苯乙烯-异戊二烯-苯乙烯1:1:1嵌段共聚物制备的、粘度接近10万mp.s的胶黏剂涂覆在卷绕式电芯的外表面的除极耳外的其它位置上,胶黏剂层的厚度为50μm,胶黏剂层与包装壳铝塑膜之间的粘结力为0.05N/mm,之后将电芯装入包装壳,灌注电解液并封口,再对包装壳的外表面加热至75℃使胶黏剂层固化以将电芯和包装壳固定连接,之后经过化成、抽气成型,完成锂离子二次电池的制备。
实施例2
依照实施例1的方法制备锂离子二次电池,除以下不同:
5.锂离子二次电池的制备
在45℃,RH为60%的条件下,将由苯乙烯-乙烯-丁二烯-苯乙烯1:1:1:1共聚物制备的、粘度为6万mp.s的且与包装壳铝塑膜之间的粘结力小于0.1N/mm的胶黏剂涂覆在电芯的沿卷绕方向的外表面及其垂直卷绕方向的电芯的尾部,胶黏剂层的厚度为50μm,之后将电芯装入包装壳,灌注电解液并封口,再对包装壳的外表面施加1MPa的面压使胶黏剂层固化以将电芯和包装壳固定连接,之后经过化成、抽气成型,完成锂离子二次电池的制备。
实施例3
依照实施例1的方法制备锂离子二次电池,除以下不同:
5.锂离子二次电池的制备
在60℃,RH为80%的条件下,将由环氧树脂制备的、粘度为8万mp.s的且与包装壳铝塑膜之间的粘结力小于0.1N/mm的胶黏剂涂覆在电芯的卷绕方向的两侧面,胶黏剂层的厚度为50μm,之后将电芯装入包装壳,灌注电解液并封口,再对包装壳的外表面施加0.8MPa面压使胶黏剂层固化以将电芯和包装壳固定连接,之后经过化成、抽气成型,完成锂离子二次电池的制备。
实施例4
依照实施例1的方法制备锂离子二次电池,除以下不同:
5.锂离子二次电池的制备
在卷绕式电芯的卷绕收尾处粘接一条8mm宽、60mm长的丙烯酸树脂单面胶带后,再在200℃,RH为50%的条件下,将由聚丙烯制备的、粘度为5万mp.s的且与包装壳铝塑膜之间的粘结力小于0.1N/mm的胶黏剂涂覆在电芯沿卷绕方向的表面以及垂直卷绕方向的头部和尾部,胶黏剂层的厚度为30μm,之后将电芯装入包装壳,灌注电解液并封口,再对外包装的外表面加热至60℃并施加0.5MPa面压使胶黏剂层固化以将电芯和包装壳固定连接,之后经过化成、抽气成型,完成锂离子二次电池的制备。
实施例5
依照实施例1的方法制备锂离子二次电池,除以下不同:
5.锂离子二次电池的制备
在180℃,RH为80%的条件下,将由聚苯乙烯制备的、粘度为6万mp.s的且与包装壳铝塑膜之间的粘结力小于0.1N/mm的胶黏剂涂覆在电芯的与卷绕方向垂直的上下两面,胶黏剂层的厚度为50μm,之后将电芯装入包装壳,灌注电解液并封口,再对外包装的外表面加热至75℃使胶黏剂层固化以将电芯和包装壳固定连接,之后经过化成、抽气成型,完成锂离子二次电池的制备。
实施例6
依照实施例1的方法制备锂离子二次电池,除以下不同:
4.电芯的制备
将正极片、隔离膜、负极片依次叠片制备成厚度为4.0mm、宽度为52mm、长度为60mm叠片式电芯。
5.锂离子二次电池的制备
