CN107590785B - 一种基于sobel算子的布里渊散射谱图像识别方法 - Google Patents

一种基于sobel算子的布里渊散射谱图像识别方法 Download PDF

Info

Publication number
CN107590785B
CN107590785B CN201710794371.5A CN201710794371A CN107590785B CN 107590785 B CN107590785 B CN 107590785B CN 201710794371 A CN201710794371 A CN 201710794371A CN 107590785 B CN107590785 B CN 107590785B
Authority
CN
China
Prior art keywords
matrix
image
wavelet
reconstruction
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710794371.5A
Other languages
English (en)
Other versions
CN107590785A (zh
Inventor
董玮
李嘉琪
张歆东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201710794371.5A priority Critical patent/CN107590785B/zh
Publication of CN107590785A publication Critical patent/CN107590785A/zh
Application granted granted Critical
Publication of CN107590785B publication Critical patent/CN107590785B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)

Abstract

本发明公开了一种基于sobel算子的布里渊散射谱图像识别方法,属于光纤传感领域中的受激布里渊散射谱识别技术领域,本发明的方法是把数据点成像、去噪、识别同时进行,处理对象就是已经成像的图,把布里渊散射信号谱整体看做是图像信号,把产生布里渊频移位置看做是奇异点组成的图像边缘,通过边缘检测的图像处理方式,最终识别出温度(或)应变发生位置及大小。本发明利用小波变换对图像信号矩阵进行去噪处理可以提高原布里渊散射信号谱的信噪比,使边缘检测结果更为精确;边缘检测的自适应阈值判别使很多噪声点归零,使得布里渊散射谱中边缘锐化明显,屋顶状边缘突出,使频移定位更加精确。

Description

一种基于sobel算子的布里渊散射谱图像识别方法
技术领域
本发明属于光纤传感领域中的受激布里渊散射谱识别技术领域,具体涉及一种基于sobel算子的布里渊散射谱图像识别方法。
背景技术
在传统的光纤传感领域,对于散射传感信号的处理通常仅限于“采集-去噪-拟合-绘图识别”从而得到发生温度(或应变)的位置及大小。这种方法的缺点在于处理时间较长,在长距离传感中,由于采集点数超级量大,此种信号处理方式时效性很差。
在利用图像处理方式对传感信号处理方面,目前只有Nature中报道过1篇采用图像处理方式对采集信号进行全局处理的文章,其他地方尚未见到详细报道。但该文章中,图像处理方式仅限于去噪,对于突变点的识别效果不明显。
发明内容
为了解决现有技术中存在的上述技术问题,本发明提供了一种基于sobel算子的布里渊散射谱图像识别方法,主要是将受激布里渊散射谱信号作为图像处理对象,通过图像处理的方法进行布里渊散射谱突变点识别,进而确定布里渊频移量的数值。这种方法不仅可以起到去噪效果,还可以使突变点相对增强,具有处理速度快、全局性强、信噪比较高、容易识别、无需拟合等优点,在未来的分布式光纤传感领域可以用来提高传感识别精度和速度,使对突变点的判断更加直观便捷。
基于图像处理方式的受激布里渊传感识别方法不同于传统的信号处理技术,它是把数据点成像、去噪、识别同时进行,处理对象就是已经成像的图,把布里渊散射信号谱整体看做是图像信号,把产生布里渊频移位置看做是奇异点组成的图像边缘,通过边缘检测的图像处理方式,最终识别出温度(或)应变发生位置及大小的一种新型技术手段。
为了实现上述目的,本发明的技术方案如下:
一种基于sobel算子的布里渊散射谱图像识别方法,包括如下步骤:
1、利用小波变换对图像矩阵X进行去噪处理及重构逼近处理,得到处理后的图像矩阵{f(i,j)};
2、将步骤1处理后的图像矩阵{f(i,j)}根据基于sobel算子的边缘检测方法,将矩阵中每个像素点分别与sobel算子的sx、sy做卷积运算,在MATLAB中提供了卷积运算函数conv2;两个卷积的最大值作为该像素点的输出,从而形成矩阵{R(i,j)},再使用MATLAB中自带的thselect函数,选择对于矩阵{f(i,j)}的自适应stein无偏风险估计类型(MATLAB中参数类型为rigrsure),针对矩阵{f(i,j)}生成自适应阈值TH,若R(i,j)≥TH则输出该元素值,若某一元素低于阈值TH,则输出矩阵中该元素置零,最终构成矩阵{R'(i,j)}。
进一步地,步骤1所述的利用小波变换对图像进行去噪处理及重构逼近处理处理,具体如下:
(1)选择Dauvechies(dbN)小波系函数作为小波基函数;
(2)选定小波基后,对图像矩阵X进行多尺度二维分解,具体如下:
其中,h代表多分辨分析中的低通滤波函数,g代表高通滤波函数,通过这两个滤波器后,将图像矩阵X分解为低频和高频信号集合,再分别从低频和高频信号集合中提取出布里渊散射信号中的低频信息a和细节信息d,每一层的分解系数c为一个行向量,大小为1*(size(X));在MATLAB中提供了二维图像的多尺度分解函数wavedec2,格式为[c,s]=wavedec2(X,N,’wname’),s代表各层分解系数长度,X为原信号,N为分解层数,wname代表小波基类型;
(3)针对分解后的系数矩阵,使用MATLAB自带的wrcoef2函数对图像信号进行重构逼近,该函数中,先用
Figure BDA0001399977070000021
Figure BDA0001399977070000022
两个滤波器对分解后的多尺度小波系数做去噪处理,然后再合成原信号,重构函数的格式为a2=wrcoef2(‘type’,c,1,’wname’,N);其中,a2为重构逼近后的图像信号,type为重构系数类型,当type为a、h、v、d分别代表重构低频系数、重构高频水平系数、重构高频垂直系数、重构高频对角系数;wname为小波基类型,N为重构尺度。整个重构过程相当于分解过程的逆过程,只不过先去噪,再重构。
进一步地,步骤(1)所述Dauvechies(dbN)小波系函数的有效支撑长度为2N-1,消失矩为N。
Daubechies函数是由小波分析学者InridDaubechies构造的小波函数,除了db1(即haar小波)外,其他小波没有明确的表达式,但db系列小波的转换函数h的平方模是明确的。
下面给出dbN的定义:
假设
Figure BDA0001399977070000031
其中
Figure BDA0001399977070000032
为二项式系数,则有
Figure BDA0001399977070000033
其中,
Figure BDA0001399977070000034
在Daubechies系中的小波基记为dbN,db为通用简写,N为序号。
进一步地,所述的步骤2具体如下:
在边缘检测中,对于经过小波变换进行去噪处理后得到的图像信号矩阵{f(i,j)}的每个像素点,考察它上、下、左、右四邻域灰度值的加权差,与之接近的领域的权最大;
其中,sobel算子的定义如下:
sx={f(x+1,y-1)+2f(x+1,y)+f(x+1,y+1)}
-{f(x-1,y-1)+2f(x-1,y)+f(x-1,y+1)}
Sy={f(x-1,y+1)+2f(x,y+1)+f(x+1,y+1)}
-{f(x-1,y-1)+2f(x,y-1)+f(x+1,y-1)}
sobel卷积算子如下:
Figure BDA0001399977070000041
对{f(i,j)}中每一个像素点分别与sobel边缘检测算子sx、sy做卷积,sx对垂直边缘的影响最大,sy对水平边缘影响最大;两个卷积的最大值作为该像素点的输出,输出图像信号是矩阵{R(i,j)};选取合适的阈值TH,若R(i,j)≥TH,则(i,j)为边缘点,正常输出该点的对应值;若R(i,j)<TH,则(i,j)像素点置零,于是经过处理后的新图像矩阵{R'(i,j)}为边缘图像。
进一步地,所述阈值设定采用自适应Stein无偏风险估计阈值方法,原理是对于一个给定的阈值λ,先得到它的似然估计,再将非似然λ最小化就得到了所选择的阈值。
给定阈值λ定义为:
Figure BDA0001399977070000042
MAD为最佳尺度上小波系数估计的绝对均值,常数0.6745是高斯分布矫正选择的,σ代表噪声强度,n代表信号长度;
L2的似然无偏估计为:
Figure BDA0001399977070000043
I(ο)为引导函数,令λ~N(θ,1),
Figure BDA0001399977070000044
全局L2似然定义为:
Figure BDA0001399977070000045
正交小波变换:
Figure BDA0001399977070000051
为似然
Figure BDA0001399977070000052
的无偏估计,λ=(λ1,...,λj)为噪声水平相关阈值,这样得到SURE阈值:
Figure BDA0001399977070000053
与现有技术相比,本发明的优点如下:
(1)、利用小波变换对图像信号矩阵进行去噪处理可以提高原布里渊散射信号谱的信噪比,使边缘检测结果更为精确;
(2)、边缘检测的自适应阈值判别使很多噪声点归零,使得布里渊散射谱中边缘锐化明显,屋顶状边缘突出,使频移定位更加精确;同时该检测无需进行拟合就可以通过均值线作差判断Δν,Δν为布里渊频移量。
附图说明
图1为本发明的基于sobel算子的布里渊散射谱图像识别方法流程示意图;
图2为本发明的小波变换的多尺度二维分解结构示意图;
图3为本发明的原始布里渊散射谱图(X矩阵);
图4为本发明的小波变换后布里渊散射谱图(矩阵{f(i,j)});
图5:边缘检测后布里渊散射谱图(矩阵{R'(i,j)})。
具体实施方式
下面结合附图对本发明做进一步地说明。
实施例1:
一种基于sobel算子的布里渊散射谱图像识别方法,包括如下步骤:
1、利用小波变换对图像矩阵X进行去噪处理及重构逼近处理,具体如下:
将带有高斯白噪声的布里渊散射谱仿真信号矩阵(矩阵大小21×1001)
Figure BDA0001399977070000061
(如图1)输入到基于db小波基的小波变换滤波器中,在实验中发现db5小波基对于信号有着良好的去噪效果,故而我们选择db5小波基。小波变换可以通过以下MATLAB小波变换函数:
[c,l]=wavedec2(X,5,'db5');
a2=wrcoef2('a',c,l,'db5',2);
来实现分解和重构,a2即矩阵{f(i,j)}。
在仿真程序中,设置发生布里渊频移的位置在传感距离为600-800的位置,频移大小预设为0.02GHz。通过多次实验验证,当小波分解尺度过大或者过小均不能取得良好的效果,实验发现当小波分解层数为2时效果最佳,因此小波滤波器的分解层数设置为2,在wavedec2函数分解后,利用wrcoef2函数对2层分解系数进行重构,重构类型选择type=a,即重构低频系数,因为噪声信号往往包含在高频信号中,我们通过重构低频信号,最大程度的减小噪声干扰,初步判断出有用信号中的频移信息,所获得的图像矩阵为{f(i,j)}(如图4)。
2、对小波去噪后的图像进行边缘检测识别。根据基于sobel算子的边缘检测方法,将矩阵{f(i,j)}中每个像素点(共21×1001个像素点)分别与sobel算子的sx、sy做卷积运算,
Figure BDA0001399977070000062
在MATLAB中提供了卷积运算函数conv2,通过该函数实现卷积运算的程序如下:
r1=conv2(a2,sx,'same');
r2=conv2(a2,sy,'same');
两个卷积的最大值作为该像素点的输出,这一过程通过MATLAB自带MAX函数实现,
r3=max(r1,r2);
输出图像矩r3(即{R(i,j)})。再使用MATLAB中自带的thselect函数,选择对于矩阵{f(i,j)}的自适应stein无偏风险估计类型(参数类型为rigrsure),获取自适应阈值TH为5.9474×10-4
TH=thselect(a2,'rigrsure');
若R(i,j)>5.9474×10-4,则输出该元素值,低于阈值5.9474×10-4,则输出矩阵中该元素置零,从而构成边缘图像{R'(i,j)}(如图5)。
可以看出发生布里渊频移的位置在600-800之间,作出凸起边缘的均值线,作差后求出Δυ=0.02GHz,最后根据布里渊频移变化量与温度(或应变)的关系求出温度(或应变)大小。

Claims (4)

1.一种基于sobel算子的布里渊散射谱图像识别方法,其特征在于,包括如下步骤:
(1)、利用小波变换对图像矩阵X进行去噪处理及重构逼近处理,得到处理后的图像矩阵{f(i,j)};
(2)、将步骤(1)处理后的图像矩阵{f(i,j)}根据基于sobel算子的边缘检测方法,将矩阵中每个像素点分别与sobel算子的sx、sy做卷积运算,在MATLAB中提供了卷积运算函数conv2;两个卷积的最大值作为该像素点的输出,从而形成矩阵{R(i,j)},再使用MATLAB中自带的thselect函数,选择对于矩阵{f(i,j)}的自适应stein无偏风险估计类型,针对矩阵{f(i,j)}生成自适应阈值TH,若R(i,j)≥TH则输出该元素值,若某一元素低于阈值TH,则输出矩阵中该元素置零,最终构成矩阵{R'(i,j)};
其中,步骤(1)所述的利用小波变换对图像进行去噪处理及重构逼近处理,具体如下:
(1)选择Dauvechies(dbN)小波系函数作为小波基函数;
(2)选定小波基后,对图像矩阵X进行多尺度二维分解,具体如下:
其中,h代表多分辨分析中的低通滤波函数,g代表高通滤波函数,通过这两个滤波器后,将图像矩阵X分解为低频和高频信号集合,再分别从低频和高频信号集合中提取出布里渊散射信号中的低频信息a和细节信息d,每一层的分解系数c为一个行向量,大小为1*(size(X));在MATLAB中提供了二维图像的多尺度分解函数wavedec2,格式为[c,s]=wavedec2(X,N,’wname’),s代表各层分解系数长度,X为原信号,N为分解层数,wname代表小波基类型;
(3)针对分解后的系数矩阵,使用MATLAB自带的wrcoef2函数对图像信号进行重构逼近,该函数中,先用
Figure FDA0002432260820000011
Figure FDA0002432260820000012
两个滤波器对分解后的多尺度小波系数做去噪处理,然后再合成原信号,重构函数的格式为a2=wrcoef2(‘type’,c,l,’wname’,N);其中,a2为重构逼近后的图像信号,type为重构系数类型,当type为a、h、v、d分别代表重构低频系数、重构高频水平系数、重构高频垂直系数、重构高频对角系数;wname为小波基类型,N为重构尺度。
2.如权利要求1所述的一种基于sobel算子的布里渊散射谱图像识别方法,其特征在于,步骤(1)所述Dauvechies(dbN)小波系函数的有效支撑长度为2N-1,消失矩为N。
3.如权利要求1所述的一种基于sobel算子的布里渊散射谱图像识别方法,其特征在于,所述的步骤(2)的具体步骤如下:
在边缘检测中,对于经过小波变换进行去噪处理后得到的图像信号矩阵{f(i,j)}的每个像素点,
其中,sobel算子的定义如下:
sx={f(x+1,y-1)+2f(x+1,y)+f(x+1,y+1)}-{f(x-1,y-1)+2f(x-1,y)+f(x-1,y+1)}
sy={f(x-1,y+1)+2f(x,y+1)+f(x+1,y+1)}-{f(x-1,y-1)+2f(x,y-1)+f(x+1,y-1)}
sobel卷积算子如下:
Figure FDA0002432260820000021
对{f(i,j)}中每一个像素点分别与sobel边缘检测算子sx、sy做卷积,sx对垂直边缘的影响最大,sy对水平边缘影响最大;两个卷积的最大值作为该像素点的输出,输出图像信号是矩阵{R(i,j)};选取合适的阈值TH,若R(i,j)≥TH,则(i,j)为边缘点,正常输出该点的对应值;若R(i,j)<TH,则(i,j)像素点置零,于是经过处理后的图像矩阵{R'(i,j)}为边缘图像。
4.如权利要求1所述的一种基于sobel算子的布里渊散射谱图像识别方法,其特征在于,步骤(2)所述的阈值设定采用自适应Stein无偏风险估计阈值方法,具体如下:
给定阈值λ定义为:
Figure FDA0002432260820000031
σ=MAD/0.6745
MAD为最佳尺度上小波系数估计的绝对均值,常数0.6745是高斯分布矫正选择的,σ代表噪声强度,n代表信号长度;
L2的似然无偏估计为:
Figure FDA0002432260820000032
Figure FDA0002432260820000033
为引导函数,令λ~N(θ,1),
Figure FDA0002432260820000034
全局L2似然定义为:
Figure FDA0002432260820000035
正交小波变换:
Figure FDA0002432260820000036
为似然
Figure FDA0002432260820000037
的无偏估计,λ=(λ1,...,λj)为噪声水平相关阈值,这样得到SURE阈值:
Figure FDA0002432260820000038
CN201710794371.5A 2017-09-06 2017-09-06 一种基于sobel算子的布里渊散射谱图像识别方法 Active CN107590785B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710794371.5A CN107590785B (zh) 2017-09-06 2017-09-06 一种基于sobel算子的布里渊散射谱图像识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710794371.5A CN107590785B (zh) 2017-09-06 2017-09-06 一种基于sobel算子的布里渊散射谱图像识别方法

Publications (2)

Publication Number Publication Date
CN107590785A CN107590785A (zh) 2018-01-16
CN107590785B true CN107590785B (zh) 2020-06-16

Family

ID=61051081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710794371.5A Active CN107590785B (zh) 2017-09-06 2017-09-06 一种基于sobel算子的布里渊散射谱图像识别方法

Country Status (1)

Country Link
CN (1) CN107590785B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109101889B (zh) * 2018-07-12 2019-08-02 新昌县哈坎机械配件厂 基于灰尘分析的指纹扫描机构
CN109490409A (zh) * 2018-10-19 2019-03-19 国网浙江省电力有限公司电力科学研究院 一种基于小波变换的高压电缆铅封涡流检测方法
CN110274620B (zh) * 2019-07-26 2020-06-09 南京航空航天大学 一种基于频谱中心对齐的布里渊散射信号去噪方法
CN113326722B (zh) * 2020-02-29 2023-06-02 湖南超能机器人技术有限公司 基于序列模式的图像模糊检测方法及设备
CN113828892B (zh) * 2021-10-29 2022-05-10 广东福维德焊接股份有限公司 基于hdr图像的熔池中心识别系统及焊缝跟踪方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103955894A (zh) * 2014-04-14 2014-07-30 武汉科技大学 一种量子启发的医学超声图像去斑方法
CN106469438A (zh) * 2015-11-09 2017-03-01 浙江师范大学 基于卡方无偏估计的邻域收缩mri去噪方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA201200255A1 (ru) * 2012-02-22 2013-08-30 Закрытое Акционерное Общество "Импульс" Способ подавления шума цифровых рентгенограмм

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103955894A (zh) * 2014-04-14 2014-07-30 武汉科技大学 一种量子启发的医学超声图像去斑方法
CN106469438A (zh) * 2015-11-09 2017-03-01 浙江师范大学 基于卡方无偏估计的邻域收缩mri去噪方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于局部期望阈值分割的图像边缘检测算法;刘占;《计算机与现代化》;20160812(第8期);第52-55页 *

Also Published As

Publication number Publication date
CN107590785A (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
CN107590785B (zh) 一种基于sobel算子的布里渊散射谱图像识别方法
Saladi et al. Analysis of denoising filters on MRI brain images
Zhang et al. Joint image denoising using adaptive principal component analysis and self-similarity
CN107301661A (zh) 基于边缘点特征的高分辨率遥感图像配准方法
CN109919870B (zh) 一种基于bm3d的sar图像相干斑抑制方法
CN109636766A (zh) 基于边缘信息增强的偏振差分与光强图像多尺度融合方法
CN103679661A (zh) 一种基于显著性分析的自适应遥感图像融合方法
CN110348459B (zh) 基于多尺度快速地毯覆盖法声呐图像分形特征提取方法
Dharejo et al. A deep hybrid neural network for single image dehazing via wavelet transform
Sharma et al. Satellite image contrast and resolution enhancement using discrete wavelet transform and singular value decomposition
CN113421198B (zh) 一种基于子空间的非局部低秩张量分解的高光谱图像去噪方法
Liu et al. An effective wavelet-based scheme for multi-focus image fusion
CN105809650A (zh) 一种基于双向迭代优化的图像融合方法
Tang et al. Adaptive threshold shearlet transform for surface microseismic data denoising
Priyadharsini et al. Underwater acoustic image enhancement using wavelet and KL transform
Pande-Chhetri et al. Filtering high-resolution hyperspectral imagery in a maximum noise fraction transform domain using wavelet-based de-striping
CN104282012A (zh) 一种基于小波域的半参考图像质量评价算法
Thriveni Edge preserving Satellite image enhancement using DWT-PCA based fusion and morphological gradient
CN116403046A (zh) 一种高光谱影像分类装置及方法
CN115908155A (zh) Nsst域结合gan及尺度相关系数的低照度图像增强及去噪方法
CN114972075A (zh) 一种基于残差学习和混合域注意力的高光谱图像去噪方法
Misbari et al. Evaluation of median filtering impact on satellite-based submerged seagrass mapping accuracy in tropical coastal water
Xu et al. A Multi-rule-based Relative Radiometric Normalization for Multi-Sensor Satellite Images
Bhargava et al. An Effective Method for Image Denoising Using Non-local Means and Statistics based Guided Filter in Nonsubsampled Contourlet Domain.
CN109492648B (zh) 基于离散余弦系数多尺度小波变换的显著性检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant