CN107527962A - 一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池 - Google Patents

一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池 Download PDF

Info

Publication number
CN107527962A
CN107527962A CN201710668059.1A CN201710668059A CN107527962A CN 107527962 A CN107527962 A CN 107527962A CN 201710668059 A CN201710668059 A CN 201710668059A CN 107527962 A CN107527962 A CN 107527962A
Authority
CN
China
Prior art keywords
oblique
gan
wire
semi
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710668059.1A
Other languages
English (en)
Other versions
CN107527962B (zh
Inventor
高志远
赵立欢
张洁
薛晓玮
邹德恕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201710668059.1A priority Critical patent/CN107527962B/zh
Publication of CN107527962A publication Critical patent/CN107527962A/zh
Application granted granted Critical
Publication of CN107527962B publication Critical patent/CN107527962B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池,涉及半导体技术领域。所述斜向ZnO纳米线为n型;所述GaN层为半极性面(11‑22)的GaN外延层,包括掺Mg的p型GaN层和生长在m面Al2O3衬底上未掺杂的GaN缓冲层;所述斜向ZnO纳米线阵列与生长平面的夹角为30~35度;所述斜向ZnO纳米线被半导体量子点覆盖并被聚合物所填充,其上一层为导电薄膜,作为上电极,下电极位于GaN层上斜向生长的ZnO纳米线阵列的另一侧的台面。本发明通过在半极性GaN外延层上生长斜向ZnO纳米线阵列,提高感光面积,实现高的光电转化效率。

Description

一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池
技术领域
本发明涉及半导体的技术领域,特别涉及一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池及其制备方法。
背景技术
ZnO属于II-VI族直接带隙化合物半导体材料,无毒无污染,而且具有较宽的禁带宽度、较大的激子束缚能和压电效应,在光电、压电、压敏、气敏等器件领域有广泛应用,也是显示器和太阳能电池产业的重要材料。ZnO以其丰富的纳米结构著称,ZnO纳米线阵列结构能够增加电荷生成层与界面传递层之间的界面面积,提高电荷传递的效率。有序的纳米结构能够减少电子被晶粒境界及界面缺陷散射和复合的几率,为电子传输提供一个直接通道。因此,将ZnO纳米线结构应用于太阳能电池能有效的提高其光电转换效率。
ZnO纳米线结构已经应用于量子点敏化或染料敏化的太阳能电池,以及n-ZnO纳米线/p-Si异质结等结构的太阳能电池。量子点敏化和染料敏化的ZnO纳米线太阳能电池以导电玻璃为基底,需要制备ZnO籽晶层作为纳米线生长的缓冲层,在生长ZnO纳米线之后,在纳米线上沉积量子点颗粒或填充染料,且需要再填充电解质,最后与对电极组装,制作工艺较复杂。n-ZnO纳米线/p-Si异质结太阳能电池以Si为基底,同样需要在基底上制备ZnO籽晶层,在生长ZnO纳米线之后填充绝缘层,之后制作上电极。并且,以上太阳能电池结构中的ZnO纳米线阵列均为垂直的纳米线阵列,垂直生长的ZnO纳米线只能在一侧端口处感光,并不能最大程度上利用ZnO纳米线提高太阳能电池的光电转化效率。同时,制作工艺均需要在基底上制备ZnO籽晶层作为纳米线生长的缓冲层,这使得与基底接触的不是真正的ZnO纳米线,而是ZnO籽晶层,ZnO籽晶层与基底之间存在较高的缺陷密度,不利于激子的快速分离与转移。
发明内容
有鉴于此,本发明目的在于提供一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池及制备方法,提高感光面积,实现高的光电转化效率。
本发明提供一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池,其特征在于,n型斜向生长的ZnO纳米线阵列斜向生长于p型半极性(11-22)面GaN外延层上,斜向ZnO纳米线表面覆盖或分布半导体量子点,相邻纳米线间空隙被聚合物填充,聚合物填充的斜向ZnO纳米线阵列的上面为一层导电薄膜,作为上电极,斜向生长的ZnO纳米线阵列的顶端伸入到导电薄膜内;下电极位于斜向生长的ZnO纳米线阵列侧旁的p型半极性(11-22)面GaN外延层台面上。
本发明的n型斜向生长的ZnO纳米线阵列生长于p型半极性(11-22)面GaN外延层结构:最底层为Al2O3衬底,在Al2O3衬底上依次为未掺杂半极性面(11-22)的GaN外延层、掺Mg半极性面(11-22)的p-GaN外延层,在掺Mg的p型GaN层上生长有n型斜向生长的ZnO纳米线阵列。
所述的n型斜向ZnO纳米线阵列与生长平面掺Mg半极性面(11-22)的p-GaN外延层的夹角为30~35度。
所述的n型斜向ZnO纳米线阵列中纳米线的尺寸均匀一致,长度和粗细可根据需要调控。
所述的未掺杂半极性面(11-22)的GaN外延层厚度为2~5μm。
所述的掺Mg半极性面(11-22)的p-GaN外延层的厚度为0.2~1μm。
所述的掺Mg半极性面(11-22)的p-GaN外延层的载流子浓度为1~3×1017cm-3
本发明还提供一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池的制备方法,本发明采取以下技术方案,包括以下步骤:
步骤1:在衬底上依次生长未掺杂半极性面(11-22)的GaN层和掺Mg半极性面(11-22)的p-GaN层;
步骤2:采用水热法在掺Mg半极性面(11-22)的p-GaN层上制备斜向生长的ZnO纳米线阵列;
步骤3:采用SILAR法在斜向ZnO纳米线阵列上沉积半导体量子点;
步骤4:在斜向ZnO纳米线阵列上旋凃填充透明、绝缘的聚合物;
步骤5:刻蚀聚合物,使斜向ZnO纳米线露出顶端部分;
步骤6:在斜向ZnO纳米线阵列上制备一层导电薄膜,作为上电极;
步骤7:在掺Mg半极性面(11-22)的p-GaN层的上表面一侧制备下电极,完成高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池的制作。
本发明与现有技术相比具有的优点:
本发明利用ZnO与GaN晶格失配度低的特点,采用低温化学水浴法直接在半极性面(11-22)的GaN外延层上生长密度均匀的斜向ZnO纳米线阵列。利用ZnO/GaN pn结的光伏效应,沉积窄禁带的半导体量子点对ZnO纳米线进行修饰,制成高转化效率的太阳能电池。相对于垂直生长的ZnO纳米线阵列,斜向ZnO纳米线阵列具有更大的感光面积,能更大程度的提高光电转化效率。同时,避免了制备ZnO籽晶层的工艺及其带来的影响。本发明器件的制备工艺简单,成本低,易于实现大规模生产。
附图说明
图1本发明的剖面图;
图2本发明的制备流程;
(a)-(g)为制备过程的步骤示意图。
图3为本发明的基本工作原理示意图;
图中:1-衬底 2-未掺杂GaN外延层 3-掺Mg p-GaN外延层 4-斜向ZnO纳米线阵列5-半导体量子点 6-聚合物 7-导电薄膜(上电极) 8-下电极 9-太阳光;
图4为本发明中实施例1制备的斜向ZnO纳米线阵列的扫面电子显微镜照片;
图5为本发明实施例1中太阳光照下异质结间电子传输方向示意图。
具体实施方式
请参阅图1所示,本发明提供了一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池。所述n型斜向生长的ZnO纳米线阵列4生长于p型半极性(11-22)面GaN外延层3,斜向ZnO纳米线阵列被半导体量子点5覆盖,相邻纳米线间空隙被聚合物6填充,其上一层为导电薄膜7,作为上电极,下电极8位于p-GaN层上斜向生长的ZnO纳米线阵列的另一侧的台面;
所述半极性面(11-22)的GaN层包括掺Mg的p型GaN层和生长在m面Al2O3衬底1上未掺杂的GaN层2。
在本发明中,所述n型斜向ZnO纳米线阵列与生长平面p-GaN层的夹角为30~35度。
所述n型斜向ZnO纳米线阵列中纳米线的尺寸均匀一致,长度和粗细可控。所述斜向ZnO纳米线长度优选为3~6μm;所述n型斜向ZnO纳米线的直径优选为100~200nm。
在本发明中,所述n型斜向ZnO纳米线阵列被量子点覆盖。所述半导体量子点材料优选为CdS。
在本发明中,所述n型斜向ZnO纳米线阵列被聚合物填充。所述聚合物应具有的特性为透明、绝缘,优选材料为PMMA(聚甲基丙烯酸甲酯)。
在本发明中,所述半极性面(11-22)的GaN层包括掺Mg的p型GaN层和生长在m面Al2O3上未掺杂的GaN层。本发明对衬底厚度没有要求,使用本领域人员熟知的厚度即可;在本发明中,所述未掺杂半极性面(11-22)的GaN外延层的厚度优选为2~5μm;所述的掺Mg半极性面(11-22)的p-GaN外延层厚度为0.2~1μm;所述的掺Mg的p-GaN外延层的载流子浓度优选为1~3×1017cm-3
在本发明中,所述导电薄膜位于斜向ZnO纳米线阵列之上,作为上电极。本发明对所述上电极的材质没有特殊要求,使用本领域中常规的电极即可;所述导电薄膜的材质优选为FTO(SnO2:F);所述导电薄膜的厚度优选为80~180nm。
在本发明中,所述下电极位于p-GaN层另一侧的台面。本发明对所述下电极的材质没有特殊要求,使用本领域中常规的电极即可;所述下电极材质优选为Ni/Au;所述Ni层的厚度优选为10~60nm;所述Au层厚度优选为30~300nm。
请参阅图2并结合参阅图1所示,本发明还提供一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池的制备方法,包括如下步骤:
步骤1:通过金属有机化学气相沉积在m面Al2O3衬底上依次生长未掺杂半极性面(11-22)的GaN层和掺Mg半极性面(11-22)的p-GaN层,如附图2(a)所示;
步骤2:采用水热法在p-GaN层上制备斜向生长的ZnO纳米线阵列,取一定量用于ZnO纳米线生长的前体液于水热反应釜中,将样品的GaN层一侧朝下放置,使其漂浮在溶液中,在一定温度下反应生长斜向ZnO纳米线,如附图2(b)所示;
步骤3:采用SILAR法在斜向ZnO纳米线阵列上沉积半导体量子点,如附图2(c)所示;
步骤4:在斜向ZnO纳米线阵列上旋凃透明、绝缘的聚合物,如附图2(d)所示;
步骤5:通过感应耦合等离子刻蚀来刻蚀聚合物,在纳米线即将露出头部的基础上,刻蚀深度为50~100nm,使斜向ZnO纳米线露出顶端部分,如附图2(e)所示;
步骤6:在斜向ZnO纳米线阵列上制备导电薄膜,作为上电极,使其将斜向ZnO纳米线头部覆盖,如附图2(f)所示。
步骤7:采用磁控溅射法在p-GaN层另一侧台面上制备下电极,完成高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池的制作,如附图2(g)所示。
本发明对上述方案中采用的金属有机化学气相沉积、感应耦合等离子刻蚀、磁控溅射的具体操作方法和条件没有特殊的要求,使用本领域人员熟知的操作方法和条件即可。
在本发明中,所述水热法所使用的溶液为锌盐和六亚甲基四胺组成的前体液。在本发明中,所述锌盐优选为Zn(NO3)2·6H2O(六水合硝酸锌);所述锌盐和六亚甲基四胺的摩尔比优选为1:1~1:2;所述锌盐的浓度优选为2.5~20mmol/L;所述六亚甲基四胺的浓度优选为2.5~40mmol/L,其作用为封端剂并提供碱性环境,调节ZnO纳米线长径比的同时促进ZnO纳米线的生长。
在本发明中,所述水热反应的温度优选为70~90℃;所述水热反应的时间优选为7~24h。
参见附图3,本发明的基本工作原理示意图。
本发明器件的基本工作原理为:
在太阳光的照射下,吸附在ZnO纳米线表面的窄带隙半导体量子点吸收光子的能量,价带中的电子跃迁到导带中,随之注入到ZnO纳米线的导带中。n-ZnO和p-GaN吸收紫外光,价带中的电子跃迁到导带,p-GaN中导带中的电子随后注入到ZnO纳米线的导带中,电子在导电薄膜(上电极)上聚集,经由外电路传至p-GaN层,产生光电流,从而完成一个光电循环。
下面通过实施例对本发明进行进一步说明。但不应将此理解为本发明上述主题的范围仅限于以下实施例。
实施例1
通过金属有机化学气相沉积在m面Al2O3衬底上依次生长4μm厚的未掺杂半极性面(11-22)的GaN层和0.4μm掺Mg半极性面(11-22)的p-GaN层;
在GaN外延片上进行光刻,光刻出用于斜向ZnO纳米线阵列生长的区域;
将Zn(NO3)2·6H2O 10mmol和六亚甲基四胺10mmol溶解于1L去离子水中,搅拌均匀,作为斜向ZnO纳米线阵列生长的前体液;取100mL前体液于水热反应釜中,将样品GaN层一侧朝下放置,使其漂浮在液面上,在80℃下持续生长8h;将长有斜向ZnO纳米线阵列的样品用去离子水冲洗,之后用氮气吹干;
使用扫描电子显微镜对得到的斜向ZnO纳米线阵列进行观察,如图4所示;由图4看出斜向ZnO纳米线阵列的倾斜角度为30~35度,平均直径为200nm,平均长度为2μm;
采用SILAR法在ZnO纳米线阵列上沉积CdS量子点,将长有斜向ZnO纳米线阵列的样品浸没到0.05mol/L的CdCl2无水乙醇溶液中,持续30s,使ZnO纳米线表面吸附Cd2+;取出后用无水乙醇浸洗30s,除去样品表面多余的Cd2+;再将样品浸入0.05mol/L的Na2S甲醇溶液,使样品表面吸附的Cd2+与S2-复合成CdS量子点;放入甲醇中浸洗30s,除去表面残留的S2-,以上操作为一次SILAR循环。将以上步骤重复10次,完成10次SILAR循环,最后将样品在无水乙醇中浸洗2min,洗去残留在ZnO纳米线表面未吸附的CdS量子点,取出后晾干;
采用甩胶机把PMMA涂覆与斜向ZnO纳米线阵列间隙,使PMMA将斜向ZnO纳米线阵列覆盖;
通过感应耦合等离子刻蚀来刻蚀PMMA,在纳米线即将露出头部的基础上,刻蚀深度为80nm,使斜向ZnO纳米线露出顶端部分;
采用磁控溅射在斜向ZnO纳米线阵列头部溅射150nm厚的FTO薄膜,使其将斜向ZnO纳米线阵列顶端覆盖,作为上电极;
在GaN外延片上进行光刻,依次通过甩胶、前烘、曝光、显影在p-GaN层一侧台面上制备出下电极电极区域,然后采用电子束蒸发制备Ni/Au(20nm/100nm),在400℃的空气氛围下退火5分钟,作为下电极,完成高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池的制作。
参见附图5,结合本实施例,对本发明器件的基本工作原理进行进一步的解释说明:
在太阳光的照射下,吸附在ZnO纳米线表面的半导体量子点CdS吸收光子的能量,CdS禁带宽度为2.42eV,能够吸收可见光,价带中的电子跃迁到导带中,随后注入到ZnO纳米线的导带中。n-ZnO和p-GaN吸收紫外光,价带中的电子跃迁到导带,p-GaN中导带中的电子随后注入到ZnO纳米线的导带中,电子在导电薄膜(上电极)上聚集,经由外电路传输至p-GaN层,产生光电流,从而完成一个光电循环。
实施例2
通过金属有机化学气相沉积(MOCVD)在m面Al2O3衬底上依次生长4μm厚的未掺杂半极性面(11-22)的GaN层和0.4μm掺Mg半极性面(11-22)的p-GaN层;
在GaN外延片上进行光刻,光刻出用于斜向ZnO纳米线阵列生长的区域;
将Zn(NO3)2·6H2O 15mmol和六亚甲基四胺15mmol溶解于1L去离子水中,搅拌均匀,作为斜向ZnO纳米线阵列生长的前体液;取100mL前体液于水热反应釜中,将样品GaN层一侧朝下放置,使其漂浮在液面上,在80℃下持续生长20h;将长有斜向ZnO纳米线阵列的样品用去离子水冲洗,之后用氮气吹干;
在扫描电子显微镜下观察,得到斜向ZnO纳米线阵列的倾斜角度为30~35度,平均直径为300nm,平均长度为4μm;
采用SILAR法在ZnO纳米线阵列上沉积CdS量子点,将长有斜向ZnO纳米线阵列的样品浸没到0.05mol/L的CdCl2无水乙醇溶液中,持续30s,使ZnO纳米线表面吸附Cd2+;取出后用无水乙醇浸洗30s,除去样品表面多余的Cd2+;再将样品浸入0.05mol/L的Na2S甲醇溶液,使样品表面吸附的Cd2+与S2-复合成CdS量子点;放入甲醇中浸洗30s,除去表面残留的S2-,以上操作为一次SILAR循环。将以上步骤重复20次,完成20次SILAR循环,最后将样品在无水乙醇中浸洗2min,洗去残留在ZnO纳米线表面未吸附的CdS量子点,取出后晾干;
采用甩胶机把SU 8光刻胶涂覆与斜向ZnO纳米线阵列间隙,使光刻胶将斜向ZnO纳米线阵列覆盖;
通过感应耦合等离子刻蚀来刻蚀光刻胶,在纳米线即将露出头部的基础上,刻蚀深度为80nm,使斜向ZnO纳米线露出顶端部分;
采用磁控溅射在斜向ZnO纳米线阵列头部溅射150nm厚的FTO薄膜,使其将斜向ZnO纳米线阵列顶端覆盖,作为上电极;
在GaN外延片上进行光刻,依次通过甩胶、前烘、曝光、显影在p-GaN层一侧台面上制备出下电极电极区域,然后采用电子束蒸发制备Ni/Au(20nm/100nm),在400℃的空气氛围下退火5分钟,作为下电极,完成高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池的制作。

Claims (10)

1.一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池,其特征在于,n型斜向生长的ZnO纳米线阵列斜向生长于p型半极性(11-22)面GaN外延层上,斜向ZnO纳米线表面覆盖或分布半导体量子点,相邻纳米线间空隙被聚合物填充,聚合物填充的斜向ZnO纳米线阵列的上面为一层导电薄膜,作为上电极,斜向生长的ZnO纳米线阵列的顶端伸入到导电薄膜内;下电极位于斜向生长的ZnO纳米线阵列侧旁的p型半极性(11-22)面GaN外延层台面上。
2.按照权利要求1所述的一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池,其特征在于,n型斜向生长的ZnO纳米线阵列生长于p型半极性面(11-22)GaN外延层结构:最底层为Al2O3衬底,在Al2O3衬底上依次为未掺杂半极性面(11-22)的GaN外延层、掺Mg半极性面(11-22)的p-GaN外延层,在掺Mg的p型GaN层上生长有n型斜向生长的ZnO纳米线阵列。
3.按照权利要求2所述的一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池,其特征在于,n型斜向ZnO纳米线阵列与生长平面掺Mg半极性面(11-22)的p-GaN外延层的夹角为30~35度。
4.按照权利要求2所述的一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池,其特征在于,n型斜向ZnO纳米线阵列中纳米线的尺寸均匀一致,长度和粗细可根据需要调控。
5.按照权利要求2所述的一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池,其特征在于,未掺杂半极性面(11-22)的GaN外延层厚度为2~5μm。
6.按照权利要求2所述的一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池其特征在于,掺Mg半极性面(11-22)的p-GaN外延层的厚度为0.2~1μm。
7.按照权利要求2所述的一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池,其特征在于,掺Mg半极性面(11-22)的p-GaN外延层的载流子浓度为1~3×1017cm-3
8.制备权利要求1-7任一项所述的一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池的方法,其特征在于,包括以下步骤:
步骤1:在衬底上依次生长未掺杂半极性面(11-22)的GaN层和掺Mg半极性面(11-22)的p-GaN层;
步骤2:采用水热法在掺Mg半极性面(11-22)的p-GaN层上制备斜向生长的ZnO纳米线阵列;
步骤3:采用SILAR(连续离子层吸附反应)法在斜向ZnO纳米线阵列上沉积半导体量子点;
步骤4:在斜向ZnO纳米线阵列上旋凃填充透明、绝缘的聚合物;
步骤5:刻蚀聚合物,使斜向ZnO纳米线露出顶端部分;
步骤6:在斜向ZnO纳米线阵列上制备一层导电薄膜,作为上电极;
步骤7:在掺Mg半极性面(11-22)的p-GaN层的上表面一侧制备下电极,完成高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池的制作;
采用水热法在掺Mg半极性面(11-22)的p-GaN层上制备斜向生长的ZnO纳米线阵列:取一定量用于ZnO纳米线生长的前体液于水热反应釜中,将掺Mg半极性面(11-22)的p-GaN层朝下放置,使其漂浮在前体液中,在一定温度下反应生长斜向ZnO纳米线。
9.按照权利要求8的方法,其特征在于,水热法所使用前体液为锌盐和六亚甲基四胺组成的水溶液;所述锌盐优选为Zn(NO3)2·6H2O(六水合硝酸锌);所述锌盐和六亚甲基四胺的摩尔比优选为1:1~1:2;所述锌盐的浓度优选为2.5~20mmol/L;所述六亚甲基四胺的浓度优选为2.5~40mmol/L。
10.按照权利要求8的方法,其特征在于,水热反应的温度优选为70~90℃;所述水热反应的时间优选为7~24h。
CN201710668059.1A 2017-08-07 2017-08-07 一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池 Active CN107527962B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710668059.1A CN107527962B (zh) 2017-08-07 2017-08-07 一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710668059.1A CN107527962B (zh) 2017-08-07 2017-08-07 一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池

Publications (2)

Publication Number Publication Date
CN107527962A true CN107527962A (zh) 2017-12-29
CN107527962B CN107527962B (zh) 2019-02-26

Family

ID=60680734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710668059.1A Active CN107527962B (zh) 2017-08-07 2017-08-07 一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池

Country Status (1)

Country Link
CN (1) CN107527962B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365517A (zh) * 2018-01-03 2018-08-03 中山大学 双色单光子源结构的制备方法及制备的结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350364A (zh) * 2008-09-04 2009-01-21 复旦大学 一种纳米氧化锌场效应晶体管的制作方法
CN101692464A (zh) * 2009-07-09 2010-04-07 云南师范大学 一种具有纳米棒阵列光耦合元的叠层太阳电池
CN102226297A (zh) * 2011-06-17 2011-10-26 浙江大学 一种斜向ZnO纳米线阵列及其生长方法
CN102260046A (zh) * 2010-05-28 2011-11-30 中国科学院大连化学物理研究所 一种定向纳米棒结构氧化锌薄膜的微波合成方法
CN102655206A (zh) * 2011-03-03 2012-09-05 三星电子株式会社 电能产生器
CN102709464A (zh) * 2012-05-23 2012-10-03 国家纳米科学中心 一种氧化锌纳米发电机及其制造方法
US20140065766A1 (en) * 2012-08-30 2014-03-06 National Taiwan University Method for fabricating well-aligned zinc oxide microrods and nanorods and application thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350364A (zh) * 2008-09-04 2009-01-21 复旦大学 一种纳米氧化锌场效应晶体管的制作方法
CN101692464A (zh) * 2009-07-09 2010-04-07 云南师范大学 一种具有纳米棒阵列光耦合元的叠层太阳电池
CN102260046A (zh) * 2010-05-28 2011-11-30 中国科学院大连化学物理研究所 一种定向纳米棒结构氧化锌薄膜的微波合成方法
CN102655206A (zh) * 2011-03-03 2012-09-05 三星电子株式会社 电能产生器
CN102226297A (zh) * 2011-06-17 2011-10-26 浙江大学 一种斜向ZnO纳米线阵列及其生长方法
CN102709464A (zh) * 2012-05-23 2012-10-03 国家纳米科学中心 一种氧化锌纳米发电机及其制造方法
US20140065766A1 (en) * 2012-08-30 2014-03-06 National Taiwan University Method for fabricating well-aligned zinc oxide microrods and nanorods and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIE, YQ ET AL.: "Single ZnO Nanowire/p-type GaN Heterojunctions for Photovoltaic Devices and UV Light-Emitting Diodes", 《ADVANCED MATERIALS》 *
CAO, XB ET AL.: "Decoration of Textured ZnO Nanowires Array with CdTe Quantum Dots: Enhanced Light-Trapping Effect and Photogenerated Charge Separation", 《JOURNAL OF PHYSICAL CHEMISTRY C》 *
WU, Y ET AL.: "Enhanced photovoltaic performance of an inclined nanowire array solar cell", 《OPTICS EXPRESS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365517A (zh) * 2018-01-03 2018-08-03 中山大学 双色单光子源结构的制备方法及制备的结构
CN108365517B (zh) * 2018-01-03 2020-12-29 中山大学 双色单光子源结构的制备方法及制备的结构

Also Published As

Publication number Publication date
CN107527962B (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
Xu et al. Solution-derived ZnO nanostructures for photoanodes of dye-sensitized solar cells
JP4880597B2 (ja) 針状結晶の配列体を含む複合体およびその製造方法、ならびに光電変換素子、発光素子およびキャパシタ
Wei et al. Three kinds of Cu 2 O/ZnO heterostructure solar cells fabricated with electrochemical deposition and their structure-related photovoltaic properties
Tian et al. Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells
Zhao et al. Interface engineering in 1D ZnO‐based heterostructures for photoelectrical devices
CN102268706A (zh) 制备ZnO/Cu2O异质结材料及ZnO/Cu2O三维结构异质结太阳电池的方法
CN109326717A (zh) 一种大面积高效稳定的钝化隧穿有机-无机杂化钙钛矿太阳能电池及叠层电池
CN102637755B (zh) 一种纳米结构czts薄膜光伏电池及其制备方法
WO2021104528A1 (zh) 日盲紫外光电化学光探测器及其产品
CN102723208A (zh) 一维氧化锌-二氧化钛核壳结构复合纳米线阵列的制备方法
CN110085746A (zh) 电子传输层及其制备方法和应用
CN104264131A (zh) 一种在ZnO纳米线阵列上生长的纤维状ZnO纳米线及其制备方法
CN104282440B (zh) 一种硫族量子点敏化氧化物半导体光阳极的制备方法
CN113314672A (zh) 一种钙钛矿太阳能电池及其制备方法
CN104882287B (zh) 一种提高量子点敏化太阳能电池光电转换效率的方法
CN108054225A (zh) 一种基于纳米结构薄膜电极的氧化亚铜太阳能电池及其制备方法
WO2008147486A2 (en) Methods of fabricating nanostructured zno electrodes for efficient dye sensitized solar cells
CN104465807A (zh) 一种czts纳米阵列薄膜太阳能光伏电池及其制备方法
Kumari et al. Zinc Oxide: A fascinating material for photovoltaic applications
CN107527962B (zh) 一种高感光面积的斜向ZnO纳米线/GaN异质结太阳能电池
CN110165020B (zh) 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
CN102522505B (zh) 无机与有机混合太阳能电池
CN104393069A (zh) 二氧化钛纳米晶体颗粒及其制备方法以及在太阳能电池上的应用
CN105420780B (zh) 复合纳米异质结薄膜材料及复合异质结太阳电池制备方法
CN114824095A (zh) 一种钝化有机/无机杂化钙钛矿薄膜的太阳电池制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant