CN107514983B - 一种基于三维测量技术测量物体表面积的系统及方法 - Google Patents

一种基于三维测量技术测量物体表面积的系统及方法 Download PDF

Info

Publication number
CN107514983B
CN107514983B CN201610673881.2A CN201610673881A CN107514983B CN 107514983 B CN107514983 B CN 107514983B CN 201610673881 A CN201610673881 A CN 201610673881A CN 107514983 B CN107514983 B CN 107514983B
Authority
CN
China
Prior art keywords
dimensional
data
measurement
surface area
dimensional data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610673881.2A
Other languages
English (en)
Other versions
CN107514983A (zh
Inventor
刘家朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai X Imaging Info & Tech Co ltd
Original Assignee
Shanghai X Imaging Info & Tech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai X Imaging Info & Tech Co ltd filed Critical Shanghai X Imaging Info & Tech Co ltd
Priority to CN201610673881.2A priority Critical patent/CN107514983B/zh
Priority to PCT/CN2017/081560 priority patent/WO2018049818A1/zh
Publication of CN107514983A publication Critical patent/CN107514983A/zh
Application granted granted Critical
Publication of CN107514983B publication Critical patent/CN107514983B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/28Measuring arrangements characterised by the use of optical techniques for measuring areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/022Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明提出了一种基于三维测量技术测量物体表面积的系统,具体包括三维测量与表面积计算子系统,控制子系统和机械机构子系统三个部分,通过对物体表面三维数据重建,完成物体表面积的准确测量,同时设计了一系列的快速处理流程:可同时扫描多个待测物体,采用多三维测量系统支持全方位三维数据同时采集,流水线作业,三维测量的数据一键优化,以及一键导出测量报告。本发明提出的物体表面积测量系统操作简单,能快速准确的完成测量任务,大大加快了物体表面积的检测测量流程。

Description

一种基于三维测量技术测量物体表面积的系统及方法
[技术领域]
本专利涉及计算机立体视觉、三维测量及物件质量检测测量领域,具体涉及一种基于三维测量技术的物体表面积和体积进行精确测量的系统及方法。
[背景技术]
随着信息技术的快速发展,计算机立体视觉技术、图像处理技术在各行各业的应用也日益广泛。利用视觉三维重建技术在工业测量检测领域的应用也得到人们的关注,该技术具有快速、高效、精确且对检测物体无损等优点,被广泛用于工业质量检测(缺陷检测、测量等)。其可以帮助企业提高产品质量及规范产品质量管理,更利于促进产品的销售。
表面积测量在食品安全、检测检疫、法院鉴定、医疗诊断等领域有广泛的应用,目前对表面积的测量主要是借助于人工的方法,利用传统的测量工具如游标卡尺、卷尺等工具测量出物体不同形状区域的长宽高以及直径等尺寸,然后根据物体表面不同区域实际的形状,对每一区域进行表面积近似计算后累加所有的区域,进而得到物体总的表面积,但这些方法存在以下问题:
(1)测量速度慢:对规则的物体如圆柱、圆锥、平面或其他单一规则几何形状的物体,测量出物体的长宽高或直径信息较容易计算出物体的表面积,而实际测量中,物体表面往往不是单一几何形状,而是很多个不同几何形状,如日常的饮料瓶、螺丝帽等,即是多个圆柱体状几何体的结合,目前的测量方法需要对每一部分圆柱体计算其直径、高度等信息,然后再将每一部分几何体表面积累加计算物体总的表面积,测量速度慢;
(2)测量精度低:除规则物体外,大部分物体为非规则几何形状的物体,如婴儿瓶的奶嘴、表面凹凸的饮料瓶、吃饭的叉子、勺子、人体的皮肤表面等大部分物品,表面为非规则复杂曲面,难以通过简单测量其长宽高或直径等信息计算其表面积,目前通常的做法是将非规则曲面近似为规则曲面,然后测量该曲面长宽高或直径等信息,进而近似计算其表面积,计算精度低;
(3)测量效率低:目前的测量方法主要通过人工的测量方法对物体的表面积进行测量计算,由于物体表面往往包含多个面,且物体表面往往有多个非规则表面组成,现有的方法需借助人工对每一表面进行测量然后累加所有测量面的面积,测量效率低,难以满足实际需求中快速准确对物体表面积进行测量计算的要求。
为了解决物体表面积测量中上述实际的问题,本发明专利提出一种基于三维测量技术的物体表面积精确、快速测量系统,通过计算机立体视觉的方法,对物体的表面进行三维数据重建,进而得到物体的表面三维数据,然后对重建出的物体表面的三维数据进行分析测量计算,快速得到物体表面精确的表面积,一键生成检测报告存入档案。同时还解决了不同人员手工测量差异大,无法对检测结果进行追溯等问题。
[发明内容]
本发明的目的是为了快速准确的测量物体的表面积,提出了一种基于三维测量技术构建物体表面三维数据,测量物体尺寸(长度、表面积、体积等)的方法,设计了一套方便易用的测量系统装置。
本发明的技术方案是:一种基于三维测量技术的物体表面积精确测量系统由三维测量与表面积计算子系统;控制子系统和机械机构子系统三大部分组成。
(1)三维重建与表面积计算子系统由视觉处理计算机、高精度发光标定板、高清相机(单目、双目或多目相机)、结构光或激光发生器和系统软件组成,用用于生成三维数据及数据显示,其中高清相机、结构光或激光发生器和软件组成三维测量系统,该子系统包含至少一套三维测量系统。
(2)控制子系统,与三维测量与表面积计算子系统连接,其由步进电机、控制器、轴承与旋转平台组成,用于配合物体多视角图像数据获取及三维数据的拼接。
(3)机械机构子系统,与三维测量与表面积计算子系统和控制子系统连接,其由机柜、电机支架、固定支架、调节机构组成,用于连接、安装、固定、调节设备的各个部件。
本发明所述的三维测量与表面积计算子系统,其原理是利用相机连续采集有结构光的图像数据,通过三维重建技术实现对待测量物体的表面三维数据重建,得到物体表面的三维数据,进而将得到的三维数据,对三维数据进行一系列处理后,通过计算将其转化为三角面片数据,依据三角面片计算物体待测量区域的表面积;通过在物体内部任取一点,与所有三角面片建立连接形成三角锥,依据所有三角锥体积累加求和计算待测物体体积。
物体三维重建的主要过程包括相机标定、物体表面三维数据重建、三维数据拼接、三维数据处理、三角面片数据生成。