在180℃,RH为60%的条件下,将由聚异丁烯制备的、粘度为8万mp.s的且与包装壳铝塑膜之间的粘结力小于0.1N/mm的胶黏剂涂覆在叠片式电芯的上下两面,胶黏剂层的厚度为50μm,之后将叠片式电芯装入包装壳,灌注电解液并封口,再对外包装的外表面加热至75℃使胶黏剂层固化以将电芯和包装壳固定连接,之后经过化成、抽气成型,完成锂离子二次电池的制备。
实施例7
依照实施例1的方法制备锂离子二次电池,除以下不同:
4.电芯的制备
将正极片、隔离膜、负极片依次卷绕制备成多个不同大小的裸电芯后,再组合成台阶状异型电芯。
5.锂离子二次电池的制备
在10℃,RH为60%的条件下,将由聚异丁烯制备的、粘度为10万mp.s的且与包装壳铝塑膜之间的粘结力小于0.1N/mm的胶黏剂点胶在异型电芯的表面,胶黏剂层的厚度为50μm,之后将异型电芯装入包装壳,灌注电解液并封口,再对外包装的外表面加热至75℃使胶黏剂层固化以将电芯和包装壳固定连接,之后经过化成、抽气成型,完成锂离子二次电池的制备。
实施例8
依照实施例1的方法制备锂离子二次电池,除以下不同:
5.锂离子二次电池的制备
在60℃,RH为80%的条件下,将由苯乙烯-乙烯-丁二烯-苯乙烯1:1:1:1共聚物制备的、粘度为6万mp.s的且与包装壳铝塑膜之间的粘结力小于0.1N/mm的胶黏剂涂覆在卷绕式电芯的外表面的除极耳外的其它位置上,胶黏剂层的厚度为50μm,且胶黏剂层中还混合有质量百分含量为胶黏剂层总质量0.01%的电解液添加剂联苯,之后将卷绕式电芯装入包装壳,灌注电解液并封口,再对包装壳的外表面施加1MPa的面压使胶黏剂层固化以将电芯和包装壳固定连接,之后经过化成、抽气成型,完成锂离子二次电池的制备。
对比例1
依照实施例1的方法制备锂离子二次电池,除以下不同:
5.锂离子二次电池的制备
在卷绕式电芯的卷绕收尾处直接用一条5mm宽、60mm长的丙烯酸树脂单面胶带固定后装入包装壳铝塑膜、灌注电解液并封口,再对包装壳的外表面施加1MPa的面压以将电芯和包装壳固定连接,之后经过化成、抽气成型,完成锂离子二次电池的制备。
对比例2
依照对比例1的方法制备锂离子二次电池,除以下不同:
5.锂离子二次电池的制备
使用丙烯酸树脂双面胶带进行固定。
对比例3
依照实施例1的方法制备锂离子二次电池,除以下不同:
5.锂离子二次电池的制备
在卷绕式电芯的表面包覆中国专利申请公开号CN 102549801 A中的胶带,之后装入包装壳铝塑膜、灌注电解液并封口,再对包装壳的外表面施加1MPa的面压以将电芯和包装壳固定连接,之后经过化成、抽气成型,完成锂离子二次电池的制备。
对比例4
依照实施例7的方法制备锂离子二次电池,除以下不同:
5.锂离子二次电池的制备
将中国专利申请公开号CN 102549801 A中的胶带粘接在异型电芯的外表面,待胶带表面的胶黏剂干燥后,装入包装壳铝塑膜,灌注电解液并封口,再对包装壳的外表面施加1MPa的面压以将电芯和包装壳固定连接,之后经过化成、抽气成型,完成锂离子二次电池的制备。
接下来说明根据本发明的锂离子二次电池的测试过程以及测试结果。
1.锂离子二次电池的厚度测试
将锂离子二次电池主体放入厚度测试仪中,极耳露出,读取锂离子二次电池主体的厚度数值并记录,其中,锂离子二次电池主体的厚度数值为锂离子二次电池厚度最大位置(即极耳与电芯的重合区域)的厚度。
2.锂离子二次电池的外观平整度检查
将锂离子二次电池置于平整度仪(上海卓致力天仪器设备有限公司)中,测试锂离子二次电池表面的平整度。
3.锂离子二次电池的粘接界面测试
将锂离子二次电池的包装壳拆开,观察包装壳与电芯的粘接界面有无胶黏剂层起皱或电芯外表面起皱导致的界面不良。
4.锂离子二次电池的跌落测试
将锂离子二次电池用双面胶固定在跌落测试夹具中,将夹具的6个面依次编号1、2、3、4、5、6,将夹具的四个角依次编号C1、C2、C3、C4。
在25℃下,将夹具置于1.5m高的测试台上,按照编号1-6的顺序依次跌落锂离子二次电池,然后再按照编号C1-C4的顺序依次跌落锂离子二次电池,循环6次,完成跌落测试,静置1h后,
(1)观察锂离子二次电池的包装壳是否破损或顶封冲开;
(2)拆开锂离子二次电池观察电芯的极耳是否有断裂;
(3)拆开锂离子二次电池观察电芯的表面是否有撕裂;
(4)拆开锂离子二次电池观察电芯的宽度方向上的两侧隔离膜是否有移位或起皱;
(5)拆开锂离子二次电池观察正极片与负极片是否有接触内短路;
如无上述情况出现即判断为通过,计算锂离子二次电池跌落测试的通过率,每组测试10只锂离子二次电池。
5.锂离子二次电池的循环性能测试
将锂离子二次电池置于25℃的恒温箱中,以0.5C倍率恒流充电,截至电压为4.35V,然后以4.35V恒压充电,截至电流为0.025C,静置3min后,以0.5C恒流放电,截至电压3.0V,此为一个充放电循环过程,重复800次上述充放电过程,记录锂离子二次电池的初始厚度和循环后的厚度,判断锂离子二次电池是否有变形,每组测试10只锂离子二次电池。
表1给出实施例1-8和对比例1-4的性能测试结果。
Figure BDA0001469783160000121
注:NA表示无法判定,实施例7和对比例4中使用异型电芯,因此无法判断外观平整度。
由表1可知,本发明的锂离子二次电池可以改善跌落测试结果、不增加电池的厚度、长期循环后胶黏剂层可以阻止电池的变形、粘接界面良好、且电池外观平整。
从实施例5-6中可以看出,在电池本身体积较小或跌落测试要求不苛刻的情况下,在电池的部分表面涂覆本发明的胶黏剂层可以起到全部涂覆胶黏剂层的效果,并且节约材料和成本。
实施例7中使用异型电池,通过点胶的方式将胶黏剂层设置在电池表面,不仅异型位置施胶方便,而且胶黏剂层的流动性可将异型电芯的多面交界处或交接点粘住且还可以重整粘接界面使电池的粘结界面良好、电池表面平整且交界处边缘无起翘现象。
从实施例8中可以看出,胶黏剂中混合少量联苯,在电池的使用过程中,初期电池的循环性能较好,对联苯的需求较少,随着电池使用时间推移,胶黏剂层中的联苯会逐渐释放到电解液中,起到防止电池过充析锂等问题,提高电池的循环寿命,同时可以避免加入大量电解液造成涨液问题。
对比例1和对比例2分别采用单面胶纸和双面胶纸,不仅由于粘接不均匀导致粘接强度下降,而且跌落过程中胶纸会撕裂电芯表面,导致后续跌落中粘接失效。
对比例3和对比例4中使用的胶带同样不能改善粘接界面起皱和电芯表面撕裂的问题。尤其在对比例4中,所用的胶带无法将异型电芯多面交界处或交接点粘住,导致电芯多面交界处边缘起翘。

Claims (18)

1.一种电化学储能装置,包括:
电芯(1),包括正极片、负极片以及间隔于正极片、负极片之间的隔离膜;
电解液,浸渍电芯(1);以及
包装壳(2),容纳电芯及电解液;
其特征在于,
所述电化学储能装置还包括:
胶黏剂层(3),位于电芯(1)和包装壳(2)之间并将电芯(1)和包装壳(2)固定连接;
胶黏剂层(3)在固化前为流动态且与包装壳(2)之间的粘结力小于等于0.1N/mm,并通过涂覆或点胶的方式设置在电芯(1)的外表面或包装壳(2)的内表面上;胶黏剂层(3)固化后将电芯(1)和包装壳(2)固定连接;
所述胶黏剂层(3)选自常温下无初粘性的压敏型胶黏剂、常温下无初粘性的热敏型胶黏剂以及反应型胶黏剂中的一种或几种;
所述常温下无初粘性的压敏型胶黏剂选自苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物、苯乙烯-丁二烯嵌段共聚物、环氧化苯乙烯-异戊二烯-苯乙烯嵌段共聚物中的一种或几种,所述常温下无初粘性的热敏型胶黏剂选自聚乙烯醇缩丁醛、聚酰胺、聚酯中的一种或几种,所述反应型胶黏剂选自酚醛树脂以及脲醛树脂中的一种或几种。
2.根据权利要求1所述的电化学储能装置,其特征在于,胶黏剂层(3)在固化前的粘度小于等于10万mp.s。
3.根据权利要求1所述的电化学储能装置,其特征在于,胶黏剂层(3)为单层结构。
4.根据权利要求1所述的电化学储能装置,其特征在于,
胶黏剂层(3)为N层结构,N为大于等于2的整数;
靠近电芯(1)的外表面的胶黏剂层(3)的子层(31)的材料选自常温下无初粘性的压敏型胶黏剂或常温下无初粘性的热敏型胶黏剂;
靠近包装壳(2)的内表面的胶黏剂层(3)的子层(32)的材料选自常温下无初粘性的热敏型胶黏剂或反应型胶黏剂;
其余的胶黏剂层(3)的子层的材料选自常温下无初粘性的压敏型胶黏剂、常温下无初粘性的热敏型胶黏剂以及反应型胶黏剂中的一种或几种。
5.根据权利要求1所述的电化学储能装置,其特征在于,胶黏剂层(3)中还包括电解液添加剂。
6.根据权利要求5所述的电化学储能装置,其特征在于,所述电解液添加剂选自硫酸亚乙酯、硫酸丙烯酯、联苯、碳酸乙烯酯、碳酸亚乙烯酯、氟代碳酸乙烯酯、丙磺酸内酯以及己二腈中的一种或几种。
7.根据权利要求1所述的电化学储能装置,其特征在于,胶黏剂层(3)与电芯(1)的外表面面向的表面的表面积不大于电芯(1)的外表面的表面积,胶黏剂层(3)的与包装壳(2)的内表面面向的表面的表面积不大于电芯(1)的外表面的表面积。
8.根据权利要求1所述的电化学储能装置,其特征在于,胶黏剂层(3)的最厚位置处的厚度不大于电芯(1)的最厚位置与最薄位置的厚度差。
9.根据权利要求1所述的电化学储能装置,其特征在于,胶黏剂层(3)的厚度为2μm~100μm。
10.根据权利要求1所述的电化学储能装置,其特征在于,电化学储能装置选自锂离子二次电池、超级电容器、燃料电池以及太阳能电池中的一种。
11.根据权利要求1所述的电化学储能装置,其特征在于,电芯(1)为卷绕式电芯、叠片式电芯或叠加卷式电芯。
12.根据权利要求1所述的电化学储能装置,其特征在于,电芯(1)为异型电芯。
13.根据权利要求1所述的电化学储能装置,其特征在于,包装壳(2)为软包装壳或硬包装壳。
14.根据权利要求1所述的电化学储能装置,其特征在于,包装壳(2)选自铝塑膜、不锈钢包装膜、铝合金壳、钢壳或镁合金壳。
15.一种制备电化学储能装置的方法,用于制备权利要求1-14中任一项所述的电化学储能装置,包括步骤:
步骤1:将正极片、负极片以及间隔于正极片、负极片之间的隔离膜制成电芯(1);
步骤2:在电芯(1)和包装壳(2)之间设置胶黏剂层(3),胶黏剂层(3)为流动态且胶黏剂层(3)与包装壳(2)之间粘结力小于等于0.1N/mm;
步骤3:将电芯(1)装入包装壳(2)、灌注电解液并封口,再对包装壳(2)的外表面加热或加压实现胶黏剂层(3)的固化以将电芯(1)和包装壳(2)固定连接。
16.根据权利要求15所述的制备电化学储能装置的方法,其特征在于,在步骤2中,通过涂覆或点胶的方式将胶黏剂层(3)设置在电芯(1)的外表面或包装壳(2)的内表面上。
17.根据权利要求15所述的制备电化学储能装置的方法,其特征在于,在步骤2中,设置胶黏剂层(3)时的温度为10℃~200℃、相对湿度为10%~80%。
18.根据权利要求15所述的制备电化学储能装置的方法,其特征在于,在步骤3中,加热固化时的温度为45℃~90℃,加压固化时的压力为0.2MPa~2MPa。
CN201580080052.7A 2015-07-15 2015-07-15 电化学储能装置及制备电化学储能装置的方法 Active CN107615549B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/084099 WO2017008269A1 (zh) 2015-07-15 2015-07-15 电化学储能装置及制备电化学储能装置的方法

Publications (2)

Publication Number Publication Date
CN107615549A CN107615549A (zh) 2018-01-19
CN107615549B true CN107615549B (zh) 2020-09-11

Family

ID=57756733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580080052.7A Active CN107615549B (zh) 2015-07-15 2015-07-15 电化学储能装置及制备电化学储能装置的方法

Country Status (2)

Country Link
CN (1) CN107615549B (zh)
WO (1) WO2017008269A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022133859A1 (zh) * 2020-12-24 2022-06-30 宁德新能源科技有限公司 电池以及应用所述电池的电子装置
WO2022170529A1 (zh) * 2021-02-09 2022-08-18 宁德新能源科技有限公司 电化学装置和电子装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598295A (zh) * 2018-03-27 2018-09-28 成都市银隆新能源有限公司 一种铝塑膜及包含其的锂电池
CN108321425B (zh) * 2018-03-30 2024-03-08 珠海格力电器股份有限公司 压力化成设备
CN108682896B (zh) * 2018-04-26 2020-03-20 广东永邦新能源股份有限公司 一种锂电池组装工艺
CN108448173B (zh) * 2018-04-30 2024-02-06 中创新航科技股份有限公司 锂电池入壳系统
CN109494317A (zh) * 2018-09-17 2019-03-19 上海恩捷新材料科技有限公司 一种耐电解液的铝塑膜及其制备方法
CN109461958B (zh) * 2018-11-21 2024-07-26 新余赣锋电子有限公司 一种用于电池的软包电芯
CN113544900B (zh) * 2020-03-30 2023-07-18 宁德新能源科技有限公司 电芯及具有该电芯的电池
WO2022170530A1 (zh) * 2021-02-09 2022-08-18 宁德新能源科技有限公司 电化学装置和电子装置
CN114122518B (zh) * 2021-11-23 2023-06-09 珠海冠宇电池股份有限公司 一种电池
CN114050232B (zh) * 2021-11-23 2022-08-16 珠海冠宇电池股份有限公司 一种电池
CN114122531A (zh) * 2021-11-29 2022-03-01 珠海冠宇电池股份有限公司 一种锂离子电池
CN114204133B (zh) * 2021-12-09 2024-07-12 惠州亿纬锂能股份有限公司 一种解决卷绕式电芯膨胀的方法
CN114824287B (zh) * 2022-05-09 2024-05-24 江苏正力新能电池技术有限公司 一种电芯、电池模组和电池包

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101609906A (zh) * 2009-07-22 2009-12-23 欣旺达电子股份有限公司 钢壳套装聚合物电芯的电池封装方法
EP2273601A1 (en) * 2009-07-08 2011-01-12 Samsung SDI Co., Ltd. Secondary battery
CN203690420U (zh) * 2014-01-23 2014-07-02 东莞新能源科技有限公司 锂离子电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202623432U (zh) * 2012-04-05 2012-12-26 宁德新能源科技有限公司 一种内置式锂离子电池用包装箔
US9837651B2 (en) * 2013-06-27 2017-12-05 Ying-Tsun Lin Electric core for thin film battery
CN103682467B (zh) * 2013-11-25 2016-04-20 武汉孚安特科技有限公司 二次锂锰软包装电池及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2273601A1 (en) * 2009-07-08 2011-01-12 Samsung SDI Co., Ltd. Secondary battery
CN101609906A (zh) * 2009-07-22 2009-12-23 欣旺达电子股份有限公司 钢壳套装聚合物电芯的电池封装方法
CN203690420U (zh) * 2014-01-23 2014-07-02 东莞新能源科技有限公司 锂离子电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022133859A1 (zh) * 2020-12-24 2022-06-30 宁德新能源科技有限公司 电池以及应用所述电池的电子装置
WO2022170529A1 (zh) * 2021-02-09 2022-08-18 宁德新能源科技有限公司 电化学装置和电子装置

Also Published As

Publication number Publication date
WO2017008269A1 (zh) 2017-01-19
CN107615549A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
CN107615549B (zh) 电化学储能装置及制备电化学储能装置的方法
CN105449255B (zh) 电化学储能装置
CN105742712A (zh) 电化学储能装置
CN112563665B (zh) 一种锂离子电池
CN104157914A (zh) 一种高功率软包装锂离子电池及其制作工艺
CN112563584B (zh) 一种锂电池
CN105355956B (zh) 一种电化学电池及其制备方法
US10326170B2 (en) Electrochemical energy storage device
CN108615924B (zh) 电芯及采用电芯的锂离子电池
JP2007257859A (ja) バイポーラ電池
CN210668585U (zh) 一种锂离子电池
CN110911734A (zh) 一种软包锂离子电池
WO2023046090A1 (zh) 一种双面胶带和锂离子电池
JP7003989B2 (ja) 電極構成体固定用接着剤及び電気化学素子
CN113972422A (zh) 电化学装置和电子装置
CN105449261A (zh) 软包装锂离子电池
CN114024044A (zh) 一种电芯及电池
EP4254614A1 (en) Electrochemical device and electronic device
CN105355957A (zh) 电化学电池及其制备方法
WO2022133859A1 (zh) 电池以及应用所述电池的电子装置
CN114624180A (zh) 一种对比判断锂离子电池负极片粘结力大小的方法
JP2001243931A (ja) リチウム電池
WO2024130618A1 (zh) 一种粘结胶、胶纸、电化学装置和用电装置
CN114944467B (zh) 一种极片及包括该极片的电池
CN118248963A (zh) 二次电池及电子装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant