CN107579541A - A kind of suppressing method based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation - Google Patents

A kind of suppressing method based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation Download PDF

Info

Publication number
CN107579541A
CN107579541A CN201710771291.8A CN201710771291A CN107579541A CN 107579541 A CN107579541 A CN 107579541A CN 201710771291 A CN201710771291 A CN 201710771291A CN 107579541 A CN107579541 A CN 107579541A
Authority
CN
China
Prior art keywords
mrow
mtd
msub
mtr
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710771291.8A
Other languages
Chinese (zh)
Inventor
王宝华
白凡
周荣
冯爱成
刘宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710771291.8A priority Critical patent/CN107579541A/en
Publication of CN107579541A publication Critical patent/CN107579541A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The invention discloses a kind of suppressing method based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation, step is:1) the grid-connected photovoltaic power station dynamic model established including photovoltaic array, inverter and its control module;2) multi-machine power system state equation and its inearized model containing photovoltaic plant are established;3) using the district system of four machine two as analysis example, pattern analysis is carried out to its inearized model;4) using idle modulation method design photovoltaic wide area damping control.Suppressing method of the present invention based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation, photovoltaic generating system damping control can effectively be realized, it reduce the grid-connected negative effect that may be brought to system safety and stability level, improves receiving ability of the interconnected electric power system to photovoltaic generating system.

Description

It is a kind of based on suppression of the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation Method
Technical field
The invention belongs to new-energy grid-connected technical field, it is particularly a kind of based on the photovoltaic plant of pattern analysis to multimachine system The suppressing method of system low-frequency oscillation.
Background technology
" scale sporadic development, low pressure access, on-site elimination " and " extensive collection is mainly presented in China's photovoltaic power generation technology Middle exploitation, mesohigh access, high pressure send consumption outside at a distance " two ways, the latter is for the stable influence of power system security It is more notable.On the basis of studying and inquiring into the grid-connected affecting laws for low-frequency oscillation of electric power system of large-scale photovoltaic, utilize The active adjustment effect of photovoltaic plant carrys out lifting system damping characteristic.Traditional synchronous generator is mainly by generator excitation PSS is added in control system and carrys out power oscillation damping, photovoltaic generation enters line interface by power electronic element and system, and its is quick Control characteristic, decoupled active and reactive ability etc. all provide technical support for the active adjustment effect of photovoltaic plant.
The photovoltaic wide area damping control based on idle modulation is developed herein, is believed by obtaining the important vibration of reflection system The dependent feedback signal of breath carries out analysis judgement to system current state, and obtains current time system " expectation " light with this The reactive power value of overhead utility output, and most its control instruction is handed down to photovoltaic DC-to-AC converter at last, control photovoltaic plant is idle to be gone out The active power of power and Indirect method system is vibrated with stabilizing system.
The input of controller is derived to the preferable wide area signal of inter-area modes ornamental, and the output of controller is superimposed into light At the voltage reference value for lying prostrate REACTIVE POWER/VOLTAGE CONTROL device, it is possible to achieve effective suppression to section low-frequency oscillation.Pass through additional control Realizing the General Principle suppressed to low-frequency oscillation is:Feedback channel is established between system output quantity and input quantity, passes through change System input quantity can make dynamic response to system output quantity, be caused by being changed with " counteracting " due to system state amount System vibration.Realize that " counteracting " is impossible completely under normal circumstances, can by phase compensation compensation or other control methods To realize part " counteracting " oscillating component so that oscillation amplitude reduces, decreased duration.
New energy (such as wind-powered electricity generation, photovoltaic generation) generally realizes grid-connected, thus its dynamic response machine with power electronics interface System has significant difference with conventional synchronization generator.Influence of the new-energy grid-connected to system oscillation mode has the special of its own Property.Slootweg J.G et al. carry out the correlative study that asynchronous wind driven generator influences for low-frequency oscillation of electric power system earliest. Suo Jiang radium et al. using wide area of the particle cluster algorithm design based on the active modulation of photovoltaic it is advanced-hysteresis damping controller, effectively change The damping characteristic of kind photovoltaic access system, reduce negative effect of the photovoltaic access to system small signal stability.Long Yuan et al. with Exemplified by one machine infinity bus system, theoretically analyze and demonstrate photovoltaic plant pass through it is active and reactive modulation suppression system low frequency The ability of vibration, but it is not directed to the damping control based on wide area signal.In addition, active modulation needs to make photovoltaic active power output low Run in maximum power point, limit the active fan-out capability of photovoltaic to a certain extent, cause the waste of illumination resource.
To sum up tell, the correlative study for participating in suppression system low-frequency oscillation for photovoltaic at present is still less.How by There is work to extend to the multi-computer system of complexity, how to reduce the complexity of high order system modeling and controller design, be still to need Want the problem of further investigated.But a kind of solution method well is there is no in the prior art.
The content of the invention
Present invention aims at provide it is a kind of reasonable in design and with good stable state and dynamic characteristic based on pattern analysis Photovoltaic plant to the suppressing method of multi-computer system low-frequency oscillation.
The technical solution for realizing the object of the invention is:It is a kind of low to multi-computer system based on the photovoltaic plant of pattern analysis The suppressing method that frequency vibration is swung, comprises the following steps:
Step 1, the grid-connected photovoltaic power station dynamic model established including photovoltaic array, inverter and its control module;
Step 2, the mathematical modeling with reference to synchronous generator, electric power networks, push over and establish more electromechanical containing photovoltaic plant Force system state equation and its inearized model;
Step 3, using idle modulation method design photovoltaic wide area damping control, realize the suppression to multi-computer system low-frequency oscillation System.
Compared with prior art, advantages of the present invention is:1) the photovoltaic wide area resistance proposed by the present invention based on idle modulation Buddhist nun's controller design method can effectively suppress multi-computer system low-frequency oscillation;2) correlation proposed by the present invention based on pseudo-random signal Identification method can carry out Reduced Order Modeling to system, reduce the complexity that high order system is used for damping controller.
Brief description of the drawings
Fig. 1 is the structural representation of the existing district system of four machine two.
Fig. 2 is the photovoltaic wide-area damping control system block diagram based on idle modulation of the present invention.
Fig. 3 is photovoltaic DC-to-AC converter control block diagram.
Fig. 4 is PSS transmission function block diagrams.
Fig. 5 is the multi-computer system network structure containing photovoltaic plant.
Fig. 6 is feedback control structure figure.
Fig. 7 is the lower interconnection single loop active power dynamic response figure of disturbance.
Embodiment
With reference to accompanying drawing, a kind of suppression side based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation of the invention Method, comprise the following steps:
Step 1, the grid-connected photovoltaic power station dynamic model established including photovoltaic array, inverter and its control module; The mathematical modeling of described photovoltaic array is:
In formula, coefficientIm、Um、Isc、UocThe respectively maximum power point of photovoltaic array Electric current, maximum power point voltage, short circuit current, open-circuit voltage;
The mathematical modeling of described inverter is:
In formula, ω is power system angular frequency;L is output inductor;IdpvAnd IqpvRespectively d, q axle of grid-connected current Component;UdAnd UqFor d, q axis component of inverter ac voltage;UdpvAnd Uqpv, generally will section for d, q axis component of node voltage Point voltage is chosen to be d axles, therefore Uqpv=0;
The mathematical modeling of the control module is:
In formula, e is the natural logrithm truth of a matter;S is intensity of illumination;x1、x2、x3For intermediate variable;Kp1、Kp2、Kp3It is respectively electric Press outer shroud, the proportionality coefficient of current inner loop controller;KI1、KI2、KI3The respectively integration of outer voltage, current inner loop controller Time constant.
Step 2, the mathematical modeling with reference to synchronous generator, electric power networks, establish the multi-machine power system containing photovoltaic plant State equation and its inearized model;
Described Mathematical Models of Synchronous Machine is:
In formula, ω is synchronous generator rotating speed matrix;P is that synchronous generator exports electromagnetic power matrix;EqFor synchronous hair The no-load electromotive force matrix of motor;For the output voltage matrix of automatic voltage regulator;UgFor synchronous generator set end voltage Amplitude matrix;
Described electric power networks mathematical modeling is:
In formula,The respectively output current phase moment matrix of conventional synchronous machine, photovoltaic plant node;Point Wei not conventional synchronous machine, the voltage phasor matrix of photovoltaic plant node;For other nodes in addition to synchronous generator, photovoltaic plant Self-admittance matrix;Respectively synchronous generator, photovoltaic plant node self-admittance matrix, other yuan in admittance matrix Element is respectively the transadmittance matrix between different type node;
The multi-machine power system state equation and its inearized model containing photovoltaic plant are:
In formula, δ is the angle matrix of synchronous generator offset synchronous reference axis;Idpv、IqpvRespectively photovoltaic plant node The d-axis and quadrature axis component of output current;Eq' it is synchronous generator quadrature axis transient potential matrix;UdcFor capacitance voltage.
The mathematical modeling of described automatic voltage regulator is:
In formula, KAFor gain coefficient;TAFor time constant;UsFor additional controller output signal.
Step 3, using idle modulation method design photovoltaic wide area damping control, realize the suppression to multi-computer system low-frequency oscillation System.The closed loop transfer function, of described photovoltaic wide area damping control is:
In formula, G (s), H (s) are respectively open-loop transfer function, controller transfer function, described to controller transfer function H (s) System Discrimination, feedback signal selection, delayed setting, time lag compensation and controller design are included when being designed.
System Discrimination comprises the following steps:
1) pseudo-random signal is injected to control input point, is exported and responded using PMU devices sampled feedback signal;
2) the autopower spectral density G of pseudorandom input signal is calculateduuCrosspower spectrum between (ω), input-output signal is close Spend Guy(ω);
3) the discrete frequency response sequence function G (ω) of computing system;
4) according to discrete frequency response sequence function, using least square fitting system open loop transmission function G ' (s).
Feedback signal system of selection is than index method, formula used using main mould:
In formula, | c φk|·|zk(0) | the amplitude of feedback signal k-th of oscillation mode after disturbance.
Pade approximate simulation fixed delays 70ms is used during delayed setting of the present invention.
Designed controller includes:Measure link, blocking link, phase compensation link, gain link, amplitude limit link;
Wherein, measuring link transmission function isTrFor time constant;
Blocking link transmission function isIt is isolated DC component that it, which is acted on, TwTime range 5-10s;
Phase compensation uses lead-lag link, and its transmission function isSingle link offset angle is no more than 60°;
Gain link KSTABThe damping size provided for determining controller;
Amplitude limit link is used for restriction controller output quantity, prevents that exceeding inverter capacity limit or inverter normally controls System;
To controller closed loop transfer function,:
When adjusting, G is madec(s) limit is λ, meets 1+G (λ) H (λ)=0, can obtain:
Lead-lag link parameter carries out adaptive setting by phase compensation angle:
In formula:θ is the phase for needing to compensate, and ω is frequency of oscillation.
Time lag compensation carries out time lag compensation using lead-lag module.
Photovoltaic wide area damping control design method proposed by the present invention based on idle modulation can effectively suppress multimachine system System low-frequency oscillation.
It is described in more detail below.
A kind of suppressing method based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation of the present invention, is such as The district system of four machine two shown in Fig. 1 in the photovoltaic wide-area damping control system based on idle modulation as shown in Figure 2 with realizing 's.The district system of four machine two is as shown in figure 1, system includes two similar areas connected with a weak tie line.Each area There is the unit of two couplings in domain.Different photovoltaic access capacities, on-position are studied for system oscillation mould using mode analysis method The influence of formula.
The present invention is a kind of suppressing method based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation.Build first The analysis by Linearization model of photovoltaic access multi-computer system is found.Then it is linear to its using the district system of four machine two as analysis example Change model and carry out pattern analysis.Finally propose the photovoltaic wide area damping control design based on idle modulation.The present invention Control method comprise the following steps:
Step 1:The mathematical modeling of pattern analysis
Step 1-1:Photovoltaic plant models
For the ease of research, generally ignore the difference between photovoltaic cell component.Used herein using the engineering for simplifying U-I characteristics Utility model.Compared to the mechanism model of complexity, the model only needs 4 basic parameters that producer provides:Photovoltaic array is maximum Electric current I during powerm, peak power when voltage Um, short circuit current Isc, open-circuit voltage Uoc, it is readily available.Photovoltaic array it is defeated Enter-output characteristics is expressed as:
In formula:
In actual applications it should be noted that four parameters that producer provides are standard test condition (battery temperature T=25 DEG C, intensity of illumination S=1000W/m2) under parameter value, it is necessary to according to actual external condition carry out parameter revision.
Photovoltaic DC-to-AC converter and its control module are the cores of grid-connected photovoltaic power generation system, and its main function is by photovoltaic DC current inversion caused by array is the high quality sine alternating current wave with ac grid voltage same frequency, same-phase.Pass through Dq coordinate transforms, the mathematical modeling of inverter can be expressed as:
In formula:ω is power system angular frequency;L is output inductor;IdpvAnd IqpvRespectively d, q axle of grid-connected current Component;UdAnd UqFor d, q axis component of inverter ac voltage;UdpvAnd UqpvFor d, q axis component of node voltage.Generally will section Point voltage is chosen to be d axles, therefore Uqpv=0.
The control strategy of photovoltaic DC-to-AC converter is using outer voltage, the Double-loop Control Strategy of current inner loop.Wherein, outer voltage Major control target for keep DC voltage it is constant;And the control targe of current inner loop for tracking line voltage frequency, Phase, ensure that grid-connected current is stable, reliable.Typical photovoltaic DC-to-AC converter control block diagram is as shown in Figure 3.Inner and outer rings are adopted in Fig. 3 Controlled with proportional, integral.
For acyclic type photovoltaic parallel in system, the generally use maximum power point method of operation, mainly by controlling DC side Voltage is realized.To realize that unity power factor is incorporated into the power networks, by IqpvBeing set to 0. its dynamic characteristic is:
In formula:E is the natural logrithm truth of a matter;S is intensity of illumination;x1、x2、x3For intermediate variable;Kp1、Kp2、Kp3It is respectively electric Press outer shroud, the proportionality coefficient of current inner loop controller;KI1、KI2、KI3The respectively integration of outer voltage, current inner loop controller Time constant.
For ease of analysis, ignore invertor operation loss, then the dynamic characteristic of DC capacitor can be obtained by power-balance For:
In formula:CdcFor DC filter capacitor, UdcFor capacitance voltage, IarrayFor photovoltaic array output current.
Step 1-2:Synchronous machine modeling
Synchronous generator as the normal power supplies in system, the degree of accuracy that it is modeled for analysis system dynamic characteristic particularly It is crucial.Synchronous machine modeling includes the mathematical modeling of Mathematical Models of Synchronous Machine and its automatic control device.
For the analysis and research of low-frequency oscillation, the rank model of synchronous generator 4 is chosen herein and is analyzed, characterizes multimachine system System dynamic characteristic differential, the matrix form of Algebraic Equation set be:
In formula, ω is synchronous generator rotating speed matrix;P is that synchronous generator exports electromagnetic power matrix;EqFor synchronous hair The no-load electromotive force matrix of motor;For the output voltage matrix of automatic voltage regulator;UgFor synchronous generator set end voltage Amplitude matrix.
The automatic voltage regulator (AVR) of synchronous generator by regulator generator excitation come dynamic adjusting machine terminal voltage, To maintain system stable operation.Excitation system can be characterized with simple proportional controller, and input signal is set end voltage deviation Amount, output signal is generator excitation voltage, and its input-output characteristic is represented by:
In formula:KAFor gain coefficient, TAFor time constant.
The differential equation corresponding to formula (6) is:
As AVR additional regulating device, power system stabilizer, PSS (PSS) is suppressing to be produced by reasons such as high-speed excitation regulations There is remarkable effect in terms of raw low frequency oscillations, be used widely in power system at present.Its typical structure such as Fig. 4 It is shown.PSS structures mainly include:Measure link, blocking link, phase compensation link, gain link, amplitude limit link.
Step 1-3:Grid-connected linearisation modeling
It is as shown in Figure 5 for the N electromechanics Force systems containing a photovoltaic plant, its structure chart.Preceding N-1 platforms unit is sent out to be synchronous Motor, N platforms are equivalent photovoltaic plant.
The electric power networks equation can be expressed as:
In formula:The respectively output current phase moment matrix of conventional synchronous machine, photovoltaic plant node;Point Wei not conventional synchronous machine, the voltage phasor matrix of photovoltaic plant node;For other nodes in addition to synchronous generator, photovoltaic plant Self-admittance matrix;Respectively synchronous generator, photovoltaic plant node self-admittance matrix, other yuan in admittance matrix Element is respectively the transadmittance matrix between different type node.
In subtractive (8)It can obtain:
Formula (9) is converted into rotating coordinate system by synchronous coordinate system and linearized in equalization point, can be simplified Synchronous generator output current d, q axis component matrix expression is:
In formula:IdAnd IqRespectively d, q shaft current Component Matrices of synchronous generator output;、IdpvAnd IqpvRespectively photovoltaic D, q shaft current Component Matrices of power station output;δ synchronous generators relative to reference synchronization axle angle matrix;Synchronous generator Machine transient internal voltage q axis component matrixes.
Consider the dynamical equation group machine network equation of system power supply node, can obtain shaped likeSystem Characteristic equation.The small signal stability of system can be judged by eigenmatrix A characteristic value.If all characteristic values of matrix A are equal In complex plane Left half-plane, then system is small interference stability.The characteristic equation of system can be expressed as by formula (11):
Photovoltaic wide-area damping control system of the step 2 based on idle modulation
Photovoltaic plant enters line interface by inverter and power network, and photovoltaic DC-to-AC converter is realized using double -loop control scheme Active and reactive power uneoupled control.Therefore, theoretically, by individually modulate photovoltaic export active and reactive power can be with Low frequency power oscillation in stabilizing system.However, active modulation is taken to usually require to reduce photovoltaic active power operating point to stay There is enough modulation nargin, cause the waste of illumination resource to a certain extent.
Compared to active modulation, idle modulation is not present the problem of reducing active operating point.The present invention is idle using photovoltaic Modulation system, its control thought are:By obtaining the dependent feedback signal of the important oscillation information of reaction system come current to system State is analyzed, and the reactive power value of current time system " expectation " photovoltaic plant output is obtained with this, and most at last Its control instruction is handed down to photovoltaic DC-to-AC converter, controls the active power of the idle output of photovoltaic plant and Indirect method system to stabilize System oscillation.
Photovoltaic wide area damping control of the present invention based on idle modulation is as shown in Fig. 2 the input of controller It is derived to the preferable wide area signal of inter-area modes ornamental, the output of controller is superimposed to photovoltaic REACTIVE POWER/VOLTAGE CONTROL device At voltage reference value, it is possible to achieve effective suppression to section low-frequency oscillation.Realized by additional control and low-frequency oscillation is suppressed General Principle be:Feedback channel is established between system output quantity and input quantity, can by changing system input quantity Dynamic response is made to system output quantity, system oscillation caused by changing with " counteracting " due to system state amount.Under normal circumstances Realize that " counteracting " is impossible completely, can realize that part " counteracting " shakes by phase compensation compensation or other control methods Swing component so that oscillation amplitude reduces, decreased duration.
Step 2-1 photovoltaic plant identification models
When carrying out the design of photovoltaic wide-area controller, it is necessary first to obtain system linearity model, i.e., the input of system- Export open-loop transfer function.The present invention proposes the related identification based on pseudo-random signal being applied to the multimachine containing photovoltaic plant In system open loop transmission function identification, it is mainly comprised the following steps
1) pseudo-random signal is injected to control input point, is exported and responded using PMU devices sampled feedback signal;
2) the autopower spectral density G of pseudorandom input signal is calculateduuCrosspower spectrum between (ω), input-output signal is close Spend Guy(ω);
3) the discrete frequency response sequence function G (ω) of computing system;
4) according to discrete frequency response sequence, using least square fitting system open loop transmission function G ' (s).
Step 2-2 wide areas feedback signal selects
Feedback signal system of selection is using main mould than index (Dominant mode ratio, DMR):
In formula, | c φk|·|zk(0) | the amplitude of feedback signal k-th of oscillation mode after disturbance.
Wide area damping control designs of the step 2-3 based on POLE PLACEMENT USING
The present invention uses the controller architecture similar with Fig. 4 structures, mainly includes:Link, blocking link, phase is measured to mend Repay link, gain link, amplitude limit link.
Wherein, measuring link transmission function isTrFor time constant;
Blocking link transmission function isIt is isolated DC component that it, which is acted on, TwTime range 5-10s;
Phase compensation typically uses lead-lag link, and its transmission function isThe effect of the link is compensation Phase angle so that system pole moves to complex plane Left half-plane.Single link offset angle is usually no more than 60 °;
Gain link KSTABDetermine the damping size that controller provides;
Amplitude limit link is used for restriction controller output quantity, prevents that exceeding inverter capacity limit or inverter normally controls System.
Method of Pole Placement is the controller design method based on root locus rule, and the purpose is to match somebody with somebody closed-loop system characteristic root Put in complex plane desired locations to improve system damping performance.Control system as shown in Figure 6, its closed loop transfer function, are:
In formula:G (s) and H (s) is respectively open-loop transfer function, controller transfer function;Gc(s) it is system closed loop transmission Function.Make Gc(s) limit is λ, meets 1+G (λ) H (λ)=0, can obtain:
Lead-lag link parameter can carry out adaptive setting by phase compensation angle:
In formula:θ is the phase for needing to compensate, and ω is frequency of oscillation.
Embodiment
In order to verify the validity of proposed photovoltaic wide-area controller, taken in DIgSILENY/PowerFactory softwares Build two district systems containing photovoltaic plant as shown in Figure 1.Wherein, photovoltaic plant multiplies equivalence again using unit, and its active power output is 180MW.It is balancing machine to choose synchronous generator G2, and each synchronous generator configures 1 type AVR, 1 type GOV, is configuration PSS.Area Domain 1 conveys active power 400MW to region 2.Send out to obtain its dominant oscillating mode using pattern analysis as shown in table 1.It can see Go out, system includes 3 main low frequency oscillation modes, pattern 1,2 is respectively region 1, the local oscillation pattern in region 2, dominates mould Formula is pattern 3, shows as in region 1 mutually waving between G3, G4 in G1, G2 and region 2, is typical underdamping section mould Formula.
The system oscillation pattern of table 1
Pattern Frequency/Hz Damping ratio/%
1 1.05 11.19
2 1.10 8.22
3 0.59 2.24
Feedback signal ω13There is preferable ornamental and less control cost, thus this hair simultaneously for dominant pattern Bright selection ω13As final feedback signal.By to control point UrefPseudo-random signal is injected, is obtained using related identification Input-output open-loop transfer function is:
By analyzing the limit of transmission function, can obtain its corresponding inter-area modes characteristic value for -0.08 ± 3.66i, and the result of system features value analysis is -0.082 ± 3.68i, both difference very littles.Come from the angle of frequency domain See, the system model for recognizing to obtain is remained and distinguished for the good of inter-area modes while system model exponent number is lowered significantly Knowledge and magnanimity, accurate analysis foundation is provided for control design case.By additional controller when being controlled design using Method of Pole Placement Afterwards the inter-area modes damping ratio configuration of system it is expected that assigned pole is -0.64+3.1i 20%.
In order to verify the performance of Pole Assignment Controller of the present invention, the controller of design is attached to photovoltaic control In system.On this basis, using DIgSILENY/PowerFactory software simulation systems under disturbance controller for area Between low-frequency oscillation damping.Three-phase metallic short circuit, 1.12s occur in 1s for region interconnection 7-8 single loops midpoint When fault clearance.Interconnection 8-9 single loop power responses are as shown in Figure 7 under the disturbance.As can be seen that additional pole controller Afterwards, s or so dominant eigenvalues vibration can decay to steady-state value, and overshoot is smaller.
From the foregoing, it will be observed that the related identification proposed by the present invention based on pseudo-random signal can carry out Reduced Order Modeling to system, Reduce the complexity that high order system is used for damping controller.

Claims (10)

  1. A kind of 1. suppressing method based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation, it is characterised in that including Following steps:
    Step 1, the grid-connected photovoltaic power station dynamic model established including photovoltaic array, inverter and its control module;
    Step 2, the mathematical modeling with reference to synchronous generator, electric power networks, establish the multi-machine power system state containing photovoltaic plant Equation and its inearized model;
    Step 3, using idle modulation method design photovoltaic wide area damping control, realize the suppression to multi-computer system low-frequency oscillation.
  2. 2. the suppressing method based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation according to claim 1, its It is characterised by, the mathematical modeling of the photovoltaic array described in step 1 is:
    <mrow> <mi>I</mi> <mo>=</mo> <msub> <mi>I</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>exp</mi> <mfrac> <mi>U</mi> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <msub> <mi>U</mi> <mrow> <mi>o</mi> <mi>c</mi> </mrow> </msub> </mrow> </mfrac> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow>
    In formula, coefficientIm、Um、Isc、UocRespectively the maximum power point electric current of photovoltaic array, Maximum power point voltage, short circuit current, open-circuit voltage;
    The mathematical modeling of described inverter is:
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>L</mi> <mfrac> <mrow> <msub> <mi>dI</mi> <mrow> <mi>d</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>U</mi> <mi>d</mi> </msub> <mo>+</mo> <mi>&amp;omega;</mi> <mi>L</mi> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>d</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>L</mi> <mfrac> <mrow> <msub> <mi>dI</mi> <mrow> <mi>q</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>U</mi> <mi>q</mi> </msub> <mo>-</mo> <msub> <mi>&amp;omega;LI</mi> <mrow> <mi>d</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>q</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
    In formula, ω is power system angular frequency;L is output inductor;IdpvAnd IqpvRespectively d, q axle point of grid-connected current Amount;UdAnd UqFor d, q axis component of inverter ac voltage;UdpvAnd UqpvFor d, q axis component of node voltage, generally by node Voltage is chosen to be d axles, therefore Uqpv=0;
    The mathematical modeling of the control module is:
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>U</mi> <mrow> <mi>d</mi> <mi>c</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>U</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>0.00288</mn> <mi>&amp;Delta;</mi> <mi>T</mi> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <mi>ln</mi> <mrow> <mo>(</mo> <mi>e</mi> <mo>+</mo> <mn>0.5</mn> <mi>&amp;Delta;</mi> <mi>S</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>dx</mi> <mn>1</mn> </msub> <mo>/</mo> <mi>d</mi> <mi>t</mi> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>d</mi> <mi>c</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>I</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>K</mi> <mrow> <mi>p</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mrow> <mi>d</mi> <mi>c</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mrow> <mi>I</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>dx</mi> <mn>2</mn> </msub> <mo>/</mo> <mi>d</mi> <mi>t</mi> <mo>=</mo> <msub> <mi>I</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>d</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>U</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>K</mi> <mrow> <mi>p</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>d</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>d</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mrow> <mi>I</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&amp;omega;LI</mi> <mrow> <mi>q</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>U</mi> <mrow> <mi>d</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>dx</mi> <mn>3</mn> </msub> <mo>/</mo> <mi>d</mi> <mi>t</mi> <mo>=</mo> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>U</mi> <mrow> <mi>q</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>K</mi> <mrow> <mi>p</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mrow> <mi>I</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;omega;LI</mi> <mrow> <mi>d</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>U</mi> <mrow> <mi>q</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
    In formula, e is the natural logrithm truth of a matter;S is intensity of illumination;x1、x2、x3For intermediate variable;Kp1、Kp2、Kp3Respectively outside voltage The proportionality coefficient of ring, current inner loop controller;KI1、KI2、KI3The respectively time of integration of outer voltage, current inner loop controller Constant.
  3. 3. the suppressing method based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation according to claim 1, its It is characterised by, the Mathematical Models of Synchronous Machine described in step 2 is:
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mover> <mi>&amp;delta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> <mi>I</mi> <mi>&amp;Delta;</mi> <mi>&amp;omega;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msup> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>P</mi> <mo>-</mo> <mi>D</mi> <mi>&amp;Delta;</mi> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <msubsup> <mover> <mi>E</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>q</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msubsup> <mi>T</mi> <mrow> <mi>d</mi> <mn>0</mn> </mrow> <mrow> <mo>&amp;prime;</mo> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>&amp;Delta;E</mi> <mi>q</mi> </msub> <mo>+</mo> <msubsup> <mi>&amp;Delta;E</mi> <mrow> <mi>f</mi> <mi>d</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <msubsup> <mover> <mi>E</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>f</mi> <mi>d</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mo>-</mo> <msubsup> <mi>T</mi> <mi>A</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msubsup> <mi>&amp;Delta;E</mi> <mrow> <mi>f</mi> <mi>d</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <msubsup> <mi>T</mi> <mi>A</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>K</mi> <mi>A</mi> </msub> <msub> <mi>&amp;Delta;U</mi> <mi>g</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mi>P</mi> <mo>=</mo> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mn>0</mn> </mrow> </msub> <msubsup> <mi>&amp;Delta;E</mi> <mi>q</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mrow> <mi>d</mi> <mn>0</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mn>0</mn> </mrow> </msub> <msubsup> <mi>X</mi> <mi>d</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <msub> <mi>&amp;Delta;I</mi> <mi>d</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mrow> <mi>q</mi> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>I</mi> <mrow> <mi>d</mi> <mn>0</mn> </mrow> </msub> <msub> <mi>X</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;Delta;I</mi> <mi>q</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;E</mi> <mi>q</mi> </msub> <mo>=</mo> <msubsup> <mi>&amp;Delta;E</mi> <mi>q</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>d</mi> </msub> <mo>-</mo> <msubsup> <mi>X</mi> <mi>d</mi> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <msub> <mi>&amp;Delta;I</mi> <mi>d</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;U</mi> <mi>g</mi> </msub> <mo>=</mo> <msubsup> <mi>U</mi> <mrow> <mi>g</mi> <mn>0</mn> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>q</mi> <mn>0</mn> </mrow> </msub> <msubsup> <mi>&amp;Delta;E</mi> <mi>q</mi> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mrow> <mi>g</mi> <mn>0</mn> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>q</mi> <mn>0</mn> </mrow> </msub> <msubsup> <mi>X</mi> <mi>d</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>&amp;Delta;I</mi> <mi>d</mi> </msub> <mo>+</mo> <msubsup> <mi>U</mi> <mrow> <mi>g</mi> <mn>0</mn> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>d</mi> <mn>0</mn> </mrow> </msub> <msub> <mi>X</mi> <mi>q</mi> </msub> <msub> <mi>&amp;Delta;I</mi> <mi>q</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
    In formula, ω is synchronous generator rotating speed matrix;P is that synchronous generator exports electromagnetic power matrix;EqFor synchronous generator No-load electromotive force matrix;For the output voltage matrix of automatic voltage regulator;UgFor synchronous generator set end voltage amplitude square Battle array;
    Described electric power networks mathematical modeling is:
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>I</mi> <mo>&amp;OverBar;</mo> </mover> <mi>g</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>I</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>p</mi> <mi>v</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>Y</mi> <mo>&amp;OverBar;</mo> </mover> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>Y</mi> <mo>&amp;OverBar;</mo> </mover> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>Y</mi> <mo>&amp;OverBar;</mo> </mover> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>Y</mi> <mo>&amp;OverBar;</mo> </mover> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>Y</mi> <mo>&amp;OverBar;</mo> </mover> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>Y</mi> <mo>&amp;OverBar;</mo> </mover> <mn>23</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>Y</mi> <mo>&amp;OverBar;</mo> </mover> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>Y</mi> <mo>&amp;OverBar;</mo> </mover> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mover> <mi>Y</mi> <mo>&amp;OverBar;</mo> </mover> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>U</mi> <mo>&amp;OverBar;</mo> </mover> <mi>m</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>U</mi> <mo>&amp;OverBar;</mo> </mover> <mi>g</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>U</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>p</mi> <mi>v</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
    In formula,The respectively output current phase moment matrix of conventional synchronous machine, photovoltaic plant node;Respectively The voltage phasor matrix of conventional synchronous machine, photovoltaic plant node;For other node self-conductances in addition to synchronous generator, photovoltaic plant Receive matrix;Respectively synchronous generator, photovoltaic plant node self-admittance matrix, the other elements point in admittance matrix Transadmittance matrix not between different type node;
    The multi-machine power system state equation and its inearized model containing photovoltaic plant are:
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mover> <mi>&amp;delta;</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <msubsup> <mover> <mi>E</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>q</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <msubsup> <mover> <mi>E</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>f</mi> <mi>d</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>3</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>d</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>q</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>U</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>&amp;omega;</mi> <mn>0</mn> </msub> <mi>I</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>23</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mn>28</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>29</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mn>31</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mn>33</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>34</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mn>38</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>39</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mn>41</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mn>43</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>44</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mn>48</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>49</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>K</mi> <mn>65</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mn>610</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>K</mi> <mn>85</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>86</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mn>88</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mn>810</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mn>97</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mn>99</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mn>101</mn> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>K</mi> <mn>103</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>K</mi> <mn>108</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>109</mn> </msub> </mtd> <mtd> <msub> <mi>K</mi> <mn>1010</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;delta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;omega;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;Delta;E</mi> <mi>q</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;Delta;E</mi> <mrow> <mi>f</mi> <mi>d</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;x</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;x</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;x</mi> <mn>3</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;I</mi> <mrow> <mi>d</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;I</mi> <mrow> <mi>q</mi> <mi>p</mi> <mi>v</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;U</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
    In formula, δ is the angle matrix of synchronous generator offset synchronous reference axis;Idpv、IqpvRespectively photovoltaic plant node exports The d-axis and quadrature axis component of electric current;E′qFor synchronous generator quadrature axis transient potential matrix;UdcFor capacitance voltage.
  4. 4. the suppressing method according to claim 3 based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation, Characterized in that, the mathematical modeling of described automatic voltage regulator is:
    <mrow> <msub> <mi>T</mi> <mi>A</mi> </msub> <msubsup> <mover> <mi>E</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>f</mi> <mi>d</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <msub> <mi>K</mi> <mi>A</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>U</mi> <mi>g</mi> </msub> <mo>+</mo> <msub> <mi>U</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>E</mi> <mrow> <mi>f</mi> <mi>d</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> </mrow>
    In formula, KAFor gain coefficient;TAFor time constant;UsFor additional controller output signal.
  5. 5. the suppressing method based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation according to claim 1, its It is characterised by, the closed loop transfer function, of the photovoltaic wide area damping control described in step 3 is:
    <mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>G</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
    In formula, G (s), H (s) are respectively open-loop transfer function, controller transfer function, described to controller transfer function H (s) Include System Discrimination, feedback signal selection, delayed setting, time lag compensation and controller design when being designed.
  6. 6. the suppressing method according to claim 5 based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation, Characterized in that, System Discrimination comprises the following steps:
    1) pseudo-random signal is injected to control input point, is exported and responded using PMU devices sampled feedback signal;
    2) the autopower spectral density G of pseudorandom input signal is calculateduuCross-spectral density G between (ω), input-output signaluy (ω);
    3) the discrete frequency response sequence function G (ω) of computing system;
    <mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>G</mi> <mrow> <mi>u</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>G</mi> <mrow> <mi>u</mi> <mi>u</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>&amp;omega;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
    4) according to discrete frequency response sequence function, using least square fitting system open loop transmission function G ' (s).
  7. 7. the suppressing method according to claim 5 based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation, Characterized in that, feedback signal system of selection is than index method, formula used using main mould:
    <mrow> <mi>D</mi> <mi>M</mi> <mi>R</mi> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>c&amp;phi;</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>&amp;CenterDot;</mo> <mo>|</mo> <msub> <mi>z</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>|</mo> </mrow> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mo>|</mo> <msub> <mi>c&amp;phi;</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>&amp;CenterDot;</mo> <mo>|</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow>
    In formula, | c φk|·|zk(0) | the amplitude of feedback signal k-th of oscillation mode after disturbance.
  8. 8. the suppressing method according to claim 5 based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation, Characterized in that, Pade approximate simulation fixed delays 70ms is used during delayed setting.
  9. 9. the suppressing method according to claim 5 based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation, Characterized in that, designed controller includes:Measure link, blocking link, phase compensation link, gain link, amplitude limit ring Section;
    Wherein, measuring link transmission function isTrFor time constant;
    Blocking link transmission function isIt is isolated DC component that it, which is acted on, TwTime range 5-10s;
    Phase compensation uses lead-lag link, and its transmission function isSingle link offset angle is no more than 60 °;
    Gain link KSTABThe damping size provided for determining controller;
    Amplitude limit link is used for restriction controller output quantity, prevents that exceeding inverter capacity limit or inverter normally controls;
    To controller closed loop transfer function,:
    <mrow> <msub> <mi>G</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>G</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
    When adjusting, G is madec(s) limit is λ, meets 1+G (λ) H (λ)=0, can obtain:
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mo>|</mo> <mi>H</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>=</mo> <mo>|</mo> <mfrac> <mn>1</mn> <mrow> <mi>G</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>arg</mi> <mrow> <mo>(</mo> <mi>H</mi> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>=</mo> <mi>&amp;pi;</mi> <mo>-</mo> <mi>arg</mi> <mrow> <mo>(</mo> <mi>G</mi> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
    Lead-lag link parameter carries out adaptive setting by phase compensation angle:
    <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;theta;</mi> <mo>=</mo> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>)</mo> <mo>/</mo> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <mi>&amp;alpha;</mi> <mo>=</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> <mo>/</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&amp;omega;</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mi>&amp;alpha;</mi> </msqrt> <msub> <mi>T</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced>
    In formula:θ is the phase for needing to compensate, and ω is frequency of oscillation.
  10. 10. the suppressing method according to claim 5 based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation, Characterized in that, time lag compensation carries out time lag compensation using lead-lag module.
CN201710771291.8A 2017-08-31 2017-08-31 A kind of suppressing method based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation Pending CN107579541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710771291.8A CN107579541A (en) 2017-08-31 2017-08-31 A kind of suppressing method based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710771291.8A CN107579541A (en) 2017-08-31 2017-08-31 A kind of suppressing method based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation

Publications (1)

Publication Number Publication Date
CN107579541A true CN107579541A (en) 2018-01-12

Family

ID=61030935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710771291.8A Pending CN107579541A (en) 2017-08-31 2017-08-31 A kind of suppressing method based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation

Country Status (1)

Country Link
CN (1) CN107579541A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445758A (en) * 2018-03-13 2018-08-24 江南大学 One kind has the H of the Linear Parameter-Varying Systems of network random time-dependent time delay∞Control method
CN108649560A (en) * 2018-04-27 2018-10-12 合肥工业大学 High permeability distributed photovoltaic power generation cluster real-time simulation modeling method
CN109390957A (en) * 2018-12-05 2019-02-26 江苏方天电力技术有限公司 A kind of wind power fluctuation induces the detection method of systems force oscillation
CN109904863A (en) * 2019-01-11 2019-06-18 四川大学 A kind of additional damping controller, hydrogovernor and hydraulic turbine control system
CN110034579A (en) * 2019-04-04 2019-07-19 上海交通大学 Based on depression of order-distribution cloud algorithm photovoltaic plant on-line monitoring method and system
CN110797908A (en) * 2019-08-16 2020-02-14 南京理工大学 Wind power grid-connected low-frequency oscillation suppression method based on generalized short-circuit ratio method
CN110970925A (en) * 2019-12-11 2020-04-07 贵州电网有限责任公司 Double-fed fan based damping and modeling method for improving system through fast active power modulation
CN111313435A (en) * 2020-02-24 2020-06-19 南京理工大学 Photovoltaic power station multi-machine system low-frequency oscillation suppression strategy based on VSG technology
CN112436513A (en) * 2020-12-07 2021-03-02 重庆因科汇科技有限公司 Controller design method for energy storage and low-frequency oscillation suppression
CN112448410A (en) * 2019-08-31 2021-03-05 南京理工大学 Modal comprehensive analysis method applied to low-frequency oscillation of power system containing photovoltaic power station
CN112966364A (en) * 2021-02-03 2021-06-15 中国大唐集团科学技术研究院有限公司华东电力试验研究院 Photovoltaic power station equivalent model modeling method and device for characteristic value calculation
CN113612263A (en) * 2021-07-15 2021-11-05 国网江苏省电力有限公司电力科学研究院 Low-frequency oscillation suppression method and system for multi-port alternating current-direct current hybrid power distribution network
CN113872254A (en) * 2021-10-27 2021-12-31 国网宁夏电力有限公司 Photovoltaic power station frequency active support control method for stabilizing photovoltaic second-level output fluctuation
CN113890115A (en) * 2021-09-28 2022-01-04 杭州意能电力技术有限公司 New energy power station control system for restraining power oscillation of power grid
CN116799789A (en) * 2023-06-13 2023-09-22 广东工业大学 Distributed new energy interconnection micro-grid cluster oscillation control method
CN116937624A (en) * 2023-09-18 2023-10-24 国网江西省电力有限公司电力科学研究院 Design method and system of oscillation suppressor with network construction photovoltaic damping and voltage coordination

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
葛景: "大规模光伏并网对低频振荡的影响及控制方法研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445758A (en) * 2018-03-13 2018-08-24 江南大学 One kind has the H of the Linear Parameter-Varying Systems of network random time-dependent time delay∞Control method
CN108649560A (en) * 2018-04-27 2018-10-12 合肥工业大学 High permeability distributed photovoltaic power generation cluster real-time simulation modeling method
CN109390957A (en) * 2018-12-05 2019-02-26 江苏方天电力技术有限公司 A kind of wind power fluctuation induces the detection method of systems force oscillation
CN109390957B (en) * 2018-12-05 2021-01-26 江苏方天电力技术有限公司 Detection method for forced oscillation of wind power fluctuation induction system
CN109904863A (en) * 2019-01-11 2019-06-18 四川大学 A kind of additional damping controller, hydrogovernor and hydraulic turbine control system
CN109904863B (en) * 2019-01-11 2023-01-03 四川大学 Additional damping controller, hydraulic turbine speed regulator and hydraulic turbine control system
CN110034579A (en) * 2019-04-04 2019-07-19 上海交通大学 Based on depression of order-distribution cloud algorithm photovoltaic plant on-line monitoring method and system
CN110034579B (en) * 2019-04-04 2020-11-06 上海交通大学 Photovoltaic power station online monitoring method and system based on reduced-order distributed cloud algorithm
CN110797908B (en) * 2019-08-16 2022-09-06 南京理工大学 Wind power grid-connected low-frequency oscillation suppression method based on generalized short-circuit ratio method
CN110797908A (en) * 2019-08-16 2020-02-14 南京理工大学 Wind power grid-connected low-frequency oscillation suppression method based on generalized short-circuit ratio method
CN112448410B (en) * 2019-08-31 2022-09-27 南京理工大学 Modal comprehensive analysis method applied to low-frequency oscillation of power system containing photovoltaic power station
CN112448410A (en) * 2019-08-31 2021-03-05 南京理工大学 Modal comprehensive analysis method applied to low-frequency oscillation of power system containing photovoltaic power station
CN110970925A (en) * 2019-12-11 2020-04-07 贵州电网有限责任公司 Double-fed fan based damping and modeling method for improving system through fast active power modulation
CN111313435B (en) * 2020-02-24 2022-09-27 南京理工大学 Photovoltaic power station multi-machine system low-frequency oscillation suppression strategy based on VSG technology
CN111313435A (en) * 2020-02-24 2020-06-19 南京理工大学 Photovoltaic power station multi-machine system low-frequency oscillation suppression strategy based on VSG technology
CN112436513B (en) * 2020-12-07 2022-11-11 佛山电力设计院有限公司 Controller design method for energy storage and low-frequency oscillation suppression
CN112436513A (en) * 2020-12-07 2021-03-02 重庆因科汇科技有限公司 Controller design method for energy storage and low-frequency oscillation suppression
CN112966364A (en) * 2021-02-03 2021-06-15 中国大唐集团科学技术研究院有限公司华东电力试验研究院 Photovoltaic power station equivalent model modeling method and device for characteristic value calculation
CN112966364B (en) * 2021-02-03 2023-03-28 中国大唐集团科学技术研究院有限公司华东电力试验研究院 Photovoltaic power station equivalent model modeling method and device for characteristic value calculation
CN113612263A (en) * 2021-07-15 2021-11-05 国网江苏省电力有限公司电力科学研究院 Low-frequency oscillation suppression method and system for multi-port alternating current-direct current hybrid power distribution network
CN113890115A (en) * 2021-09-28 2022-01-04 杭州意能电力技术有限公司 New energy power station control system for restraining power oscillation of power grid
CN113872254A (en) * 2021-10-27 2021-12-31 国网宁夏电力有限公司 Photovoltaic power station frequency active support control method for stabilizing photovoltaic second-level output fluctuation
CN113872254B (en) * 2021-10-27 2023-07-14 国网宁夏电力有限公司 Photovoltaic power station frequency active support control method for stabilizing photovoltaic second-level output fluctuation
CN116799789A (en) * 2023-06-13 2023-09-22 广东工业大学 Distributed new energy interconnection micro-grid cluster oscillation control method
CN116799789B (en) * 2023-06-13 2024-01-09 广东工业大学 Distributed new energy interconnection micro-grid cluster oscillation control method
CN116937624A (en) * 2023-09-18 2023-10-24 国网江西省电力有限公司电力科学研究院 Design method and system of oscillation suppressor with network construction photovoltaic damping and voltage coordination
CN116937624B (en) * 2023-09-18 2023-12-26 国网江西省电力有限公司电力科学研究院 Design method and system of oscillation suppressor with network construction photovoltaic damping and voltage coordination

Similar Documents

Publication Publication Date Title
CN107579541A (en) A kind of suppressing method based on the photovoltaic plant of pattern analysis to multi-computer system low-frequency oscillation
CN109586269B (en) Direct-current micro-grid virtual inertia control method and system considering parameter self-optimization
US8058753B2 (en) Wide area transmission control of windfarms
CN104868500B (en) Method for parallel operation control suitable to be used for microgrid inverter
Essallah et al. Integration of automatic voltage regulator and power system stabilizer: small-signal stability in DFIG-based wind farms
CN106708163B (en) The photovoltaic generating system control method tracked with maximum power point spinning reserve capacity
Rosini et al. A review of reactive power sharing control techniques for islanded microgrids
Abdulrahman et al. Wide-area-based adaptive neuro-fuzzy SVC controller for damping interarea oscillations
Yazdi et al. Analytical modeling and inertia estimation of VSG-controlled Type 4 WTGs: Power system frequency response investigation
CN110289618B (en) Grid-connected power quality compensation control method of multifunctional energy storage converter
CN108199396A (en) The virtual excitation closed-loop control system of energy storage inverter and its design method
CN108683212A (en) A kind of hybrid energy-storing type virtual synchronous generator control method based on power decoupled
Parvizimosaed et al. Enhanced active and reactive power sharing in islanded microgrids
Ogundairo et al. Oscillation damping of integrated transmission and distribution power grid with renewables based on novel measurement-based optimal controller
Khemmook et al. Control of a microgrid using robust data-driven-based controllers of distributed electric vehicles
Beus et al. A model predictive control approach to operation optimization of an ultracapacitor bank for frequency control
Saadaoui et al. Modelling and simulation for energy management of a hybrid microgrid with droop controller.
Zhou et al. Control strategy of DFIG and SVG cooperating to regulate grid voltage of wind power integration point
Zhai et al. Analysis of sub synchronous oscillation characteristics from a direct drive wind farm based on the complex torque coefficient method
CN114759618A (en) Method and system for determining stability of double-fed wind power grid-connected system based on dynamic energy
Zhu et al. $\mu $-Synthesis Robust Control of Variable Speed Wind Turbine Generators for Participating in Microgrid Frequency Regulation
CN113346561B (en) Stability analysis method for energy storage droop compensation module
Wang et al. Pre synchronization control strategy of virtual synchronous generator (VSG) in micro-grid
CN109687461B (en) Power grid side equivalent impedance modeling method considering static synchronous series compensator
Sun et al. An oscillation damping method for frequency-detector-less virtual synchronous generators

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180112