CN103345146B - 一种用于卫星双向时间传递的卫星轨道摄动补偿方法 - Google Patents

一种用于卫星双向时间传递的卫星轨道摄动补偿方法 Download PDF

Info

Publication number
CN103345146B
CN103345146B CN201310290178.XA CN201310290178A CN103345146B CN 103345146 B CN103345146 B CN 103345146B CN 201310290178 A CN201310290178 A CN 201310290178A CN 103345146 B CN103345146 B CN 103345146B
Authority
CN
China
Prior art keywords
satellite
station
earth station
time transfer
1pps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310290178.XA
Other languages
English (en)
Other versions
CN103345146A (zh
Inventor
张升康
王宏博
王学运
杨军
冯克明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
203 Station Second Research Institute Of China Aerospace Science & Industry Group
Original Assignee
203 Station Second Research Institute Of China Aerospace Science & Industry Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 203 Station Second Research Institute Of China Aerospace Science & Industry Group filed Critical 203 Station Second Research Institute Of China Aerospace Science & Industry Group
Priority to CN201310290178.XA priority Critical patent/CN103345146B/zh
Publication of CN103345146A publication Critical patent/CN103345146A/zh
Application granted granted Critical
Publication of CN103345146B publication Critical patent/CN103345146B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种用于卫星双向时间传递的卫星轨道摄动补偿方法,通过搭建轨道摄动补偿卫星双向时间传递系统、距离计算模块(7)确定地球站到卫星的距离、控制量计算模块(8)确定1PPS相位控制字、脉冲调整模块(9)调节秒脉冲和数据补偿模块(10)补偿1PPS调节操作产生的测量偏差,完成对卫星双向时间传递系统中卫星轨道摄动的补偿。本发明抵消了卫星轨道摄动在正反两个方向上引起的时间信号传输时延的变化,极大地降低卫星轨道摄动的影响,提高了卫星双向实时时间传递的精度。

Description

一种用于卫星双向时间传递的卫星轨道摄动补偿方法
技术领域
本发明涉及一种卫星轨道摄动补偿方法,特别是一种用于卫星双向时间传递的卫星轨道摄动补偿方法。
背景技术
卫星双向法时间传递方法是一种高精度的时间传递技术,它利用地球同步通信卫星转发时间传递地球站间的定时调制信息,实现各站时间信息交互和高精度时差测量,该方法从上世纪60年代提出以来,一直受到广泛的重视,特别是近年来卫星通信与伪码扩频技术的进步,使得卫星双向时间传递系统的精度进一步提升,成本和体积不断降低,目前卫星双向时间传递已经成为国际原子时(TAI)计算、标准时间溯源的主要手段,并在高精度站间同步、无线电导航等领域广泛应用。
卫星双向时间传递系统一般由两个或多个站协同工作,每个站主要包括时间传递调制解调器、卫通收发机和卫通天线等设备,本地秒信号由时间传递调制解调器直接调制到中频,再经卫通收发机放大,由天线发送给通信卫星;同时,卫通收发机接收由卫星转发的时间信号,经调制解调器解调后恢复初秒脉冲,并测出本地秒信号与恢复秒信号的时间间隔,对各站测得的时间间隔进行比较,获得各站时差信息。在卫星双向时间传递过程中,卫星轨道摄动会降低时间传递的精度,影响程度约在0.3ns,具体大小取决于地面站与卫星之间的几何关系、两站触发调制脉冲之时间间隔等因素。现有的卫星双向时间传递系统均没有考虑降低卫星轨道摄动误差的影响,使得系统的时间传递精度难以进一步提高。
发明内容
本发明目的在于提供一种用于卫星双向时间传递的卫星轨道摄动补偿方法,解决卫星轨道摄动引起的卫星双向时间传递误差的问题。
一种用于卫星双向时间传递的卫星轨道摄动补偿方法的具体步骤为:
第一步搭建轨道摄动补偿卫星双向时间传递系统
轨道摄动补偿卫星双向时间传递系统,包括:卫星双向时间传递系统和轨道摄动补偿装置。其中,卫星双向时间传递系统,包括:主原子钟、主地球站、从原子钟和从地球站;轨道摄动补偿装置,包括:距离计算模块、控制量计算模块、脉冲调整模块和数据补偿模块。
轨道摄动补偿卫星双向时间传递系统是在卫星双向时间传递系统从原子钟和从地球站间串联轨道摄动补偿装置来实现的。轨道摄动补偿卫星双向时间传递系统中,主原子钟输出的10MHz和1PPS信号直接和主地球站的参考输入端相连。从原子钟输出的10MHz和1PPS信号则与轨道摄动补偿装置参考输入端相连,轨道摄动补偿装置的1PPS和10MHz输出端口再与从地球站的参考输入端相连,轨道摄动补偿装置数据采集端口与从地球站数据输出端口相连。
距离计算模块的功能为:根据本地地球站地理坐标和通信卫星的卫星定点坐标,分别计算主地球站、从地球站到卫星的距离,并将计算结果输入至控制量计算模块。
控制量计算模块的功能为:将主地球站、从地球站到卫星的距离求差并除以光速,得到两站触发调制脉冲到达卫星转发器的时间差,减去两站的粗略钟差,得到相位超前滞后控制量,上报给脉冲调整模块。
脉冲调整模块的功能为:根据输入的控制量,对本地秒信号进行超前滞后调节,控制量为正则表示滞后调节,控制量为负表示超前调节。
数据补偿模块的功能为:根据相位控制量对最终的双向数据进行补偿,得到最终的两站秒脉冲时差数据。
第二步距离计算模块确定地球站到卫星的距离
根据实际时间传递需要,将卫星双向时间传递系统主地球站和从地球站布置在适当的位置。利用GPS接收机测得的或测绘部门给出的地球站点大地坐标,通过转换公式(1)得到地球站在WGS84坐标系下的直角坐标。
x = ( N + h ) c o s φ c o s λ y = ( N + h ) c o s φ s i n λ z = [ N ( 1 - e 2 ) + h ] s i n φ - - - ( 1 )
公式(1)中,(x,y,z)为站点的直角坐标;e为椭球偏心率;N为卯酉圆曲率半径;φ为纬度;λ为经度;h为海拔。
椭球偏心率和卯酉圆曲率半径由椭球体长半轴半径a和短半轴半径b计算得到,公式如下:
e 2 = a 2 - b 2 a 2 N = a 1 - e 2 sin 2 φ - - - ( 2 )
为了表示方便,卫星双向时间传递主、从地球站分别用A站和B站来表示,地球站坐标分别用(xA,yA,zA),(xB,yB,zB)表示,根据卫星的经度、纬度、高度,可得卫星的直角坐标为(xS,yS,zS),则A站、B站两地球站到卫星的距离分别为:
r A = ( x A - x S ) 2 + ( y A - y S ) 2 + ( z A - z S ) 2 r B = ( x B - x S ) 2 + ( y B - y S ) 2 + ( z B - z S ) 2 - - - ( 3 )
公式(3)中,rA为A站到卫星的距离;rB为B站到卫星的距离。
第三步控制量计算模块确定1PPS相位控制字
根据两站到卫星的距离差,再确定相位调节控制量。首先测量A站、B站的粗略钟差,采用外接GPS定时接收机与时间间隔计数器进行测量,或者直接建立卫星双向链路进行测量,测得的粗略钟差为ΔτBA,B站超前时ΔτBA为正值。
考虑脉冲调整模块安装在B站的情况,相位调节量为:
τ B = r B - r A c + Δτ B A - - - ( 4 )
公式(4)中,c为光速。
当τB为正数时,则将1PPS滞后调节τBs;当τB为负数时,则将1PPS滞后调节1-τBs。脉冲调整模块是以100ns为最小步进进行相位调节,所以实际输送给脉冲调整模块的相位控制字为:
公式(5)中,Phase_adjust为相位控制字;[·]表示取整数。
第四步脉冲调整模块调节秒脉冲
脉冲调整模块接收从站原子钟输入的10MHz和1PPS信号,根据相位控制字对输入的1PPS进行相位调节,并将调节后的1PPS信号和对应的相参10MHz信号输送给从地球站中。
第五步数据补偿模块补偿1PPS调节操作产生的测量偏差
完成相位调整后,将调整后秒脉冲信号输送至卫星双向时间传递系统从地球站,从地球站将测得本地调整脉冲与远程站秒脉冲之时间差,差值为正,则表示从站秒脉冲超前于主站秒脉冲;差值为负值,则表示从站秒脉冲滞后于主站秒脉冲。此时,从地球站给出的测量值为主站原子钟1PPS与经过调节后轨道摄动补偿装置输出1PPS之间的时差,而非主站原子钟和从站原子钟的秒脉冲之间的时差,为了得到主站原子钟、从站原子钟原始秒脉冲之差,需要对测量数据进行补偿,具体补偿方式是在从站测量数据上加上τB分量。
ΔT B A = Δ T ^ B A + τ B - - - ( 6 )
公式(6)中,ΔTBA为最终的主从站钟差测量数据,为从站卫星双向时间传递系统测量数据。
至此,完成对卫星双向时间传递系统中卫星轨道摄动的补偿。
本发明通过在卫星双向时间传递从原子钟和从地球站间串接轨道摄动补偿装置,计算时间传递主、从地球站到卫星的距离,进而得到从原子钟1PPS信号的调节量,并进行调节,再通过数据补偿模块补偿1PPS调节操作,从而实现卫星双向时间传递主、从地球站发送信号几乎能在同一时刻到达卫星转发器,抵消了卫星轨道摄动在正反两个方向上引起的时间信号传输时延的变化,极大地降低卫星轨道摄动的影响,提高了卫星双向实时时间传递的精度。
附图说明
图1一种用于卫星双向时间传递的卫星轨道摄动补偿方法所述的轨道摄动补偿卫星双向时间传递系统的示意图。
1.卫星双向时间传递系统2.主地球站3.从地球站4.主站原子钟
5.从站原子钟6.轨道摄动补偿装置7.距离计算模块8.控制量计算模块
9.脉冲调整模块10.数据补偿模块。
具体实施方式
一种用于卫星双向时间传递的卫星轨道摄动补偿方法的具体步骤为:
第一步搭建轨道摄动补偿卫星双向时间传递系统
轨道摄动补偿卫星双向时间传递系统,包括:卫星双向时间传递系统1和轨道摄动补偿装置6。其中,卫星双向时间传递系统1,包括:主原子钟、主地球站2、从原子钟和从地球站3;轨道摄动补偿装置6,包括:距离计算模块7、控制量计算模块8、脉冲调整模块9和数据补偿模块10。
轨道摄动补偿卫星双向时间传递系统是在卫星双向时间传递系统1从原子钟和从地球站3间串联轨道摄动补偿装置6来实现的。轨道摄动补偿卫星双向时间传递系统中,主原子钟输出的10MHz和1PPS信号直接和主地球站2的参考输入端相连。从原子钟输出的10MHz和1PPS信号则与轨道摄动补偿装置6参考输入端相连,轨道摄动补偿装置6的1PPS和10MHz输出端口再与从地球站3的参考输入端相连,轨道摄动补偿装置6数据采集端口与从地球站3数据输出端口相连。
距离计算模块7的功能为:根据本地地球站地理坐标和通信卫星的卫星定点坐标,分别计算主地球站2、从地球站3到卫星的距离,并将计算结果输入至控制量计算模块8。
控制量计算模块8的功能为:将主地球站2、从地球站3到卫星的距离求差并除以光速,得到两站触发调制脉冲到达卫星转发器的时间差,减去两站的粗略钟差,得到相位超前滞后控制量,上报给脉冲调整模块9。
脉冲调整模块9的功能为:根据输入的控制量,对本地秒信号进行超前滞后调节,控制量为正则表示滞后调节,控制量为负表示超前调节。
数据补偿模块10的功能为:根据相位控制量对最终的双向数据进行补偿,得到最终的两站秒脉冲时差数据。
第二步距离计算模块7确定地球站到卫星的距离
根据实际时间传递需要,将卫星双向时间传递系统主地球站2和从地球站3布置在适当的位置。利用GPS接收机测得的或测绘部门给出的地球站点大地坐标,通过转换公式(1)得到地球站在WGS84坐标系下的直角坐标。
x = ( N + h ) c o s φ c o s λ y = ( N + h ) c o s φ s i n λ z = [ N ( 1 - e 2 ) + h ] s i n φ - - - ( 1 )
公式(1)中,(x,y,z)为站点的直角坐标;e为椭球偏心率;N为卯酉圆曲率半径;φ为纬度;λ为经度;h为海拔。
椭球偏心率和卯酉圆曲率半径由椭球体长半轴半径a和短半轴半径b计算得到,公式如下:
e 2 = a 2 - b 2 a 2 N = a 1 - e 2 sin 2 φ - - - ( 2 )
为了表示方便,卫星双向时间传递主、从地球站3分别用A站和B站来表示,地球站坐标分别用(xA,yA,zA),(xB,yB,zB)表示,根据卫星的经度、纬度、高度,可得卫星的直角坐标为(xS,yS,zS),则A站、B站两地球站到卫星的距离分别为:
r A = ( x A - x S ) 2 + ( y A - y S ) 2 + ( z A - z S ) 2 r B = ( x B - x S ) 2 + ( y B - y S ) 2 + ( x B - z S ) 2 - - - ( 3 )
公式(3)中,rA为A站到卫星的距离;rB为B站到卫星的距离。
第三步控制量计算模块8确定1PPS相位控制字
根据两站到卫星的距离差,再确定相位调节控制量。首先测量A站、B站的粗略钟差,采用外接GPS定时接收机与时间间隔计数器进行测量,或者直接建立卫星双向链路进行测量,测得的粗略钟差为ΔτBA,B站超前时ΔτBA为正值。
考虑脉冲调整模块9安装在B站的情况,相位调节量为:
τ B = r B - r A c + Δτ B A - - - ( 4 )
公式(4)中,c为光速。
当τB为正数时,则将1PPS滞后调节τBs;当τB为负数时,则将1PPS滞后调节1-τBs。脉冲调整模块9是以100ns为最小步进进行相位调节,所以实际输送给脉冲调整模块9的相位控制字为:
公式(5)中,Phase_adjust为相位控制字;[·]表示取整数。
第四步脉冲调整模块9调节秒脉冲
脉冲调整模块9接收从站原子钟5输入的10MHz和1PPS信号,根据相位控制字对输入的1PPS进行相位调节,并将调节后的1PPS信号和对应的相参10MHz信号输送给从地球站3中。
第五步数据补偿模块10补偿1PPS调节操作产生的测量偏差
完成相位调整后,将调整后秒脉冲信号输送至卫星双向时间传递系统从地球站3,从地球站3将测得本地调整脉冲与远程站秒脉冲之时间差,差值为正,则表示从站秒脉冲超前于主站秒脉冲;差值为负值,则表示从站秒脉冲滞后于主站秒脉冲。此时,从地球站3给出的测量值为主站原子钟41PPS与经过调节后轨道摄动补偿装置6输出1PPS之间的时差,而非主站原子钟4和从站原子钟5的秒脉冲之间的时差,为了得到主站原子钟4、从站原子钟5原始秒脉冲之差,需要对测量数据进行补偿,具体补偿方式是在从站测量数据上加上τB分量。
ΔT B A = Δ T ^ B A + τ B - - - ( 6 )
公式(6)中,ΔTBA为最终的主从站钟差测量数据,为从站卫星双向时间传递系统测量数据。
至此,完成对卫星双向时间传递系统中卫星轨道摄动的补偿。

Claims (1)

1.一种用于卫星双向时间传递的卫星轨道摄动补偿方法,其特征在于该方法的具体步骤为:
第一步搭建轨道摄动补偿卫星双向时间传递系统
轨道摄动补偿卫星双向时间传递系统,包括:卫星双向时间传递系统(1)和轨道摄动补偿装置(6);其中,卫星双向时间传递系统(1),包括:主原子钟、主地球站(2)、从原子钟和从地球站(3);轨道摄动补偿装置(6),包括:距离计算模块(7)、控制量计算模块(8)、脉冲调整模块(9)和数据补偿模块(10);
轨道摄动补偿卫星双向时间传递系统是在卫星双向时间传递系统(1)从原子钟和从地球站(3)间串联轨道摄动补偿装置(6)来实现的;轨道摄动补偿卫星双向时间传递系统中,主原子钟输出的10MHz和1PPS信号直接和主地球站(2)的参考输入端相连;从原子钟输出的10MHz和1PPS信号则与轨道摄动补偿装置(6)参考输入端相连,轨道摄动补偿装置(6)的1PPS和10MHz输出端口再与从地球站(3)的参考输入端相连,轨道摄动补偿装置(6)数据采集端口与从地球站(3)数据输出端口相连;
距离计算模块(7)的功能为:根据本地地球站地理坐标和通信卫星的卫星定点坐标,分别计算主地球站(2)、从地球站(3)到卫星的距离,并将计算结果输入至控制量计算模块(8);
控制量计算模块(8)的功能为:将主地球站(2)、从地球站(3)到卫星的距离求差并除以光速,得到两站触发调制脉冲到达卫星转发器的时间差,减去两站的粗略钟差,得到相位超前滞后控制量,上报给脉冲调整模块(9);
脉冲调整模块(9)的功能为:根据输入的控制量,对本地秒信号进行超前滞后调节,控制量为正则表示滞后调节,控制量为负表示超前调节;
数据补偿模块(10)的功能为:根据相位控制量对最终的双向数据进行补偿,得到最终的两站秒脉冲时差数据;
第二步距离计算模块(7)确定地球站到卫星的距离
根据实际时间传递需要,将卫星双向时间传递系统主地球站(2)和从地球站(3)布置在适当的位置;利用GPS接收机测得的或测绘部门给出的地球站点大地坐标,通过转换公式(1)得到地球站在WGS84坐标系下的直角坐标;
x = ( N + h ) cos φ cos λ y = ( N + h ) cos φ sin λ z = [ N ( 1 - e 2 ) + h ] sin φ - - - ( 1 )
公式(1)中,(x,y,z)为站点的直角坐标;e为椭球偏心率;N为卯酉圆曲率半径;φ为纬度;λ为经度;h为海拔;
椭球偏心率和卯酉圆曲率半径由椭球体长半轴半径a和短半轴半径b计算得到,公式如下:
e 2 = a 2 - b 2 a 2 N = a 1 - e 2 sin 2 φ - - - ( 2 )
为了表示方便,卫星双向时间传递主、从地球站(3)分别用A站和B站来表示,地球站坐标分别用(xA,yA,zA),(xB,yB,zB)表示,根据卫星的经度、纬度、高度,可得卫星的直角坐标为(xS,yS,zS),则A站、B站两地球站到卫星的距离分别为:
r A = ( x A - x S ) 2 + ( y A - y S ) 2 + ( z A - z S ) 2 r B = ( x B - x S ) 2 + ( y B - y S ) 2 + ( z B - z S ) 2 - - - ( 3 )
公式(3)中,rA为A站到卫星的距离;rB为B站到卫星的距离;
第三步控制量计算模块(8)确定1PPS相位控制字
根据两站到卫星的距离差,再确定相位调节控制量;首先测量A站、B站的粗略钟差,采用外接GPS定时接收机与时间间隔计数器进行测量,或者直接建立卫星双向链路进行测量,测得的粗略钟差为ΔτBA,B站超前时ΔτBA为正值;
考虑脉冲调整模块(9)安装在B站的情况,相位调节量为:
τ B = r B - r A c + Δτ B A - - - ( 4 )
公式(4)中,c为光速;
当τB为正数时,则将1PPS滞后调节τBs;当τB为负数时,则将1PPS滞后调节1-τBs;脉冲调整模块(9)是以100ns为最小步进进行相位调节,所以实际输送给脉冲调整模块(9)的相位控制字为:
公式(5)中,Phase_adjust为相位控制字;[·]表示取整数;
第四步脉冲调整模块(9)调节秒脉冲
脉冲调整模块(9)接收从站原子钟(5)输入的10MHz和1PPS信号,根据相位控制字对输入的1PPS进行相位调节,并将调节后的1PPS信号和对应的相参10MHz信号输送给从地球站(3)中;
第五步数据补偿模块(10)补偿1PPS调节操作产生的测量偏差
完成相位调整后,将调整后秒脉冲信号输送至卫星双向时间传递系统从地球站(3),从地球站(3)将测得本地调整脉冲与远程站秒脉冲之时间差,差值为正,则表示从站秒脉冲超前于主站秒脉冲;差值为负值,则表示从站秒脉冲滞后于主站秒脉冲;此时,从地球站(3)给出的测量值为主站原子钟(4)1PPS与经过调节后轨道摄动补偿装置(6)输出1PPS之间的时差,而非主站原子钟(4)和从站原子钟(5)的秒脉冲之间的时差,为了得到主站原子钟(4)、从站原子钟(5)原始秒脉冲之差,需要对测量数据进行补偿,具体补偿方式是在从站测量数据上加上τB分量;
ΔT B A = Δ T ^ B A + τ B - - - ( 6 )
公式(6)中,ΔTBA为最终的主从站钟差测量数据,为从站卫星双向时间传递系统测量数据;
至此,完成对卫星双向时间传递系统中卫星轨道摄动的补偿。
CN201310290178.XA 2013-07-11 2013-07-11 一种用于卫星双向时间传递的卫星轨道摄动补偿方法 Expired - Fee Related CN103345146B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310290178.XA CN103345146B (zh) 2013-07-11 2013-07-11 一种用于卫星双向时间传递的卫星轨道摄动补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310290178.XA CN103345146B (zh) 2013-07-11 2013-07-11 一种用于卫星双向时间传递的卫星轨道摄动补偿方法

Publications (2)

Publication Number Publication Date
CN103345146A CN103345146A (zh) 2013-10-09
CN103345146B true CN103345146B (zh) 2016-01-20

Family

ID=49279950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310290178.XA Expired - Fee Related CN103345146B (zh) 2013-07-11 2013-07-11 一种用于卫星双向时间传递的卫星轨道摄动补偿方法

Country Status (1)

Country Link
CN (1) CN103345146B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107330277A (zh) * 2017-07-03 2017-11-07 北京跟踪与通信技术研究所 基于多智能体增强学习算法的Walker星座轨道摄动补偿方法
CN110132295A (zh) * 2019-05-21 2019-08-16 南京邮电大学 一种基于窄带物联网和云平台的自行车运动辅助方法
CN112946705B (zh) * 2021-02-01 2021-10-15 中国人民解放军63923部队 一种卫星转发器转发干扰的定位系统及方法
CN112994822B (zh) * 2021-02-09 2023-02-03 成都可为科技股份有限公司 一种实现时间同步的方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19914355A1 (de) * 1999-03-30 2000-10-05 Wolfgang Schaefer Verfahren zur Synchronisation von Entfernten Uhren über Satellit an eine Zentrale Uhr
CN101702030A (zh) * 2009-10-29 2010-05-05 中国科学院国家授时中心 一种站间钟差辅助的导航卫星精密定轨方法
CN102540867A (zh) * 2012-02-15 2012-07-04 中国科学院国家授时中心 基于速度改正的使用非geo卫星的双向时间传递方法
CN102545993A (zh) * 2011-12-20 2012-07-04 中国科学院国家授时中心 一种基于载波相位的卫星双向时间传递方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264890A (ja) * 1990-03-14 1991-11-26 Nec Corp 通信網内の時計同期方式

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19914355A1 (de) * 1999-03-30 2000-10-05 Wolfgang Schaefer Verfahren zur Synchronisation von Entfernten Uhren über Satellit an eine Zentrale Uhr
CN101702030A (zh) * 2009-10-29 2010-05-05 中国科学院国家授时中心 一种站间钟差辅助的导航卫星精密定轨方法
CN102545993A (zh) * 2011-12-20 2012-07-04 中国科学院国家授时中心 一种基于载波相位的卫星双向时间传递方法
CN102540867A (zh) * 2012-02-15 2012-07-04 中国科学院国家授时中心 基于速度改正的使用非geo卫星的双向时间传递方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
卫星双向时间频率传递校准技术综述;张升康等;《宇航计测技术》;20130228;第33卷(第1期);第15-22页 *

Also Published As

Publication number Publication date
CN103345146A (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
CN108732597B (zh) 一种多卫星导航系统的时间基准建立方法及系统
CN102830402B (zh) 水下传感器网络目标跟踪系统及方法
CN103675861B (zh) 一种基于星载gnss多天线的卫星自主定轨方法
CN102591343B (zh) 基于两行根数的卫星轨道维持控制方法
CN103345146B (zh) 一种用于卫星双向时间传递的卫星轨道摄动补偿方法
CN103336267B (zh) 一种基于水声通信延迟的主从式多uuv协同定位方法
CN107395309A (zh) 基于星间链路的高精度相对测距与时间同步方法
CN103675804A (zh) 一种基于双星时间同步的星间测距方法
CN103516457A (zh) 一种高精度远程时间同步方法
CN104330806B (zh) 基于Ka测距模式的星间系统差标定方法
CN101156080A (zh) 一种基于gps导航卫星系统发射信号主要用于地形运动、大型设施以及民用建筑工程监控和测量的系统和方法
CN104898129A (zh) 通用gps室内外定位系统和方法
CN103454911A (zh) 一种卫星双向时间比对的粗同步方法
CN105490730B (zh) 一种地面产生卫星转发导航信号的控制方法
CN104238352A (zh) 一种国家基准驾驭的地方时间标准生成系统及方法
CN106443733B (zh) 一种无人机的定位系统和方法
CN103941263B (zh) 一种基于星上量子光源和反射镜的星间测距方法
CN108344415A (zh) 一种组合导航信息融合方法
CN112445120B (zh) 一种分布式无中心天基时间基准建立与保持系统
CN101853003A (zh) 基于速度改正的使用非geo卫星的双向时间传递方法
CN107607971A (zh) 基于gnss共视时间比对算法的时间频率传递方法及接收机
CN110749904A (zh) 一种基于虚拟卫星的隧道内卫星导航信号增强方法
CN110350998A (zh) 一种高动态下站间高精度时频同步方法
CN104076373A (zh) 一种基于多信息融合辅助的载波跟踪方法与系统
CN111308524A (zh) 一种面向微小卫星多星编队的测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20160711