CN107546755A - 基于功率灵敏度分析的孤岛微网系统频率和电压调节方法 - Google Patents

基于功率灵敏度分析的孤岛微网系统频率和电压调节方法 Download PDF

Info

Publication number
CN107546755A
CN107546755A CN201710927577.0A CN201710927577A CN107546755A CN 107546755 A CN107546755 A CN 107546755A CN 201710927577 A CN201710927577 A CN 201710927577A CN 107546755 A CN107546755 A CN 107546755A
Authority
CN
China
Prior art keywords
power
node
frequency
voltage
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710927577.0A
Other languages
English (en)
Other versions
CN107546755B (zh
Inventor
兰佳
潘鹏宇
朱晓娟
伍仪曙
卢庆乐
李智
孙晨光
阮力
陈娅
李超文
汪东
吴东兵
邵郁
胡海涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Liuan Power Supply Co of State Grid Anhui Electric Power Co Ltd
Original Assignee
Southwest Jiaotong University
Liuan Power Supply Co of State Grid Anhui Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University, Liuan Power Supply Co of State Grid Anhui Electric Power Co Ltd filed Critical Southwest Jiaotong University
Priority to CN201710927577.0A priority Critical patent/CN107546755B/zh
Publication of CN107546755A publication Critical patent/CN107546755A/zh
Application granted granted Critical
Publication of CN107546755B publication Critical patent/CN107546755B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

基于功率灵敏度分析的孤岛微网系统频率和电压调节方法,包括:根据系统的结构及参数,得到其节点导纳矩阵;采集系统的实时频率及各个节点电压;确定功率灵敏度,包括系统频率对有功功率、无功功率的灵敏度和各个节点电压对有功功率、无功功率的灵敏度;将各个节点电压对有功功率、无功功率的灵敏度从大到小排列,分别选取前三分之一的节点,以系统频率偏差和节点电压偏差最小作为优化目标,采用优化算法进行优化,得到节点优化值;根据节点的优化值调整其有功功率、无功功率,从而调节系统频率偏差和节点电压偏差。本发明可以对孤岛微网系统频率和电压两个方面同时进行调节,且调节面更广、调节方式更灵活以及调节过程更合理。

Description

基于功率灵敏度分析的孤岛微网系统频率和电压调节方法
技术领域
本发明涉及微网孤岛运行时频率和电压调节技术领域,尤其是基于功率灵敏度分析的孤岛微网系统频率和电压调节方法。
背景技术
随着世界经济的飞速发展,全球化石能源消费量保持稳中有升的趋势。然而,传统的化石能源储量有限、不可再生,导致全球能源供应紧张。另一方面,传统化石能源的燃烧,不可避免地会带来二氧化硫、氮氧化物等有毒有害气体的排放,而大量产生的二氧化碳气体还会进一步加剧全球气候变暖,引起海平面持续升高。因此,大力推动可再生清洁能源的开发和利用正在逐步成为各国政府的共识之一。在此背景下,我国政府将大力发展可再生清洁能源确定为新兴产业发展中的重点发展方向之一,明确对风能、太阳能以及生物质能的重点开发。随着中国经济的快速发展,能源需求不断增长,构建稳定、经济、清洁、安全的能源供应体系面临着重大挑战。
微电网依靠电力电子变流设备,实现了分布式清洁电源的可控接入与就地消纳,使可再生清洁能源的利用大量增加,推动着资源节约、环境友好型社会的发展。通过切换并网开关,微电网能够运行于孤岛和并网两种模式。当微网处于孤网运行模式下时,由于失去了大电网对其频率和电压的支撑,微网必须依靠自身的调控作用使其运行在稳定状态。微网内部包含诸如光伏发电、风力发电之类的可再生清洁能源,由于这些分布式能源出力具有不确定性,会加剧微网的频率和节点电压波动。而电动汽车之类的可控负荷接入微网时,会使微网的节点负荷具有一定的可调性,通过合理优化微网各个节点的负荷大小,能够有效调节微网频率和各个节点的电压大小,保障系统持续稳定运行。
发明内容
本发明的目的在于提供基于功率灵敏度分析的孤岛微网系统频率和电压调节方法,对孤岛运行时微网的频率和电压进行调节,为保障微网的安全稳定运行提供相应的技术支持。
实现本发明目的的技术方案如下:
基于功率灵敏度分析的孤岛微网系统频率和电压调节方法,包括:
根据系统的结构及参数,得到其节点导纳矩阵;
采集系统的实时频率及各个节点电压;
确定功率灵敏度,包括系统频率对有功功率、无功功率的灵敏度和各个节点电压对有功功率、无功功率的灵敏度;
将系统频率对有功功率、无功功率的灵敏度以及各个节点电压对有功功率、无功功率的灵敏度分别从大到小排列,各自选取前三分之一的节点,以系统频率偏差和节点电压偏差最小作为优化目标,采用优化算法进行所选节点的有功功率、无功功率的优化,得到节点有功功率、无功功率优化值;
根据节点有功功率、无功功率的优化值调整所选节点的有功功率、无功功率,从而减小系统频率偏差和节点电压偏差。
进一步的技术方案,所述确定功率灵敏度的方法,包括:
建立微网系统中发电机功率模型:根据发电机的有功功率-频率特性,建立发电机的有功功率模型PG=PGN-KGΔf,其中PG为发电机实际输出有功功率,PGN为发电机额定输出有功功率,KG为发电机有功功率-频率静特性系数,Δf为系统频率偏差值;根据发电机的无功功率-电压特性,结合发电机无功功率与频率的关系,考虑发电机励磁调节系统的作用,建立发电机的无功功率模型其中QG为发电机实际输出无功功率,QGN为发电机额定输出无功功率,KG为发电机无功功率-频率静特性系数,aQ和bQ为发电机无功控制系数,ΔUG为发电机端电压改变量,β为发电机励磁系统调差系数;
建立微网系统中负荷功率模型:考虑系统频率偏差和节点电压偏差的影响,建立负荷的有功功率模型和无功功率模型其中PD和QD分别为负荷实际有功功率和无功功率,PDN和QDN分别为负荷额定的有功功率和无功功率,KP和KQ为负荷的频率特性,VLB为与负荷相连节点电压,pp、pc、pz、qp、qc、qz为负荷的电压特性系数,U为负荷的额定节点电压;
确定功率灵敏度:在潮流计算中,极坐标下的有功功率、无功功率分别为其中P、Q分别为节点有功功率、无功功率,i、j为节点标号,Ui、Uj分别为节点i、j电压,Gij、Bij为导纳矩阵元素,δij为节点电压相位差;在潮流计算中,有功功率和无功功率偏差值分别为ΔP=PG-PD-P和ΔQ=QG-QD-Q;考虑频率偏差对节点有功功率、无功功率的影响,在牛拉法潮流计算中,改进其修正方程,其表达式为其中Δf、Δθ、ΔU分别为频率、相角、电压偏差值;雅克比矩阵Jext表达式为由此得到雅克比矩阵的逆矩阵其中,分别为频率对有功功率、无功功率的灵敏度;分别为相角对有功功率、无功功率的灵敏度;分别为电压对有功功率、无功功率的灵敏度。
更进一步的技术方案,所述以系统频率偏差和节点电压偏差最小作为优化目标,采用优化算法进行有功功率、无功功率的优化的步骤中,优化算法采用粒子群优化算法:
当节点i有功功率、无功功率优化量分别为ΔPi和ΔQi时,频率改变为节点电压改变为其中Δf1为节点功率优化前系统的频率偏差标幺值,Δf2为节点功率优化后系统的频率偏差标幺值,Ui,1为功率优化前节点i的电压,Ui,2为功率优化后节点i的电压;对这两个目标加权处理,将多目标优化问题转化成单目标优化,在计算过程中,采用标幺值进行归一化处理,则优化目标为使其值最小,其中a1、a2为电压偏差和频率偏差的权重系数。
与现有技术相比,本发明的有益效果是:
对系统频率及各个节点电压进行采集,得到微网实时的频率大小及节点电压。根据功率灵敏度的定义,得到微网系统频率和节点电压对有功功率和无功功率的灵敏度。以系统频率偏差和节点电压偏差最小作为优化目标,采用优化算法对灵敏度较大节点的有功功率、无功功率进行优化,得到各个节点有功功率、无功功率优化值。根据节点功率优化值大小调整各个节点的有功功率、无功功率,从而使系统频率偏差、节点电压偏差减小,达到频率和节点电压调节的目的。本发明具有以下优点:
一、从改善分布式电源并网逆变器的控制方式出发,从而进行频率和电压单方面的调节相比,本发明提出的优化方法通过优化节点功率大小,可以对频率和电压两个方面同时进行调节。调节面更广。
二、在优化目标中对系统频率偏差和节点电压偏差进行归一化加权处理,当系统对频率要求较高时,可以通过增大频率偏差权系数,来使系统频率更接近参考值;当系统对节点电压要求较高时,可以通过增大节点电压权系数,来使节点电压更接近参考值。调节方式更灵活。
三、定义节点功率灵敏度,选取灵敏度较大节点进行功率的调节,可以实现通过调节较少的节点有功功率、无功功率,达到微网系统频率和节点电压调节的目的。调节过程更合理。
附图说明
图1为一种14节点微网系统结构图。
图2为基于节点功率灵敏度分析的孤岛微网频率电压调节方法流程图。
图3为粒子群优化算法流程图。
图4为频率调节结果。
图5为节点电压调节结果。
具体实施方式
下面结合附图及实施例,详细描述本发明的技术方案。
一种14节点的微网系统结构图如图1所示,对其进行实施例分析。该微网系统中节点8接有柴油发电机,可调容量为3kW-60kW。节点4接有微型燃气轮机,可调容量为5kW-80kW。节点7接有燃料电池,可调容量为4kW-80kW。节点5和10分别接有光伏发电系统和风力发电系统,当外界环境变化较大时,由于其出力受环境影响较大,将使系统频率和节点电压出现偏差。
基于节点功率灵敏度分析的孤岛微网频率电压调节方法流程图如图2所示,首先,根据微网的结构及参数,得到系统的节点导纳矩阵。并对系统频率及各个节点电压进行采集,得到微网实时的频率大小及节点电压;其次,根据功率灵敏度的定义,得到微网系统频率和节点电压对有功功率和无功功率的灵敏度。然后,将系统频率偏差和节点电压偏差最小作为优化目标,采用优化算法对灵敏度较大节点的有功功率、无功功率进行优化,得到各个节点有功功率、无功功率优化值。最后,根据节点功率优化值大小调整各个节点的有功功率、无功功率,从而使系统频率偏差、节点电压偏差减小,达到频率和节点电压调节的目的。
所述功率灵敏度的定义步骤为:
A、发电机功率模型建立:根据发电机的有功功率-频率特性,可建立发电机的有功功率模型,为PG=PGN-KGΔf,其中PGN为发电机额定输出有功功率,KG为发电机有功功率-频率静特性系数,Δf为系统频率偏差值;根据发电机的无功功率-电压特性,结合发电机无功功率与频率的关系,考虑发电机励磁调节系统的作用,可建立发电机的无功功率模型,为其中QGN为发电机额定输出无功,KG为发电机无功功率-频率静特性系数,Δf为系统频率偏差值,aQ和bQ为发电机无功控制系数。
B、负荷功率模型建立:考虑系统频率偏差和节点电压偏差的影响,可建立负荷的有功功率、无功功率模型,分别为其中PDN和QDN为负荷额定的有功功率和无功功率;KP和KQ为负荷的频率特性;VLB为与负荷相连节点电压;pp,pc,pz,qp,qc,qz为负荷的电压特性。
C、功率灵敏度的确定:在潮流计算中,极坐标下的有功功率、无功功率为其中Ui、Uj为节点电压大小,Gij、Bij为导纳矩阵元素,δij为节点电压相位差;在潮流计算中,有功功率和无功功率改变量为ΔP=PG-PD-P,ΔQ=QG-QD-Q;考虑频率偏差对节点有功功率、无功功率的影响,在牛拉法潮流计算中,改进其修正方程,其表达式为其中,雅克比矩阵Jext表达式为由此,可得到雅克比矩阵的逆矩阵其中为频率对有功无功的灵敏度大小;为相角对有功无功的灵敏度大小;为电压对有功无功的灵敏度大小。
所述优化目标定义为:
优化目标为微网频率及节点电压偏差能最大程度地减小。当节点i有功功率、无功功率优化量为ΔPi和ΔQi时,频率优化结果为节点电压优化结果为其中Δf1为节点功率优化前系统的频率偏差值,Δf2为节点功率优化后系统的频率偏差值,Ui,1为功率优化前节点i的电压大小,Ui,2为功率优化后节点i的电压大小;对这两个目标加权处理,将多目标优化问题转化成单目标优化,在计算过程中,采用标幺值进行归一化处理,则优化目标为使其值最小,其中a1、a2为电压偏差和频率偏差的权重系数。
所述优化算法采用粒子群优化算法如图3所示,其步骤为:
A、利用随机数初始化粒子位置及粒子速度,粒子的维度为有功无功优化调节节点个数。
B、根据约束条件对粒子进行约束。判断节点的调节功率是否符合约束条件,对不符合约束条件的粒子进行相应调整。
C、令当前位置为粒子群的个体最优,根据目标函数,对个体最优进行更新,找到最终个体最优位置pbest
D、将找出的个体最优pbest与群体最优gbest相比较,如果pbest劣于gbest,则保留gbest,如果pbest优于gbest,则更新gbest的值。
E、算法收敛或者达到最大迭代次数,算法结束。否则,粒子利用找出的pbest和gbest来更新自己的速度和位置,进行下一次迭代。粒子位置和速度更新表达式为其中为粒子第k+1、k次迭代时的速度与位置,m代表维度;w为惯性权重;c1、c2为学习因子;r1、r2为[0,1]之间的随机数;pbest、gbest为个体最优和群体最优解。
采用以上节点功率优化结果,对相应节点功率进行调整。系统频率及节点电压调节结果如图4、图5所示。虚线为优化前频率及节点电压大小,实线为优化后频率及节点电压大小,可以看出,优化后的实线比优化前的虚线更接近于线路额定频率与额定电压值。

Claims (3)

1.基于功率灵敏度分析的孤岛微网系统频率和电压调节方法,其特征在于,包括:
根据系统的结构及参数,得到其节点导纳矩阵;
采集系统的实时频率及各个节点电压;
确定功率灵敏度,包括系统频率对有功功率、无功功率的灵敏度和各个节点电压对有功功率、无功功率的灵敏度;
将系统频率对有功功率、无功功率的灵敏度以及各个节点电压对有功功率、无功功率的灵敏度分别从大到小排列,各自选取前三分之一的节点,以系统频率偏差和节点电压偏差最小作为优化目标,采用优化算法进行所选节点的有功功率、无功功率的优化,得到节点有功功率、无功功率优化值;
根据节点有功功率、无功功率的优化值调整所选节点的有功功率、无功功率,从而减小系统频率偏差和节点电压偏差。
2.根据权利要求1所述的基于功率灵敏度分析的孤岛微网系统频率和电压调节方法,其特征在于,所述确定功率灵敏度的方法,包括:
建立微网系统中发电机功率模型:根据发电机的有功功率-频率特性,建立发电机的有功功率模型PG=PGN-KGΔf,其中PG为发电机实际输出有功功率,PGN为发电机额定输出有功功率,KG为发电机有功功率-频率静特性系数,Δf为系统频率偏差值;根据发电机的无功功率-电压特性,结合发电机无功功率与频率的关系,考虑发电机励磁调节系统的作用,建立发电机的无功功率模型其中QG为发电机实际输出无功功率,QGN为发电机额定输出无功功率,KG为发电机无功功率-频率静特性系数,aQ和bQ为发电机无功控制系数,ΔUG为发电机端电压改变量,β为发电机励磁系统调差系数;建立微网系统中负荷功率模型:考虑系统频率偏差和节点电压偏差的影响,建立负荷的有功功率模型和无功功率模型其中PD和QD分别为负荷实际有功功率和无功功率,PDN和QDN分别为负荷额定的有功功率和无功功率,KP和KQ为负荷的频率特性,VLB为与负荷相连节点电压,pp、pc、pz、qp、qc、qz为负荷的电压特性系数,U为负荷的额定节点电压;
确定功率灵敏度:在潮流计算中,极坐标下的有功功率、无功功率分别为 其中P、Q分别为节点有功功率、无功功率,i、j为节点标号,Ui、Uj分别为节点i、j电压,Gij、Bij为导纳矩阵元素,δij为节点电压相位差;在潮流计算中,有功功率和无功功率偏差值分别为ΔP=PG-PD-P和ΔQ=QG-QD-Q;考虑频率偏差对节点有功功率、无功功率的影响,在牛拉法潮流计算中,改进其修正方程,其表达式为其中Δf、Δθ、ΔU分别为频率、相角、电压偏差值;雅克比矩阵Jext表达式为由此得到雅克比矩阵的逆矩阵其中,分别为频率对有功功率、无功功率的灵敏度;分别为相角对有功功率、无功功率的灵敏度;分别为电压对有功功率、无功功率的灵敏度。
3.根据权利要求2所述的基于功率灵敏度分析的孤岛微网系统频率和电压调节方法,其特征在于,所述以系统频率偏差和节点电压偏差最小作为优化目标,采用优化算法进行有功功率、无功功率的优化的步骤中,优化算法采用粒子群优化算法:
当节点i有功功率、无功功率优化量分别为ΔPi和ΔQi时,频率改变为节点电压改变为其中Δf1为节点功率优化前系统的频率偏差标幺值,Δf2为节点功率优化后系统的频率偏差标幺值,Ui,1为功率优化前节点i的电压,Ui,2为功率优化后节点i的电压;对这两个目标加权处理,将多目标优化问题转化成单目标优化,在计算过程中,采用标幺值进行归一化处理,则优化目标为使其值最小,其中a1、a2为电压偏差和频率偏差的权重系数。
CN201710927577.0A 2017-10-09 2017-10-09 基于功率灵敏度分析的孤岛微网系统频率和电压调节方法 Expired - Fee Related CN107546755B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710927577.0A CN107546755B (zh) 2017-10-09 2017-10-09 基于功率灵敏度分析的孤岛微网系统频率和电压调节方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710927577.0A CN107546755B (zh) 2017-10-09 2017-10-09 基于功率灵敏度分析的孤岛微网系统频率和电压调节方法

Publications (2)

Publication Number Publication Date
CN107546755A true CN107546755A (zh) 2018-01-05
CN107546755B CN107546755B (zh) 2019-06-04

Family

ID=60964972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710927577.0A Expired - Fee Related CN107546755B (zh) 2017-10-09 2017-10-09 基于功率灵敏度分析的孤岛微网系统频率和电压调节方法

Country Status (1)

Country Link
CN (1) CN107546755B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586305A (zh) * 2018-12-12 2019-04-05 国网山西省电力公司大同供电公司 一种基于柔性多状态开关的配电网运行控制策略
CN110112789A (zh) * 2019-04-22 2019-08-09 南通大学 基于自适应快速粒子群的孤岛型微网多目标优化配置算法
CN110380422A (zh) * 2019-04-24 2019-10-25 国网辽宁省电力有限公司电力科学研究院 基于二级电压控制的电网无功电压自适应动态分区方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009556A (ja) * 2011-06-27 2013-01-10 Nec Corp 電圧感度測定システム、電力装置制御システム、端末装置、情報処理装置、その方法およびプログラム
CN103346572A (zh) * 2013-07-29 2013-10-09 国家电网公司 基于灵敏度和多Agent的电网无功智能控制方法
CN103475023A (zh) * 2013-09-09 2013-12-25 国家电网公司 具有多个分布式电源的微电网并/离网控制方法
CN103825269A (zh) * 2014-02-24 2014-05-28 华中科技大学 一种考虑电力系统功频静特性的快速概率潮流计算方法
CN105610191A (zh) * 2016-01-19 2016-05-25 合肥工业大学 降低双馈感应风电机组并网的网损微增率方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009556A (ja) * 2011-06-27 2013-01-10 Nec Corp 電圧感度測定システム、電力装置制御システム、端末装置、情報処理装置、その方法およびプログラム
CN103346572A (zh) * 2013-07-29 2013-10-09 国家电网公司 基于灵敏度和多Agent的电网无功智能控制方法
CN103475023A (zh) * 2013-09-09 2013-12-25 国家电网公司 具有多个分布式电源的微电网并/离网控制方法
CN103825269A (zh) * 2014-02-24 2014-05-28 华中科技大学 一种考虑电力系统功频静特性的快速概率潮流计算方法
CN105610191A (zh) * 2016-01-19 2016-05-25 合肥工业大学 降低双馈感应风电机组并网的网损微增率方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
段瑶 等: "基于快速随机潮流的电力系统安全风险评估", 《中国电机工程学报》 *
颜伟 等: "考虑频率特性和断面传输有功功率约束的潮流模型", 《电网技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586305A (zh) * 2018-12-12 2019-04-05 国网山西省电力公司大同供电公司 一种基于柔性多状态开关的配电网运行控制策略
CN110112789A (zh) * 2019-04-22 2019-08-09 南通大学 基于自适应快速粒子群的孤岛型微网多目标优化配置算法
CN110380422A (zh) * 2019-04-24 2019-10-25 国网辽宁省电力有限公司电力科学研究院 基于二级电压控制的电网无功电压自适应动态分区方法

Also Published As

Publication number Publication date
CN107546755B (zh) 2019-06-04

Similar Documents

Publication Publication Date Title
Gil-Antonio et al. Maximum power point tracking techniques in photovoltaic systems: A brief review
CN107546755B (zh) 基于功率灵敏度分析的孤岛微网系统频率和电压调节方法
Hemalatha et al. Simulation and Analysis for MPPT Control with Modified firefly algorithm for photovoltaic system
abed El-Raouf et al. MPPT of PV-Wind-Fuel cell of off-grid Hybrid System for a New Community
CN116667325B (zh) 一种基于改进布谷鸟算法的微电网并网运行优化调度方法
Padmanabhan et al. Fuzzy logic based maximum power point tracker for a photovoltaic system
CN102902298A (zh) 基于分段模型的光伏阵列 mppt 控制器及控制方法
CN108803771A (zh) 基于自适应模糊控制的最大功率点跟踪方法
Husain et al. Performance analysis of the global maximum power point tracking based on spider monkey optimization for PV system
Narendiran et al. Control and analysis of MPPT techniques for maximizing power extraction and eliminating oscillations in PV system
CN109546647B (zh) 一种用于含风光水储的电力系统的安全稳定评估方法
Mohamed et al. Fractional PID controller tuning using krill herd for renewable power systems control
Fergani et al. A PSO Tuning ANN for Extracting the MPP from a DC Microgrid System under Changing Irradiance
Jately et al. An efficient hill-climbing technique for peak power tracking of photovoltaic systems
Raj et al. Numerical Simulation and Comparative Assessment of Improved Cuckoo Search and PSO based MPPT System for Solar Photovoltaic System Under Partial Shading Condition
Zhou et al. Optimal dispatching of microgrid based on improved particle swarm optimization
CN110098623A (zh) 一种基于智能负载的Prosumer单元控制方法
Dwivedi et al. Improve efficiency of photovoltaic (PV) system based by PID controller
Cho et al. A variable step size incremental conductance MPPT of a photovoltaic system using DC-DC converter with direct control scheme
CN114142527A (zh) 一种多微网协同运行的经济调度优化方法
Salim et al. A conceptual framework and a review of AI-based MPPT techniques for photovoltaic systems
Mukti et al. Particle Swarm Optimization (PSO) based Photovoltaic MPPT Algorithm under the Partial Shading Condition
Yadav et al. Comparative study of MPPT techniques for solar PV-based system
Kumar et al. Fractional order PI controller based load frequency control of hybrid power system with electric vehicle
CN105262107A (zh) 一种风电并网的无功优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190604

Termination date: 20201009