本发明所述的控制子系统主要目的为辅助三维测量与表面积计算子系统实现对测量物体各个角度的图像数据采集以及三维数据重建,各个位置角度的三维数据通过自动拼接算法合成物体完整的表面三维数据。通过计算机连接所述控制器,并给所述控制器发送命令,控制所述步进电机运动,进而带动所述旋转平台旋转一定角度;通过所述旋转平台带动物体转动,可以拍摄到待测物体不同视角的画面,以生成不同视角的三维数据,通过三维数据拼接算法将不同视角的三维数据转化到同一坐标系下,从而得到目标物体的完整三维数据;所述的三维数据拼接支持标志点拼接、无标志点特征拼接和旋转平台拼接三种方式,三种拼接方式相互补充,相互促进,使得不同视角三维数据能够高速度、高精度拼接。
本发明所述的机械机构子系统由轴承、电机支架及用于安装摄像头和结构光发生器的固定支架组成,安装相机的支架具有二维自由度,主要起支撑和角度调节的作用。具体构架为:一个、两个或多个高清相机固定在机械机构内的长方体形支架上,在距离相机一定距离处安放结构光发生器,在固定支架底部安装有一个二维调节机构,用于驱动三维测量系统左右、上下转动(XY轴方向)到指定角度。
为了获取物体三维数据,需要对相机进行标定,采用自制高精度标定板对相机进行标定,获取相机内、外参数。利用标定好的相机获取前方待测物体的一系列图像,通过结构光三维重建算法,得到物体的三维数据。通过控制子系统,实现对物体各个角度位置的三维数据重建,获取对应的三维数据,通过自动拼接算法实现对各个位置三维数据的拼接。对拼接后的三维数据,通过预处理算法,对重建出的物体三维数据进行处理,将处理好的数据转化为三角面片数据;对每一个三角面片利用三角形的面积计算法方法,计算每一个三角面片的面积数据,对所有的三角面片面积进行累积叠加,进而得到物体表面的面积数据。
物体表面积计算方法其原理相当于微积分求面积:对各种不规则的物体表面,将其划分为很多个小的三角面片,当细分的三角面片小到一点程度时,可以将不规则的表面近似为规则的三角面片来计算,然后利用微积分的思想对所有三角面片面积求和,得到物体的表面积。因为扫描物体重建得到的三维数据精度高(达0.02mm),密度大的特点,所以由其生成的三角面片也是很微小的,利用微积分的思想保证了测量面积的高精度。
本发明提出的三维测量与表面积计算子系统中,所述的标定方法中使用的标定面板采用高精度激光打标制作,精度高达+/-0.0001mm,同时自带LED面光源提供照明,亮度均匀,表面经漫反射处理,面板无反光,适用于提取高精度的棋盘格角点;
本发明提出的三维测量与表面积计算子系统中,所述的三维数据拼接支持标志点拼接、无标志点特征拼接和旋转平台拼接三种方式。
本发明提出的三维测量与表面积计算子系统中,通过所述系统软件可以控制三维测量系统移动到指定位置,控制旋转平台上下、左右运动,并对物体三维数据进行一键扫描;所述的三维数据处理包括去重、滤波、平滑处理、采样、补洞、一键优化和生成三角面片等功能;所述的三维测量当采用两套三维测量系统同时工作时,可以涵盖物体小弧面细节数据采集和大弧面整体框架数据采集。
本发明提出的三维测量与表面积计算子系统中,所述的表面积和体积计算包括测量结果输出到数据库,支持一键打印测量报告,报告中包含物体三维数据的投影视图(与实物大小比为1∶1)。为了得到与实物大小比为1∶1的投影视图,需要将3D坐标通过模型视景矩阵和投影矩阵转换到2D投影坐标系,然后根据打印机分辨率转换到对应纸张大小并生成模型图像数据进行报告打印。
本发明提出的控制子系统中,步进电机带动转盘旋转的精度采用激光测验法,对其进行校验,同时对贴在转盘上的标志点进行三维数据重建与配准,反推旋转误差,进行误差矫正。所述旋转平台支持水平旋转、升降、倾斜多轴运动;旋转平台台面使用带吸附能力硅胶板或其它类似材质制作而成,物体放在上面可以直接吸附固定,防止物体移动影响测量精度;旋转平台也可以使用传送带替换,支持物体流水线三维测量作业,同时进行物体质量检测,根据物体质量检测结果进行分拣。
本发明提出的三维测量与表面积计算子系统中,所述的三维测量系统可以通过垂直、水平导轨上任意移动到机柜的顶部、底部、前部、后部和左右侧面,从而对待测物体进行全方位数据测量;当三维测量系统移动到底部时,向上扫描物体,底部转台可以使用透明玻璃替换,使物体底部三维数据能轻易获取;所述三维测量系统也可以直接安装多套到机柜的顶部、底部、前部、后部和左右侧面,直接对待测物体进行全方位三维数据测量。
本发明的有益效果是:
1.精度高。提出了一个自动测量系统,通过对物体表面的三维重建得到物体的三维数据,利用得到的三维数据实现对任意复杂物体表面的面积计算,由于基于结构光的三维数据重建可以实现非常高的精度,且不需要通过人工计算的方法对物体表面非规则曲面近似为规则表面进行模拟计算,本发明专利提出的系统,计算精度更好。
2.速度快。本发明提出的系统可以单次实现对多个物体的同时三维数据重建及测量,避免人工的方法必须每次分别对每一物体进行测量,测量速度更快,同时支持一键式打印测量报告,以及流水线作业。
3.工艺简单。机械部分仅由两个自由度的电机和固定摄像头、结构光发生器和安装支架组成,加工、安装方便。
[附图说明]
图1为本发明的系统装置示意图(左、右为不同视角的示意图),其中1、三维测量系统a,2、三维测量系统b,3、控制子系统,4、机械机构。
图2为本发明的基于双目相机的三维测量系统示意图,其中1、左摄像机(含相机固定支架),2、结构光或激光发生器,3、右摄像机(含相机固定支架),4、固定支架。
图3为控制子系统不同视角的剖视图,其中1、旋转平台,2、轴承,3、步进电机,4、电机控制器,5、电机电源,6、结构光或激光发生器电源。
图4为本发明的高精度发光标定板实物图。
图5为本发明的三维测量与表面积计算子系统流程图。
图6简单标准实物三维数据,其中左上为圆柱,右上为四棱锥,左下立方体,右下为圆锥。
[具体实施方式]
下面结合附图和具体实施方式对本发明做进一步详细说明。本发明涉及一种基于三维测量技术精确测量物体表面积的系统如图1所示,具体包括三维测量与表面积计算子系统,主要由图1中的三维测量系统a1、三维测量系统b2连接视觉处理计算机和系统软件(未示出)组成,用于生成三维数据;控制子系统3,与三维测量与表面积计算子系统连接,用于配合物体多视角图像数据获取及三维数据的拼接;机械机构子系统4,与三维测量与表面积计算子系统和控制子系统连接,用于安装、固定、调节设备的各个部件。
图2为三维测量与表面积计算子系统中三维测量系统详细结构图,由两个高清相机1、3、结构光或激光发生器2和其调节固定支架4组成;实际测量应用中,根据用户需求,可以配置一个、两个或四个高清相机。图3为控制子系统,由旋转平台1、轴承2、步进电机3、电机控制器4、电机电源5和结构光或激光发生器电源6组成。
本发明所述视觉处理计算机,计算机直接通过数据线与系统设备连接,其由高性能计算机和相机同步触发控制器组成,负责多相机图像数据的同步采集及数据运算,数据存储和数据显示;所述高清相机可以采用单目、双目或多目配置,通过相机同步触发控制器与计算机连接;通过标定板对相机进行标定,获取相机的内、外部参数及旋转平移矩阵;所述结构光发生器产生相移、格雷码或两种融合的结构光投射到待测物表面进行三维数据重建;所述结构光发生器也可以用激光发生器进行替换;所述系统软件包括相机标定模块,高速三维测量模块,数据处理模块,数据分析模块,系统控制模块,通过该软件控制电机运动,采集图像数据进行分析计算,显示三维数据及结果展示。
图4为本发明提出的三维测量与表面积计算子系统中标定模块所使用的高精度标定板实物图,标定面板采用高精度激光打标制作,精度高达+/-0.0001mm,同时自带LED面光源提供照明,亮度均匀,表面经漫反射处理,面板无反光,适用于提取高精度的棋盘格角点;标定方法基于改进的张正友标定算法,提取标定板中任意数量角点和中心圆点,建立标定板各角点的实际位置关系来进行相机标定。
本发明中,三维测量与表面积计算子系统,其原理是利用相机连续采集带有结构光的图像数据,通过三维测量技术实现对待测量物体的表面三维数据重建,得到物体表面的三维数据,进而将得到的三维数据,对三维数据进行一系列处理后,通过计算将其转化为三角面片数据,依据三角面片数据计算物体待测量区域的表面积;通过在物体内部任取一点,与所有三角面片建立连接形成三角锥,依据所有三角锥体积累加求和计算待测物体体积。
在三维测量与表面积计算子系统中,通过所述系统软件可以控制三维测量系统移动到指定位置,控制旋转平台上下、左右运动,并对物体三维数据进行一键扫描;所述的三维数据其处理方法包括去重、滤波、平滑处理、采样、补洞、一键优化和生成三角面片等功能。所述的三维测量采用两套三维测量系统同时工作,可以涵盖物体小弧面细节数据采集和大弧面整体框架数据采集。
本发明系统中数据显示包括物体三维数据展示,物体检测报告展示;支持物体表面积和体积等测量结果输出到数据库,一键打印测量报告,报告中包含物体三维数据的投影视图,为了得到与实物大小比为1∶1的投影视图,需要将3D坐标通过模型视景矩阵和投影矩阵转换到2D投影坐标系,然后根据打印机分辨率转换到对应纸张大小并生成模型图像数据进行报告打印。
本发明所提出的系统,在控制子系统中如图3所示,计算机连接控制器,给控制器发送命令,控制器控制步进电机运动,进而带动旋转平台旋转一定角度;通过旋转平台的带动物体转动,可以拍摄到待测物体不同视角的画面,用于生成不同视角的三维数据,通过拼接算法将不同视角的三维数据转化到同一坐标系下,从而得到目标物体的完整三维数据;所述的三维数据拼接支持标志点拼接、无标志点特征拼接和旋转平台拼接三种方式,三种拼接方法相互补充,相互促进,进而达到不同视角三维数据的高速度、高精度拼接的目的。当旋转平台用传送带替换时,则通过计算机控制传送带运动,将物体传送到测量中心位置进行测量,并根据测量结果进行分拣;同时也可通过计算机控制三维测量系统移动到导轨上的指定位置。
本发明所提出的系统,在控制子系统中,所述的步进电机带动转盘旋转的精度采用激光测验法,对其进行校验,同时对贴在转盘上的标志点进行三维数据重建反推旋转误差,进行误差矫正。所述旋转平台支持水平旋转、升降、倾斜多轴运动;所述旋转平台台面使用带吸附能力硅胶板或其它类似材质制作而成,物体放在上面可以直接吸附固定,防止物体移动影响测量精度;所述旋转平台也可以使用传送带替换,支持物体流水线三维测量作业,同时进行物体质量检测,根据物体质量检测结果进行分拣。
本发明所提出的系统,在机械机构子系统中,机柜内安装有水平、垂直导轨,用于安装三维测量系统,并由电机控其移动;如图2所示安装相机的支架具有二维自由度,主要起支撑和角度调节的作用。相机支架固定在机械机构内的长方体形三维测量系统固定支架上,在距离相机一定距离处安放结构光发生器;在固定支架底部安装一个二维调节机构,用于驱动三维测量系统左右、上下转动到指定位置。
本发明所提出的系统,在三维测量与表面积计算子系统中,所述的三维测量系统可以通过垂直、水平导轨上任意移动到机柜的顶部、底部、前部、后部和左右侧面,从而对待测物体进行全方位数据测量;当三维测量系统移动到底部时,向上扫描物体,底部转台可以使用透明玻璃替换,使物体底部三维数据能轻易获取;所述三维测量系统也可以直接安装多套到机柜的顶部、底部、前部、后部和左右侧面,直接对待测物体进行全方位三维数据测量。
如图5所示,本发明所提出系统中的基于三维测量技术精确测量物体表面积的方法,其实现的具体步骤如下:
步骤1:利用高精度发光标定板计算出相机内、外部参数信息及旋转平移矩阵;
步骤2:将待测量物体放置于测量区,利用三维测量方法实现对物体的三维数据重建,通过计算得到物体的三维数据;
步骤3:对得到的三维数据进行一系列处理,得到待测量物体的完整、干净三维数据;
步骤4:将上述步骤3得到的三维数据转化为三角面片数据,计算单个三角面片的面积,再累加物体待测量区域所有三角面片的面积之和,进而得到物体待测量区域总的表面积;
步骤5:导出测量数据,打印检测报告。
下面结合具体的实施例对本发明所描述的测量系统中表面积测量的准确性做详细说明:
本实施例中,因为所有复杂物体表面都可以看作为简单物体表面叠加而成,而且复杂物体表面的实际表面积数据也无法准确获取,所以选取四组简单规则物体进行测量,如图6所示,左上为圆柱体的三维数据图,右上为四棱锥的三维数据图,左下立方体的三维数据图,右下为圆锥的三维数据图。通过游标卡尺测得物体实际长宽高计算物体实际表面积和实际体积。
将四个被测物同时放到测量系统中,通过系统软件对目标物进行三维数据建模,进行一系列处理后生成测量报告,将三维测量结果与通过游标卡尺测量结果对比发现,三维测量结果接近游标卡尺计算结果,因手工测量长度也不能保证其准确性,所以最大误差在3%左右。
表1物体表面积和体积三维测量结果与手工测量数据对比
物体 系统测量表面积 系统测量体积 手工测量表面积 手工测量体积
圆柱体 92.3704cm2 67.6309cm3 91.2038cm2 66.7009cm3
四棱锥 58.2024cm2 27.4136cm3 58.7008cm2 26.3933cm3
立方体 95.3952cm2 64.9089cm3 96.4806cm2 64.4812cm3
圆锥体 50.1010cm2 22.0741cm3 49.3656cm2 21.4098cm3
本发明的保护内容不局限于以上实施例,在不背离发明构思的精神和范围下,本领域技术人员能够想到的变化和优点都被包括在本发明中,并且以所附的权利要求书为保护范围。

Claims (7)

1.一种基于三维测量技术精确测量物体表面积的系统,其特征在于,该系统包括:
三维测量与表面积计算子系统,由视觉处理计算机、高精度发光标定板、高清相机、结构光发生器和系统软件组成,用于生成三维数据及数据显示,其中高清相机、结构光发生器和软件组成三维测量系统,该子系统包含至少一套三维测量系统;
控制子系统,与所述三维测量与表面积计算子系统连接,其由步进电机、控制器、轴承与旋转平台组成,用于配合物体多视角图像数据获取及三维数据拼接;所述步进电机带动转盘旋转的精度采用激光测验法对其进行校验,同时对贴在转盘上的标志点进行三维数据重建与配准,反推旋转误差,进行误差矫正;
机械机构子系统,与所述三维测量与表面积计算子系统和控制子系统连接,其由机柜、固定支架、二维调节机构组成,用于安装、固定、调节设备的各个部件,
所述视觉处理计算机由高性能计算机和相机触发控制器组成,负责多相机图像数据的同步采集、数据运算、数据存储和数据显示;所述相机为单目或多目高清相机,通过所述相机触发控制器与所述高性能计算机连接;所述高精度发光标定板采用高精度激光打标制作,精度高达+/-0.0001mm,同时自带LED面光源提供照明,亮度均匀,表面经漫反射处理,面板无反光,适用于提取高精度的棋盘格角点;所述结构光发生器产生相移、格雷码或两种融合的结构光投射到待测物表面;所述系统软件包括相机标定模块、高速三维测量模块、数据处理模块、数据分析模块以及系统控制模块,通过所述系统软件控制所述步进电机运动,采集图像数据进行分析计算,显示三维数据及结果展示,
在所述控制子系统中,所述视觉处理计算机连接所述控制器,并给所述控制器发送命令,控制所述步进电机运动,进而带动所述旋转平台旋转一定角度;通过所述旋转平台带动物体转动,拍摄待测物体不同视角的画面,以生成不同视角的三维数据,通过三维数据拼接算法将不同视角的三维数据转化到同一坐标系下,从而得到目标物体的完整三维数据;所述的三维数据拼接支持标志点拼接、无标志点特征拼接和旋转平台拼接三种方式,三种拼接方式相互补充,相互促进,使得不同视角三维数据能够高速度、高精度拼接,在所述三维测量与表面积计算子系统中,通过所述系统软件控制三维测量系统移动到指定位置,控制旋转平台上下、左右运动,并对物体三维数据进行一键扫描;处理所述三维数据的方法包括去重、滤波、平滑处理、采样、补洞、一键优化和生成三角面片;三维测量采用两套三维测量系统同时工作时,涵盖物体小弧面细节数据采集和大弧面整体框架数据采集。
2.如权利要求1所述的系统,所述三维测量与表面积计算子系统,利用相机连续采集有结构光的图像数据,通过三维重建技术实现对待测量物体的表面三维数据重建,得到物体表面的三维数据,进行处理后,通过计算将其转化为三角面片数据,根据所述三角面片数据计算物体待测量区域的表面积;通过在物体内部任取一点,与所有三角面片建立连接形成三角锥,根据所有三角锥体积累加求和计算待测物体体积。
3.如权利要求1所述的系统,所述数据显示包括物体三维数据显示,物体检测报告显示;支持物体表面积和体积测量结果输出到数据库,一键打印测量报告,报告中包含物体三维数据的投影视图,所述投影视图需要将3D坐标通过模型视景矩阵和投影矩阵转换到2D投影坐标系,然后根据打印机分辨率转换到对应纸张大小并生成模型图像数据进行报告打印,以此得到所述投影视图与实物大小比例为1:1。
4.如权利要求1所述的系统,在所述控制子系统中,所述旋转平台支持水平旋转、升降、倾斜多轴运动;所述旋转平台台面使用带吸附能力硅胶板而成,物体放在上面直接吸附固定,防止物体移动影响测量精度。
5.如权利要求1所述的系统,在所述机械机构子系统中,所述机柜内安装有水平、垂直导轨,用于安装三维测量系统,并由电机控其移动;安装相机的相机固定支架具有二维自由度,起支撑和角度调节的作用;多个相机支架固定在所述机械机构子系统内的长方体形固定支架上,在距离相机一定距离处安放结构光发生器;在所述固定支架底部安装所述二维调节机构,用于驱动三维测量系统左右、上下转动到指定位置。
6.如权利要求1所述的系统,所述的三维测量系统通过垂直、水平导轨上任意移动到机柜的顶部、底部、前部、后部和左右侧面,从而对待测物体进行全方位数据测量;当三维测量系统移动到底部时,向上扫描物体,底部转台使用透明玻璃,实现对物体底部三维数据的获取。
7.一种采用如权利要求1所述系统的基于三维测量技术精确测量物体表面积的方法,其特征在于,包括以下步骤:
步骤1:利用所述高精度发光标定板计算出所述相机内、外部参数信息及旋转平移矩阵;
步骤2:将待测量物体放置于测量区,利用三维测量方法实现对物体的三维数据重建,通过计算得到物体的三维数据;
步骤3:对得到的所述三维数据进行一系列处理,得到待测量物体的完整、干净三维数据;
步骤4:将上述步骤3得到的三维数据转化为三角面片数据,计算单个三角面片的面积,再累加物体待测量区域所有三角面片的面积之和,进而得到物体待测量区域总的表面积;
步骤5:导出测量数据,打印检测报告。
CN201610673881.2A 2016-08-16 2016-08-16 一种基于三维测量技术测量物体表面积的系统及方法 Active CN107514983B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610673881.2A CN107514983B (zh) 2016-08-16 2016-08-16 一种基于三维测量技术测量物体表面积的系统及方法
PCT/CN2017/081560 WO2018049818A1 (zh) 2016-08-16 2017-04-24 一种基于三维测量技术测量物体表面积的系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610673881.2A CN107514983B (zh) 2016-08-16 2016-08-16 一种基于三维测量技术测量物体表面积的系统及方法

Publications (2)

Publication Number Publication Date
CN107514983A CN107514983A (zh) 2017-12-26
CN107514983B true CN107514983B (zh) 2024-05-10

Family

ID=60719860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610673881.2A Active CN107514983B (zh) 2016-08-16 2016-08-16 一种基于三维测量技术测量物体表面积的系统及方法

Country Status (2)

Country Link
CN (1) CN107514983B (zh)
WO (1) WO2018049818A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108872235B (zh) * 2018-06-23 2021-02-26 辽宁美骏智能装备有限公司 碎米率及留胚率分析机
CN111323421A (zh) * 2018-12-14 2020-06-23 黎越智能技术研究(广州)有限公司 一种智能橡胶圈检测设备
KR102196035B1 (ko) * 2018-12-26 2020-12-29 (주)미래컴퍼니 펄스 위상 이동을 이용한 3차원 거리측정 카메라의 비선형 거리 오차 보정 방법
CN109632033B (zh) * 2019-02-22 2024-04-26 浙江大学滨海产业技术研究院 一种体积测量的设备与方法
CN110415332A (zh) * 2019-06-21 2019-11-05 上海工程技术大学 一种非单一视角下复杂织物表面三维重建系统及其方法
CN110360942A (zh) * 2019-08-03 2019-10-22 上海凯斯大岛精密电子制造有限公司 一种用于钣金件的检测装置
CN110293993A (zh) * 2019-08-09 2019-10-01 大连维德集成电路有限公司 一种道岔检测装置及系统
CN110660127B (zh) * 2019-09-23 2023-10-27 宁夏农林科学院枸杞工程技术研究所 基于三维点云扫描技术构建枸杞果实表型组数据库的方法
CN110631519A (zh) * 2019-09-29 2019-12-31 东莞市庆颖智能自动化科技有限公司 一种太阳能晶柱的平整度垂直度检测设备及检测方法
CN111127565B (zh) * 2019-12-24 2023-09-01 易视智瞳科技(深圳)有限公司 标定方法、标定系统和计算机可读存储介质
CN113393413B (zh) * 2020-03-11 2022-09-13 河海大学 基于单目与双目视觉协同的水域面积测量方法和系统
CN111627071B (zh) * 2020-04-30 2023-10-17 如你所视(北京)科技有限公司 一种测量电机旋转精度的方法、装置和存储介质
CN111536908B (zh) * 2020-05-12 2021-02-26 西安交通大学 一种基于机器视觉技术的复杂柱体表面积测量装置与方法
CN111750805B (zh) * 2020-07-06 2021-12-10 山东大学 一种基于双目相机成像和结构光技术的三维测量装置及测量方法
CN112037288B (zh) * 2020-09-03 2024-01-26 吉林大学 基于神经网络的线结构光三相同步测量系统及测量方法和标定方法
CN112414894A (zh) * 2020-11-06 2021-02-26 河南工业大学 发酵面制食品比容快速测量及三维重建成像装置
CN112504161B (zh) * 2020-11-26 2023-05-12 北京航空航天大学 一种兼顾测量精度及效率的发动机叶片复合式测量系统
CN112683167A (zh) * 2020-12-17 2021-04-20 上海嗨酷强供应链信息技术有限公司 一种基于ar量方设备
CN112711246A (zh) * 2020-12-23 2021-04-27 贵州航天计量测试技术研究所 基于多目视觉系统的随动系统运动特性校准系统及方法
CN112767364B (zh) * 2021-01-22 2022-06-17 三峡大学 一种闸门门叶表面锈蚀的图像检测系统及锈蚀面积快速测算方法
CN112927133B (zh) * 2021-02-07 2022-04-26 湖南桥康智能科技有限公司 一种基于一体化标定参数的图像空间投影拼接方法
CN113091656B (zh) * 2021-03-25 2022-09-30 中国航发南方工业有限公司 一种封闭异型窄通道类零件的截面面积测量方法及系统
CN113188484B (zh) * 2021-04-16 2022-11-29 北京科技大学 一种热轧卷头部轮廓面积检测方法
CN113377865B (zh) * 2021-05-25 2022-07-15 成都飞机工业(集团)有限责任公司 一种飞机大范围表面质量检测系统的信号同步方法
CN113405423B (zh) * 2021-06-17 2023-09-01 无锡鑫圣智能装备有限公司 一种轴承零部件滚轮夹紧旋转测量装置
CN113494891B (zh) * 2021-06-29 2023-09-29 南京航空航天大学 一种用于火车承载鞍整体型面测量的多视角拼接方法
CN114353702A (zh) * 2021-12-06 2022-04-15 北京动力机械研究所 一种基于视觉检测的旋转开口调节面积测量装置
CN114199155B (zh) * 2021-12-09 2023-11-14 湖北文理学院 一种基于机器视觉的机车构架拉杆座形变测量平台及方法
CN114488664B (zh) * 2022-03-21 2023-12-29 厦门大学 一种电子信息工程图像采集处理装置
CN114674269A (zh) * 2022-03-23 2022-06-28 辽宁省交通高等专科学校 大尺寸物品三维扫描拼接方法
CN116753864B (zh) * 2023-08-17 2023-11-24 中南大学 一种用于立方箱体的全向三维扫描装置及扫描方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974964B1 (en) * 2002-06-17 2005-12-13 Bu-Chin Wang Method and apparatus for three-dimensional surface scanning and measurement of a moving object
CN101236660A (zh) * 2008-03-06 2008-08-06 张利群 三维扫描仪及其三维模型重构方法
CN103315770A (zh) * 2013-03-29 2013-09-25 飞依诺科技(苏州)有限公司 基于三维超声图像的目标参数处理方法及系统
CN105157602A (zh) * 2015-07-13 2015-12-16 西北农林科技大学 基于机器视觉的远程三维扫描系统及方法
CN205175399U (zh) * 2015-09-11 2016-04-20 天津大学 零件位姿识别视觉系统
CN206073939U (zh) * 2016-08-16 2017-04-05 上海汇像信息技术有限公司 一种基于三维测量技术的物体表面积快速测量系统装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104165587A (zh) * 2013-05-17 2014-11-26 刘家朋 一种基于激光与视觉的实时三维成像系统
CN103307978A (zh) * 2013-05-23 2013-09-18 浙江大学 一种测量鸡蛋体积和表面积的方法
CN105674908A (zh) * 2015-12-29 2016-06-15 中国科学院遥感与数字地球研究所 测量装置和体积测量与监视系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974964B1 (en) * 2002-06-17 2005-12-13 Bu-Chin Wang Method and apparatus for three-dimensional surface scanning and measurement of a moving object
CN101236660A (zh) * 2008-03-06 2008-08-06 张利群 三维扫描仪及其三维模型重构方法
CN103315770A (zh) * 2013-03-29 2013-09-25 飞依诺科技(苏州)有限公司 基于三维超声图像的目标参数处理方法及系统
CN105157602A (zh) * 2015-07-13 2015-12-16 西北农林科技大学 基于机器视觉的远程三维扫描系统及方法
CN205175399U (zh) * 2015-09-11 2016-04-20 天津大学 零件位姿识别视觉系统
CN206073939U (zh) * 2016-08-16 2017-04-05 上海汇像信息技术有限公司 一种基于三维测量技术的物体表面积快速测量系统装置

Also Published As

Publication number Publication date
WO2018049818A1 (zh) 2018-03-22
CN107514983A (zh) 2017-12-26

Similar Documents

Publication Publication Date Title
CN107514983B (zh) 一种基于三维测量技术测量物体表面积的系统及方法
CN109215108B (zh) 基于激光扫描的全景三维重建系统及方法
CN104677305B (zh) 一种基于十字结构光的物体表面三维重建方法和系统
CN105403156B (zh) 三维测量设备及用于该三维测量设备的数据融合标定方法
US8107719B2 (en) Machine vision system for three-dimensional metrology and inspection in the semiconductor industry
CN107121093A (zh) 一种基于主动视觉的齿轮测量装置及测量方法
CN110757146B (zh) 汽车车身相对位置调整系统
CA2835457A1 (en) Portable optical metrology inspection station
CN206073939U (zh) 一种基于三维测量技术的物体表面积快速测量系统装置
CN104881864A (zh) 人体头部三维扫描仪及三维建模方法
CN108344751A (zh) 基于多通道光源的材料板形缺陷检测系统和方法
CN205940454U (zh) 二维三维复合式测量仪
CN112257537B (zh) 一种智能多点三维信息采集设备
CN105841618A (zh) 二维三维复合式测量仪及其数据融合标定方法
CN112361962B (zh) 一种多俯仰角度的智能视觉3d信息采集设备
WO2022078439A1 (zh) 一种空间与物体三维信息采集匹配设备及方法
CN115682937A (zh) 一种自动化三维激光扫描仪的校准方法
CN113776462B (zh) 基于数字图像的高铁无咋轨道承轨台三维形貌检测方法
CN207703168U (zh) 一种三维测量装置
CN112230021B (zh) 一种无线供电测试系统用测试台架
CN206258082U (zh) 一种具有载物平面实时标定功能的三维影像测量装置
CN114509442A (zh) 应用于物品表面缺陷检测的3d形貌获取方法及装置
CN113175869A (zh) 适用于大型平板类工业零件的尺寸检测设备
CN208998740U (zh) 激光扫描三维成像和ccd二维成像组合测量装置
CN107560547B (zh) 一种扫描系统及扫描方法

Legal Events

Date Code Title Description
DD01 Delivery of document by public notice

Addressee: Liu Jiapeng

Document name: Notification of Passing Examination on Formalities

DD01 Delivery of document by public notice
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant