CN107607976A - 北斗与自主传感器定位装置及其定位方法 - Google Patents

北斗与自主传感器定位装置及其定位方法 Download PDF

Info

Publication number
CN107607976A
CN107607976A CN201710630632.XA CN201710630632A CN107607976A CN 107607976 A CN107607976 A CN 107607976A CN 201710630632 A CN201710630632 A CN 201710630632A CN 107607976 A CN107607976 A CN 107607976A
Authority
CN
China
Prior art keywords
sensor
big dipper
sensing unit
autonomous
autonomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710630632.XA
Other languages
English (en)
Inventor
王波
史亚萍
涂桂旺
王守朋
孙广开
苏凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YANTAI CHIJIU CLOCK-WATCH Co Ltd
Yantai Nanshan University
Original Assignee
YANTAI CHIJIU CLOCK-WATCH Co Ltd
Yantai Nanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YANTAI CHIJIU CLOCK-WATCH Co Ltd, Yantai Nanshan University filed Critical YANTAI CHIJIU CLOCK-WATCH Co Ltd
Priority to CN201710630632.XA priority Critical patent/CN107607976A/zh
Publication of CN107607976A publication Critical patent/CN107607976A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明涉及一种北斗与自主传感器定位装置及其定位方法,属于北斗与自主传感器定位技术领域。包括安装于人体左腿上的自主传感单元Ⅰ、安装于人体左脚鞋内的自主传感单元Ⅱ、安装于人体右腿上的自主传感单元Ⅲ、安装于人体右脚鞋内的自主传感单元Ⅳ,上述四个自主传感单元的结构相同且均通过体域网与中继器通讯连接,中继器通过通信网与后台通讯连接。本发明能实现室内外混合定位。

Description

北斗与自主传感器定位装置及其定位方法
技术领域
本发明涉及一种北斗与自主传感器定位装置及其定位方法,属于北斗与自主传感器定位技术领域。
背景技术
随着社会信息化的发展,与人类活动密切相关的位置信息越来越重要,在位置服务中,移动用户的定位是最基础的。
定位分为室内定位和室外定位,在室外,特别是在开阔的室外环境中,北斗能够提供非常准确的定位信息,但是在室内、市区多遮挡等情况下,北斗定位会由于信号的遮挡以及多径效应等会导致定位效果很差,甚至根本不能定位,所以就需要有室内定位技术来弥补北斗的不足,因此用于室内外的混合定位是必然选择。
自主传感器定位是室内一种完全自助式的定位方法,目前,自主传感器定位存在如下问题:
1、由孤立的传感器对行人的步态进行测量,从而推算出行人步距,但是,由于行人(如消防队员)的运动模式多样化(如跑步、不平坦地势和横向),从而产生了较大的步距误差;
2、没有测量步距的方向,出现了较大的航向误差。
目前,亟待出现一种适用于室内外混合定位的精准定位装置。
发明内容
本发明的目的在于解决上述现有技术存在的不足之处,提供一种能实现室内外混合定位的北斗与自主传感器定位装置及其定位方法。
本发明是通过以下技术方案来实现的:
北斗与自主传感器定位装置,其特殊之处在于包括安装于人体左腿上的自主传感单元Ⅰ1、安装于人体左脚鞋内的自主传感单元Ⅱ2、安装于人体右腿上的自主传感单元Ⅲ3、安装于人体右脚鞋内的自主传感单元Ⅳ4,上述四个自主传感单元的结构相同且均通过体域网5与中继器6通讯连接,中继器6通过通信网7与后台8通讯连接;
作为本发明一种优选的技术方案,所述中继器6包括内部设有定位补偿参数模块14、北斗定位模块13、定位处理模块12的微处理器Ⅰ9,微处理器Ⅰ9上设有体域网接口17、外网接口15、北斗接收接口16;
作为本发明一种优选的技术方案,所述微处理器9还连接有电源模块10、晶振模块11;
作为本发明一种优选的技术方案,所述自主传感单元包括内部设有传感参数模块25的微处理器Ⅱ18,微处理器Ⅱ18上设有体域网接口19,微处理器Ⅱ18还连接有电磁罗盘传感器24、三轴陀螺仪传感器23、加速传感器22、压力薄膜传感器21、超宽带传感器20。
北斗与自主传感器定位装置的定位方法,其特殊之处在于包括以下步骤;
1、通过自主传感器单元Ⅰ1、自主传感器单元Ⅱ2、自主传感单元Ⅲ3、自主传感单元Ⅳ4采集定位信息,然后通过体域网5发送给中继器6并通过通讯网7传送至后台8,后台8通过通讯网7积累中继器6传递来的自主定位信息和北斗定位信息,对自主定位误差进行拟合得到误差补偿量;
2、当北斗信号有效时,由中继器6采用北斗信号进行定位;当北斗信号无效时,由中继器6采集自主传感器单元Ⅰ1、主传感器单元Ⅱ2、自主传感单元Ⅲ3、自主传感单元Ⅳ4
的信息以及后台8传递来的定位误差补偿参数进行定位,后台8拟合出自主传感器单元Ⅰ1、自主传感器单元Ⅱ2、自主传感单元Ⅲ3、自主传感单元Ⅳ4的定位误差与补偿的关系;
作为本发明一种优选的技术方案,所述中继器6包括内部设有定位补偿参数模块14、北斗定位模块13、定位处理模块12的微处理器Ⅰ9,微处理器Ⅰ9上设有体域网接口17、外网接口15、北斗接收接口16;
作为本发明一种优选的技术方案,所述微处理器9还连接有电源模块10、晶振模块11;
作为本发明一种优选的技术方案,所述自主传感单元包括内部设有传感参数模块25的微处理器Ⅱ18,微处理器Ⅱ18上设有体域网接口19,微处理器Ⅱ18还连接有电磁罗盘传感器24、三轴陀螺仪传感器23、加速传感器22、压力薄膜传感器21、超宽带传感器20;
作为本发明一种优选的技术方案,所述中继器6的具体工作流程为:
中继器6中的体域网接口17接收自主传感器单元Ⅰ1、自主传感器单元Ⅱ2、自主传感单元Ⅲ3、自主传感单元Ⅳ4传递来的数据,高速微处理器Ⅰ9中的定位处理模块12依据体域网接口17传递来的数据以及后台8的定位误差补偿参数进行自主定位解算,北斗接收模块16接受北斗信号,北斗定位模块13依据北斗接收模块16传递来的北斗信息进行位置解算,定位补偿参数模块14通过外网接口15获取自主定位误差补偿参数;
自主传感器单元定位的计算方法为:
其中:k是步数,Ek、Nk分别是正东和正北方向的坐标,是步长,是行进方向角;
作为本发明一种优选的技术方案,所述自主传感器单元Ⅰ1的具体工作流程为:
自主传感器单元Ⅰ1中的电子罗盘传感器24用来测量方向角,三轴陀螺仪传感器23用来测量方向角以修正电磁罗盘传感器24因干扰而产生的误差,方法为:
1、若电磁罗盘传感器24测量值相对三轴陀螺仪传感器23测量无突变,无需校准;
2、若电磁罗盘传感器24测量值相对三轴陀螺仪传感器23测量突变,则用三轴陀螺仪传感器23修正电子罗盘测量值,修正公式为:
BS=BC+BT
其中:BS是实际方向角,BC是测量方向角,BT是突变量;
加速度传感器22用来测量加速度信息,通过积分得到步长,计算公式为:
其中:是步长,i0、i1是积分的起止时刻,是在i时刻测量的加速度值;
压力薄膜传感器21用来判断人体是否迈步,给出加速度计积分的起始结束时间;
1、若F>D,则停止加速度积分,积分时间清零;
2、若F<D,则开始加速度积分,积分时间从零开始计时。
其中,F是测量的压力值,D是阈值;
超宽带传感器20用来测量人体两脚的相对位置,从而得到行进方向,具体为:
1、把超宽带天线坐标系转换到地理坐标系G,公式为:
实际中,可通过天线安装,调整RGS=1,简化计算;
2、超宽带的方向值为行进方向。
本发明的北斗与自主传感器定位装置及其定位方法,采用北斗定位,由于人们更多地活动在北斗定位性能欠佳的复杂环境中,因此,本发提供了一种能够连续定位的技术和产品支撑,即自主传感单元,自主传感单元抗干扰能力强,独立工作,不受外界影响,所以人们把北斗与自主传感器两者结合起来,进行互补,解决人员等移动终端的连续定位问题。
本发明的北斗与自主传感器定位方法,能大大降低了导航误差随时间的积累误差,对于智慧城市建设、推动北斗应用产业具有重要意义。
附图说明
图1:本发明北斗与自主传感器定位装置的结构框图;
图2:本发明中继器的结构框图;
图3:本发明自主传感单元的结构框图。
图中:1、自主传感单元Ⅰ, 2、自主传感单元Ⅱ, 3、自主传感单元Ⅲ, 4、自主传感单元Ⅳ, 5、体域网, 6、中继器, 7、通信网, 8、后台,9、高速微处理器Ⅰ,10、电源模块, 11、晶振模块, 12、定位处理模块, 13、北斗定位模块,14、定位补偿参数模块,15、外网接口,16、北斗接收接口,17、体域网接口,18、微处理器Ⅱ;19、体域网接口;20、超宽带传感器;21、压力薄膜传感器;22、加速传感器;23、三轴陀螺仪传感器;24、电磁罗盘传感器;25、传感参数模块。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例的北斗与自主传感器定位装置,参考附图1-3,包括安装于人体左腿上的自主传感单元Ⅰ1、安装于人体左脚鞋内的自主传感单元Ⅱ2、安装于人体右腿上的自主传感单元Ⅲ3、安装于人体右脚鞋内的自主传感单元Ⅳ4,上述四个自主传感单元的结构相同且均通过体域网5与中继器6通讯连接,中继器6通过通信网7与后台8通讯连接;中继器6包括内部设有定位补偿参数模块14、北斗定位模块13、定位处理模块12的微处理器Ⅰ9,微处理器Ⅰ9上设有体域网接口17、外网接口15、北斗接收接口16;微处理器9还连接有电源模块10、晶振模块11;自主传感单元包括内部设有传感参数模块25的微处理器Ⅱ18,微处理器Ⅱ18上设有体域网接口19,微处理器Ⅱ18还连接有电磁罗盘传感器24、三轴陀螺仪传感器23、加速传感器22、压力薄膜传感器21、超宽带传感器20。
实施例2
本实施例的北斗与自主传感器定位装置的定位方法,参考附图1,包括以下步骤:
1、通过自主传感器单元Ⅰ1、自主传感器单元Ⅱ2、自主传感单元Ⅲ3、自主传感单元Ⅳ4采集定位信息,然后通过体域网5发送给中继器6并通过通讯网7传送至后台8,后台8通过通讯网7积累中继器6传递来的自主定位信息和北斗定位信息,对自主定位误差进行拟合得到误差补偿量;
2、当北斗信号有效时,由中继器6采用北斗信号进行定位;当北斗信号无效时,由中继器6采集自主传感器单元Ⅰ1、主传感器单元Ⅱ2、自主传感单元Ⅲ3、自主传感单元Ⅳ4
的信息以及后台8传递来的定位误差补偿参数进行定位,后台8拟合出自主传感器单元Ⅰ1、自主传感器单元Ⅱ2、自主传感单元Ⅲ3、自主传感单元Ⅳ4的定位误差与补偿的关系。
实施例3
本实施例的北斗与自主传感器定位装置的定位方法,包括以下步骤:
所述中继器6的具体工作流程为:
中继器6中的体域网接口17接收自主传感器单元Ⅰ1、自主传感器单元Ⅱ2、自主传感单元Ⅲ3、自主传感单元Ⅳ4传递来的数据,高速微处理器Ⅰ9中的定位处理模块12依据体域网接口17传递来的数据以及后台8的定位误差补偿参数进行自主定位解算,北斗接收模块16接受北斗信号,北斗定位模块13依据北斗接收模块16传递来的北斗信息进行位置解算,定位补偿参数模块14通过外网接口15获取自主定位误差补偿参数;
自主传感器单元定位的计算方法为:
其中:k是步数,Ek、Nk分别是正东和正北方向的坐标,是步长,是行进方向角;
作为本发明一种优选的技术方案,所述自主传感器单元Ⅰ1的具体工作流程为:
自主传感器单元Ⅰ1中的电子罗盘传感器24用来测量方向角,三轴陀螺仪传感器23用来测量方向角以修正电磁罗盘传感器24因干扰而产生的误差,方法为:
1、若电磁罗盘传感器24测量值相对三轴陀螺仪传感器23测量无突变,无需校准;
2、若电磁罗盘传感器24测量值相对三轴陀螺仪传感器23测量突变,则用三轴陀螺仪传感器23修正电子罗盘测量值,修正公式为:
BS=BC+BT
其中:BS是实际方向角,BC是测量方向角,BT是突变量;
加速度传感器22用来测量加速度信息,通过积分得到步长,计算公式为:
其中:是步长,i0、i1是积分的起止时刻,是在i时刻测量的加速度值;
压力薄膜传感器21用来判断人体是否迈步,给出加速度计积分的起始结束时间;
1、若F>D,则停止加速度积分,积分时间清零;
2、若F<D,则开始加速度积分,积分时间从零开始计时。
其中,F是测量的压力值,D是阈值;
超宽带传感器20用来测量人体两脚的相对位置,从而得到行进方向,具体为:
1、把超宽带天线坐标系转换到地理坐标系G,公式为:
实际中,可通过天线安装,调整RGS=1,简化计算;
2、超宽带的方向值为行进方向。
学习平台
传感器都是存在误差的,行走时间长了,产生积累误差。可通过后台积累的数据拟合来得到补偿量,减少积累误差。
步长越多,误差越大,可采用如下公式:
SL是误差,SF是步数,B是拟合参数。
可以用人工神经网络,将步长作为神经网络的输入,经过训练得到误差值。
申请人声明,本发明描述的实施例,对于本邻域的技术人员而言,不意味必须依赖上述方法才能实施,可以理解在不脱离本发明的原理和精神上可以对这些实施例进行变化和修改,本发明的范围由所附权利要求限定。

Claims (7)

1.北斗与自主传感器定位装置,其特征在于包括安装于人体左腿上的自主传感单元Ⅰ(1)、安装于人体左脚鞋内的自主传感单元Ⅱ(2)、安装于人体右腿上的自主传感单元Ⅲ(3)、安装于人体右脚鞋内的自主传感单元Ⅳ(4),上述四个自主传感单元的结构相同且均通过体域网(5)与中继器(6)通讯连接,中继器(6)通过通信网(7)与后台(8)通讯连接。
2.按照权利要求1所述的北斗与自主传感器定位装置,其特征在于所述中继器(6)包括内部设有定位补偿参数模块(14)、北斗定位模块(13)、定位处理模块(12)的微处理器Ⅰ(9),微处理器Ⅰ(9)上设有体域网接口(17)、外网接口(15)、北斗接收接口(16),微处理器(9)还连接有电源模块(10)、晶振模块(11)。
3.按照权利要求1所述的北斗与自主传感器定位装置,其特征在于所述自主传感单元包括内部设有传感参数模块(25)的微处理器Ⅱ(18),微处理器Ⅱ(18)上设有体域网接口(19),微处理器Ⅱ(18)还连接有电磁罗盘传感器(24)、三轴陀螺仪传感器(23)、加速传感器(22)、压力薄膜传感器(21)、超宽带传感器(20)。
4.北斗与自主传感器定位装置的定位方法,其特征在于包括以下步骤;
1)、通过自主传感器单元Ⅰ(1)、自主传感器单元Ⅱ(2)、自主传感单元Ⅲ(3)、自主传感单元Ⅳ(4)采集定位信息,然后通过体域网(5)发送给中继器(6)并通过通讯网(7)传送至后台(8),后台(8)通过通讯网(7)积累中继器(6)传递来的自主定位信息和北斗定位信息,对自主定位误差进行拟合得到误差补偿量;
2)、当北斗信号有效时,由中继器(6)采用北斗信号进行定位;当北斗信号无效时,由中继器(6)采集自主传感器单元Ⅰ(1)、主传感器单元Ⅱ(2)、自主传感单元Ⅲ(3)、自主传感单元Ⅳ(4)的信息以及后台(8)传递来的定位误差补偿参数进行定位,后台(8)拟合出自主传感器单元Ⅰ(1)、自主传感器单元Ⅱ(2)、自主传感单元Ⅲ(3)、自主传感单元Ⅳ(4)的定位误差与补偿的关系。
5.按照权利要求4所述的北斗与自主传感器定位装置的定位方法,其特征在于所述中继器(6)包括内部设有定位补偿参数模块(14)、北斗定位模块(13)、定位处理模块(12)的微处理器Ⅰ(9),微处理器Ⅰ(9)上设有体域网接口(17)、外网接口(15)、北斗接收接口(16);所述微处理器(9)还连接有电源模块(10)、晶振模块(11);所述自主传感单元包括内部设有传感参数模块(25)的微处理器Ⅱ(18),微处理器Ⅱ(18)上设有体域网接口(19),微处理器Ⅱ(18)还连接有电磁罗盘传感器(24)、三轴陀螺仪传感器(23)、加速传感器(22)、压力薄膜传感器(21)、超宽带传感器(20)。
6.按照权利要求5所述的北斗与自主传感器定位装置的定位方法,其特征在于
所述中继器(6)的具体工作流程为:
中继器(6)中的体域网接口(17)接收自主传感器单元Ⅰ(1)、自主传感器单元Ⅱ(2)、自主传感单元Ⅲ(3)、自主传感单元Ⅳ(4)传递来的数据,高速微处理器Ⅰ(9)中的定位处理模块(12)依据体域网接口(17)传递来的数据以及后台(8)的定位误差补偿参数进行自主定位解算,北斗接收模块(16)接受北斗信号,北斗定位模块(13)依据北斗接收模块(16)传递来的北斗信息进行位置解算,定位补偿参数模块(14)通过外网接口(15)获取自主定位误差补偿参数;
自主传感器单元定位的计算方法为:
其中:k是步数,Ek、Nk分别是正东和正北方向的坐标, 是步长,是行进方向角。
7.按照权利要求5所述的北斗与自主传感器定位装置的定位方法,其特征在于
所述自主传感器单元Ⅰ(1)的具体工作流程为:
自主传感器单元Ⅰ(1)中的电子罗盘传感器(24)用来测量方向角,三轴陀螺仪传感器(23)用来测量方向角以修正电磁罗盘传感器(24)因干扰而产生的误差,方法为:
1)、若电磁罗盘传感器(24)测量值相对三轴陀螺仪传感器(23)测量无突变,无需校准;
2)、若电磁罗盘传感器(24)测量值相对三轴陀螺仪传感器(23)测量突变,则用三轴陀螺仪传感器(23)修正电子罗盘测量值,修正公式为:
BS=BC+BT
其中:BS是实际方向角,BC是测量方向角,BT是突变量;
加速度传感器(22)用来测量加速度信息,通过积分得到步长,计算公式为:
其中:是步长,i0、i1是积分的起止时刻,是在i时刻测量的加速度值;
压力薄膜传感器21用来判断人体是否迈步,给出加速度计积分的起始结束时间;
1)、若F>D,则停止加速度积分,积分时间清零;
2)、若F<D,则开始加速度积分,积分时间从零开始计时。
其中,F是测量的压力值,D是阈值;
超宽带传感器20用来测量人体两脚的相对位置,从而得到行进方向,具体为:
1)、把超宽带天线坐标系转换到地理坐标系G,公式为:
实际中,可通过天线安装,调整RGS=1,简化计算;
2)、超宽带的方向值为行进方向。
CN201710630632.XA 2017-07-28 2017-07-28 北斗与自主传感器定位装置及其定位方法 Pending CN107607976A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710630632.XA CN107607976A (zh) 2017-07-28 2017-07-28 北斗与自主传感器定位装置及其定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710630632.XA CN107607976A (zh) 2017-07-28 2017-07-28 北斗与自主传感器定位装置及其定位方法

Publications (1)

Publication Number Publication Date
CN107607976A true CN107607976A (zh) 2018-01-19

Family

ID=61060054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710630632.XA Pending CN107607976A (zh) 2017-07-28 2017-07-28 北斗与自主传感器定位装置及其定位方法

Country Status (1)

Country Link
CN (1) CN107607976A (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1907875B1 (fr) * 2005-07-22 2010-11-03 Pole Star Procede, dispositif et systeme de positionnement par relais pulse multi synchrone multi-source
CN102419180A (zh) * 2011-09-02 2012-04-18 无锡智感星际科技有限公司 一种基于惯性导航系统和wifi的室内定位方法
CN103900580A (zh) * 2014-03-28 2014-07-02 东莞市领航通通信科技有限公司 基于gis技术的北斗/gps与ins组合车载导航定位系统
CN104757976A (zh) * 2015-04-16 2015-07-08 大连理工大学 一种基于多传感器融合的人体步态分析方法和系统
CN105241454A (zh) * 2015-10-23 2016-01-13 中国兵器工业集团第二一四研究所苏州研发中心 一种基于多传感器的行人导航系统及导航方法
CN105607104A (zh) * 2016-01-28 2016-05-25 成都佰纳瑞信息技术有限公司 一种基于gnss与ins的自适应导航定位系统及方法
CN105606094A (zh) * 2016-02-19 2016-05-25 北京航天控制仪器研究所 一种基于mems/gps组合系统的信息条件匹配滤波估计方法
CN105652306A (zh) * 2016-01-08 2016-06-08 重庆邮电大学 基于航迹推算的低成本北斗与mems紧耦合定位系统及方法
CN106448051A (zh) * 2016-11-25 2017-02-22 广东电网有限责任公司电力科学研究院 一种适用于高空作业防护的穿戴式生理传感设备
CN106500690A (zh) * 2016-09-22 2017-03-15 中国电子科技集团公司第二十二研究所 一种基于多模态融合的室内自主定位方法和装置
CN106569449A (zh) * 2016-06-13 2017-04-19 北京动量科技有限责任公司 一种复合定位的运动实时监控方法及其设备
CN106908821A (zh) * 2017-02-28 2017-06-30 北京交通大学 一种室内外无缝定位切换方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1907875B1 (fr) * 2005-07-22 2010-11-03 Pole Star Procede, dispositif et systeme de positionnement par relais pulse multi synchrone multi-source
CN102419180A (zh) * 2011-09-02 2012-04-18 无锡智感星际科技有限公司 一种基于惯性导航系统和wifi的室内定位方法
CN103900580A (zh) * 2014-03-28 2014-07-02 东莞市领航通通信科技有限公司 基于gis技术的北斗/gps与ins组合车载导航定位系统
CN104757976A (zh) * 2015-04-16 2015-07-08 大连理工大学 一种基于多传感器融合的人体步态分析方法和系统
CN105241454A (zh) * 2015-10-23 2016-01-13 中国兵器工业集团第二一四研究所苏州研发中心 一种基于多传感器的行人导航系统及导航方法
CN105652306A (zh) * 2016-01-08 2016-06-08 重庆邮电大学 基于航迹推算的低成本北斗与mems紧耦合定位系统及方法
CN105607104A (zh) * 2016-01-28 2016-05-25 成都佰纳瑞信息技术有限公司 一种基于gnss与ins的自适应导航定位系统及方法
CN105606094A (zh) * 2016-02-19 2016-05-25 北京航天控制仪器研究所 一种基于mems/gps组合系统的信息条件匹配滤波估计方法
CN106569449A (zh) * 2016-06-13 2017-04-19 北京动量科技有限责任公司 一种复合定位的运动实时监控方法及其设备
CN106500690A (zh) * 2016-09-22 2017-03-15 中国电子科技集团公司第二十二研究所 一种基于多模态融合的室内自主定位方法和装置
CN106448051A (zh) * 2016-11-25 2017-02-22 广东电网有限责任公司电力科学研究院 一种适用于高空作业防护的穿戴式生理传感设备
CN106908821A (zh) * 2017-02-28 2017-06-30 北京交通大学 一种室内外无缝定位切换方法

Similar Documents

Publication Publication Date Title
CN104703130B (zh) 基于室内定位的定位方法及其装置
CN103901456B (zh) 一种gps终端室内定位系统和方法
CN106646570A (zh) 一种多基站卫星差分定位和惯导组合的车辆精准定位方法
CA2495229C (en) Method and system for determining absolute positions of mobile communications devices using remotely generated positioning information
CN102494684B (zh) 一种基于wsn/mins组合导航的导航信息无偏紧组合方法
CN109936837B (zh) 一种基于蓝牙的室内定位方法及系统
CN106255065A (zh) 智能手机和移动终端室内外无缝定位系统及其方法
CN101156080B (zh) 一种基于gps导航卫星系统发射信号主要用于地形运动、大型设施以及民用建筑工程监控和测量的系统和方法
WO2013182147A1 (zh) 一种移动终端和获取移动终端位置信息的方法
CN203275971U (zh) 一种室外地面群机器人控制系统
CN109100746A (zh) 一种基于转发节点的隧道定位系统及方法
CN105785352A (zh) 一种防丢失监控方法及定位装置
CN110856106A (zh) 基于uwb和气压计的室内高精度三维定位方法
CN105783920A (zh) 一种室内外定位方法及定位系统、定位用脚环
CN105301621B (zh) 一种车辆定位装置及一种智能驾考系统
CN103338510A (zh) 一种基于rssi的无线传感器网络的定位方法
CN109631884A (zh) 一种基于单浮标的无源水下导航方法
CN104237846B (zh) 自主式移动对象室内三维定位跟踪系统与方法
CN106211318A (zh) 一种基于WiFi的路径损耗定位方法和系统
CN109917370A (zh) 无线紫外光隐秘通信中船舰甲板人员间定位方法
CN109343096A (zh) 基于gsm-r通信系统的gnss辅助相对导航方法及系统
CN105676252A (zh) 一种用于信号遮挡区域的导航信号源
US20100090893A1 (en) User based positioning aiding network by mobile GPS station/receiver
CN107607976A (zh) 北斗与自主传感器定位装置及其定位方法
CN103345146B (zh) 一种用于卫星双向时间传递的卫星轨道摄动补偿方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180119

RJ01 Rejection of invention patent application after publication