CN107506566A - A kind of new dynamics of debris flow Numerical Analysis methods and system - Google Patents

A kind of new dynamics of debris flow Numerical Analysis methods and system Download PDF

Info

Publication number
CN107506566A
CN107506566A CN201710958968.9A CN201710958968A CN107506566A CN 107506566 A CN107506566 A CN 107506566A CN 201710958968 A CN201710958968 A CN 201710958968A CN 107506566 A CN107506566 A CN 107506566A
Authority
CN
China
Prior art keywords
mrow
mfrac
msub
msubsup
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710958968.9A
Other languages
Chinese (zh)
Other versions
CN107506566B (en
Inventor
谢云旭
周公旦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Mountain Hazards and Environment IMHE of CAS
Original Assignee
Institute of Mountain Hazards and Environment IMHE of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Mountain Hazards and Environment IMHE of CAS filed Critical Institute of Mountain Hazards and Environment IMHE of CAS
Priority to CN201710958968.9A priority Critical patent/CN107506566B/en
Publication of CN107506566A publication Critical patent/CN107506566A/en
Application granted granted Critical
Publication of CN107506566B publication Critical patent/CN107506566B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The invention belongs to disaster prevention, technical field of environmental management, disclose a kind of new dynamics of debris flow Numerical Analysis methods and system, by analyzing the startup of mud-rock flow raceway groove material, mud-rock flow movement banking process and mechanism, a variety of constitutive equations suitable for dynamics of debris flow feature are obtained;Centered difference numerical method based on non-alternate pattern simultaneously, simulates various dynamics of debris flow processes;And analyze the dynamic feature of debris flow slurry and solid particle, introduce debris flow erosion and move the concept that bed causes mass exchange rate, analyze mud-rock flow and corroded along journey and changed with disaster scale, form the formation campaign accumulation Numerical Simulation Program based on mud-rock flow dynamic process.Numerical Simulation Program and numerical computation method of the present invention have the characteristics that it is simple, efficient, be adapted to provide for give Related Disasters field worker use, improve debris flow, the scientific level of environmental protection.

Description

A kind of new dynamics of debris flow Numerical Analysis methods and system
Technical field
The invention belongs to disaster prevention, technical field of environmental management, more particularly to a kind of new mudstone mobilization force Learn Numerical Analysis methods and system.
Background technology
Started currently with dynamics of debris flow under Navier-Stokes equation depth-averageds method simulation real terrain, The processes such as motion, accumulation are one big focuses of disaster field, because Navier-Stokes depth-averaged equations are in depth-averaged hypothesis While simplification, it can accurately reflect the whole dynamic process of mud-rock flow, while equation solution is relatively simple so that calculate Example can suitably break through scale effect, successfully realize the simulation of extensive case.And algorithm relatively advanced at present is based on windward Finite difference calculus, although can guarantee that difference equation has the higher numerical solution of precision, be to solve for equation numerous and diverse can be asked using Niemann Solution device asks its characteristic equation, characteristic root etc., while is also required to use the numerical value processing means such as dimension division and handles three-dimensional equation Individually solved into several two dimensional equations in vertical direction, it is extremely complex time-consuming.And the method for the present invention is ensureing difference While format space, time second order accuracy, only variable number is tried to achieve using only relatively simple linear interpolation and cell-average method Value solution, avoid solving the characteristic solution of equation using Niemann solver numerous and diversely, have the lifting of big degree on ageing, by logical Parameter adjustment can properly increase spatial accuracy in amount limiter, improve applicability of this method in different situations;Avoid simultaneously Upwind Schemes may use the numerical value processing means such as dimension division, ensure that the true 3 dimensional format of equation.
Mud-rock flow is the typical solid-liquid two-phase flow that a kind of solid phase particles grading is wide, changing bulk density scope is big, is a kind of common The geological disaster in mountain area is distributed in, by its special solid-liquid two-phase flow Complex Flow Status feature, has that scale is big, outburst is rapid, the oncoming force It ferociousness, the features such as impulsive force is huge, not only can rapidly flow in channels, and raceway groove can be gone out and enter river reservoir, cause Water surface lifting, river block to form damming dam, serious threat Hydraulic and Hydro-Power Engineering, and barrier lake dam break causes the flood that bursts in downstream Water disaster, downstream resident safety is endangered, destroys ecological environment.And often physical features is flat, has abundant water resources in Debris Flow Deposition region, mountain Area resident usually carries out agricultural production on the beach of this stabilization, builds village, builds road, but Debris Flow Deposition region By grave danger of potential mud-stone flow disaster, therefore mud-rock flow is particularly extensive mud-rock flow and has turned into current work of preventing and reducing natural disasters In outstanding problem urgently to be resolved hurrily.
The physical significance of each dynamic process of mud-rock flow is indefinite at present:For under the influence of Mountainous Heavy Rainfall, mud-rock flow opens The problem of dynamic-motion-accumulation etc. is related to dynamics of debris flow feature recognizes unclear, causes debris flow control works design parameter Fail to consider dynamics of debris flow startup-motion-accumulation, the features such as scale amplification are corroded along journey, cause parameter calculation error huge Greatly, experience is depended on so that debris flow control works lack scientific, validity.And relevant Debris Flow Deposition scope Division methods mainly still stop traditional original place investigation, experimental data mathematical statistics approximating method, based on physics and Experiments of Machanics Mathematics fitting is difficult accurately to obtain different time debris flow velocity, and alluvial mud changes deeply, can not react true dynamics of debris flow Feature, meanwhile, different geographical difference Mud-stone Flow of Gullies accumulates situation because geology, geographical conditions differ greatly, and causes mathematical statistics It is huge to be fitted the accumulation scope difference drawn, the method is difficult that the consideration conclusion of all regions mud-rock flow is entered, shortage generality, Accuracy and science.
In summary, the problem of prior art is present be:Existing traditional mathematics approximating method lacks practicality, scientific nothing Method reflects real kinetic process;Numerical simulation technology is relatively low to mud-stone flow disaster dynamics simulation precision, and discrete equation is complicated The defects of;In numerical simulation often precision and it is ageing be inversely proportional, will be into several if pursuing split-second precision complexity simply The increase of what multiple, and precision is too low would become hard to reach numerical simulation Expected Results.
The content of the invention
The problem of existing for prior art, the invention provides a kind of new dynamics of debris flow numerical simulation analysis side Method and system, the present invention is while difference scheme space, time second order accuracy is ensured, largely with simple linear Interpolation and cell-average method try to achieve variable value solution, avoid solving the characteristic solution of equation using Niemann solver numerous and diversely, when Have the lifting of big degree in effect property, in passing flux limiter parameter adjustment can properly increase spatial accuracy, improve this method and exist Applicability in different situations;Avoid Upwind Schemes to use the numerical value processing means such as dimension division simultaneously, ensure Equation true 3 dimensional format.
The present invention is that the resistance suitable for mud-rock flow dynamic characteristic has been extracted on the basis of a large amount of physics and Experiments of Machanics Constitutive equation, it is applicable to a variety of disaster bodies:Mud-rock flow, landslide chip stream, take the Numerical-Mode under real terrain such as sand flood water Intend so that the present invention has great advantage in specific aim, applicability compared with prior art.
The present invention is achieved in that a kind of new dynamics of debris flow Numerical Analysis methods, by analyzing mudstone The startup of raceway groove material, mud-rock flow movement banking process and mechanism are flowed, obtains a variety of this structure suitable for dynamics of debris flow feature Equation;Centered difference numerical method based on non-alternate pattern simultaneously, simulates various dynamics of debris flow processes;And analyze mud The dynamic feature of rock glacier slurry and solid particle, introduce debris flow erosion and move the concept that bed causes mass exchange rate, analyze mudstone Stream corrodes along journey to be changed with disaster scale, forms formation-motion-accumulation Numerical Simulation Program based on mud-rock flow dynamic process;
Solid discrete member is added in formation-motion based on mud-rock flow dynamic process-accumulation Numerical Simulation Program of formation, Form the debris flows simulation program of solid-liquid two-way coupling;Inside from analysis note mud-rock flow integral power feature to analysis mud-rock flow Dynamic characteristic under the influence of solid particle and fluid interaction, further simulation reduce true debris flow body and liquefied The dynamic characteristic that dynamic, channel mobile, dynamic erosion and deposition scale amplification, accumulation stop.
Further, the continuity equation of solid particle part and slurry part includes in mud-rock flow:
ρ in formulasfRespectively solid particle and slurry density;Ms,MfFor solid particle and slurry volume;vs,vfRespectively Two parts velocity;ΔMs,ΔMfFor two parts mass change;
Mud-rock flow is reduced to single-phase medium, the continuity equation of mud-rock flow includes:
For vector differential operator,For partial differential symbol,T partial differential is done in expression to function.
Further, a variety of constitutive equations suitable for dynamics of debris flow feature include:
1)
Wherein n is Manning's roughness coefficient;
Or:
τ1=Cbρmixture(u2+v2),
Wherein CbFor dimensionless group, ρmixtureFor mud-rock flow averag density;
2)
τ2=ρ gh βctan(φ);
Wherein βcFor erosion material percentage of consolidation;φ is internal friction angle;
If fine particle content is less than 10% in erodable substrate:
D in above formula50For median particle diameter;ρswTo corrode solid particle and fluid section density in layer;
If fine particle content, which is more than 10%, can use following empirical equation:
τ2=6.8 (PI)1.68P-1.73e-0.97tan(φ);
Wherein PI is plasticity index;P is fine particle content;E is void ratio.
Further, the centered difference numerical method of the non-alternate pattern includes:Entered using noninterlace form finite difference Row is discrete, and variable subscript n represents time step where calculating;Space grid node number on subscript i, j x, y directions, if whole Several is then noninterlaced rectangular mesh, ifFor alternating expression grid;Δ x, Δ y represent x, y directions overhead spacer step It is long;Δ t represents time step;
Specific discrete rear equation is as follows:
It is directly that continuity equation and the equation of momentum is discrete by stagger scheme central difference method:
Iterative equation carries out Van-Lee type interpolation after will be discrete:
Wherein
By discrete equation in section
Carry out multiple integral:
Wherein:
Represent tn+1, tnVariable stagger scheme cell-average;
Wherein, convective term uses:
The discrete rear equation group of stagger scheme is converted into noninterlace form discrete equation:
After iteration special time step-length, output result is:Mud depth h, x directions at each discrete point of grid under specific precision grid Flowing velocity u, y direction flowing velocity v.
Further, formation-motion-accumulation Numerical Simulation Program based on mud-rock flow dynamic process uses variable time step-length Iteration of variables is carried out, initial time step is 0.01S, and variable time step meets:
Wherein ρ (A) is spectral radius;Cr represents Carat, and to meet the stability of discrete equation, Cr meets:
α=1.1 in formula.
Further, discrete specifically include is carried out using noninterlace form finite difference:
(1) parameter is assigned to specific precision gridded elevation figure z in initial value, including t=0 time steps zoning to import;t The specific precision grid material resource elevation h in=0 time step zoning is imported;Determine that soil parameters imports this structure by physics and mechanics Relation;Calculating parameter, which imports, includes total time, Carat, result output gap time;
(2) continuity equation, renewal zoning grid each point mud change h deeply are solved under timing spacer step t=0.01s;
(3) velocity variations u, v on grid each point x, y directions are solved in zoning;If analyzing debris flow erosion substrate, ask Solve erodable basalis Ze changes;
(4) current time and renewal variable time step are updated, iteration is sequentially continued with variable time step by as above (2)-(3) Variable is more than or equal to current time calculates total time, and iteration terminates;
(5) after iteration special time step-length, mud depth h, x directions flowing at each discrete point of grid under specific precision grid is exported Speed u, y direction flowing velocity v.
Another object of the present invention is to provide a kind of new dynamics of debris flow numerical Simulation Analysis System.
Advantages of the present invention and good effect are:The present invention is started by analyzing mud-rock flow raceway groove material, mud-rock flow movement Banking process and mechanism, a variety of constitutive equations suitable for dynamics of debris flow feature are proposed, while the present invention is based on high accuracy The centered difference numerical method of non-alternate pattern, accurate, the efficient various dynamics of debris flow processes of simulation, meanwhile, will be abundant Consider the dynamic feature of debris flow slurry and solid particle, introduce debris flow erosion and move the concept that bed causes mass exchange rate, examine Consider mud-rock flow along journey erosion with disaster scale to change, form formation-motion-accumulation numerical simulation based on mud-rock flow dynamic process Program and numerical computation method.The present invention is analyzed mudstone under different geographical various concentrations different terrain and flowed by numerical simulation Mechanical characteristics, regional context distribution is incorporated into mud-rock flow analysis, skill is provided for China given area disaster prevention Art is supported, science and technology support is provided for the environmental protection of given area ecologically fragile areas.This Numerical Simulation Program and numerical computation method Have the characteristics that it is simple, efficient, be adapted to provide for give Related Disasters field worker use, improve debris flow, environmental protection Scientific level.The specific variable high accuracy of this Numerical Simulation Program and computational methods, suitable for dynamics of debris flow feature etc. Advantage, for processes such as dynamics of debris flow startup-motion-accumulations, preferably whole dynamic process completely can be simulated Out, the science and reliability of dynamics of debris flow process analysis procedure analysis are improved, improves specific aim, the pre- preventive effect of enhancing of diaster prevention and control Fruit provides technical support for mud-rock flow mitigation, preferably services mud-rock flow mitigation.
One aspect of the present invention is:Realize and be applied to the dynamics mistakes such as the startup of mud-rock flow raceway groove material, mud-rock flow movement, accumulation The numerical algorithm and computing system of journey, on the other hand, ensure the features such as having time complexity is relatively low while original precision.This hair It is bright by taking 50W node examples as an example, in the calculating of monokaryon dual-thread, with relatively advanced technology at present compared to saving 10%~15% Time cost.
Brief description of the drawings
Fig. 1 is new dynamics of debris flow Numerical Analysis methods flow chart provided in an embodiment of the present invention.
Fig. 2 is time t=30s provided in an embodiment of the present invention, and t=80s, t=120s, t=250s mud-rock flows are in raceway groove Middle motion, go out raceway groove, the procedure chart in stifled disconnected Yi Gong rivers.
In figure:(a), t=30s;(b), t=80s;(c), t=120s;(d), t=250s.
Fig. 3 is that mud-rock flow deposit depth becomes with move distance in the case of different frictional resistance force coefficients provided in an embodiment of the present invention Change figure.
Fig. 4 is the stifled disconnected Yi Gong rivers whole process of mud-rock flow provided in an embodiment of the present invention:Figure is alluvial in the river course of Yi Gong rivers Mud changes over time figure deeply.
Embodiment
In order to make the purpose , technical scheme and advantage of the present invention be clearer, with reference to embodiments, to the present invention It is further elaborated.It should be appreciated that the specific embodiments described herein are merely illustrative of the present invention, it is not used to Limit the present invention.
The present invention is obtained by field experiment in situ and physics and Experiments of Machanics, and analysis mud-rock flow raceway groove starts, motion, heap Product dynamic information, analytic induction are applied to the constitutive relation equation of dynamics of debris flow feature;
High-precision terrain data in zoning is determined by GIS-Geographic Information System, i.e., there is each discrete point in region Corresponding height value, it is expressed as (x, y, h) by coordinate, x, y, h point is the x of topographic(al) point, y-coordinate and height value h;
Determine that Soil Parameters include the grain composition of the soil body, median particle diameter in zoning by physics and Experiments of Machanics d50, initial water content θ0, porosity n, internalfrictionangleφ;Obtain this numerical method pretreatment stage preparation in need ginseng Number.
The application principle of the present invention is further described below in conjunction with the accompanying drawings.
As shown in figure 1, new dynamics of debris flow Numerical Analysis methods provided in an embodiment of the present invention are including following Step:
S101:By analyzing the startup of mud-rock flow raceway groove material, mud-rock flow movement banking process and mechanism, a variety of be applicable is proposed In the constitutive equation of dynamics of debris flow feature.
S102:Based on the centered difference numerical method of the non-alternate pattern of high accuracy, accurate, the efficient various mud-rock flows of simulation Dynamic process, meanwhile, by abundant analysis debris flow slurry and the dynamic feature of solid particle, introduce the dynamic bed of debris flow erosion and draw Play the concept of mass exchange rate;Analyze mud-rock flow and corroded along journey and changed with disaster scale, formed based on mud-rock flow dynamic process Formation-motion-accumulation Numerical Simulation Program.
S103:At present both at home and abroad Computational fluid mechanics numerical simulation trend from single-phase medium be starting point, progressively to multiphase Medium:Solid liquid media coupling even solid-liquid-gas three phase medium couples draw close, by existing fluid NS depth integral equation be according to Support adds solid discrete member part, forms the debris flows simulation program of solid-liquid two-way coupling, from concern mud-rock flow integral power Dynamic characteristic under the influence of feature to concern mud-rock flow solid particles inside and fluid interaction, further simulation is also The dynamic processes such as former true debris flow body liquefaction starting, channel mobile, the amplification of dynamic erosion and deposition scale, stopping.
With reference to specific embodiment, the invention will be further described.
The continuity equation of solid particle part and slurry part includes in mud-rock flow provided in an embodiment of the present invention:
ρ in formulasfRespectively solid particle and slurry density;Ms,MfFor solid particle and slurry volume;vs,vfRespectively Two parts velocity;ΔMs,ΔMfFor two parts mass change.
If mud-rock flow is reduced into single-phase medium, the continuity equation of mud-rock flow includes:
Mixture density and speed are defined as below can reduced mass conservation:
ρmixturesmsfmf
vmixture=(ρsmsvsfmfvf)/ρmixture
M in above formulas,mfFor solid particle, slurry partial volume fraction, and meet:
Similarly, the conservation of momentum of mud-rock flow solid particle part and slurry part includes:
τsfFor shear stress tensor;finterphaseIt is for solid particle and slurry part inter-phase forces, the conservation of momentum is simple After change:
By mud-rock flow mixture quality conservation conservation of momentum simultaneous and from Navier-Stokes equations, mud extraction is derived Rock glacier dynamic control equation is:
Governing equation group is written as vector format:
Wherein:
Z in formulabFor erodable basalis;G is acceleration of gravity;H is mud-rock flow mud deep thickness;kapFor soil lateral pressure; U, v are velocity in x, y side's upward component;Sfx,SfyIt is substrate frictional resistance in source item in x, y side's upward component;ρbFor substrate Porosity;E is erosion ratio.
Wherein Sfx,SfyIt is applied to flood, mud-rock flow, landslide chip stream formula calculating using several as follows:
N is Manning's roughness coefficient;
Above formula is applied to advance of freshet model, and n spans suggest 0.01~1;
φ is internal friction angle in above formula, suitable for the chip stream that comes down
Wherein μ is frictional resistance force coefficient, and ζ is Voellmy coefficients of disturbance, and span suggests 100~1000;
τ=P μ (I);
Wherein μ12For frictional resistance force coefficient bound;d50For median particle diameter;I is starting number;For average shear rate;CsFor Granule density.
E is the erosion ratio that debris flow erosion substrate produces mass exchange in governing equation, and erosion ratio meets following relation:
E represents erosion rate in above formula;For mudstone current density;τbThe total substrate shear stress of substrate is sheared for debris flow body; τcFor the shearing strength of erodable substrate.
τbUsing following constitutive equation:
Wherein n is Manning's roughness coefficient.
Or:
τ1=Cbρmixture(u2+v2),
Wherein CbFor dimensionless group, ρmixtureFor mud-rock flow averag density;
τcUsing following constitutive equation:
τ2=ρ gh βctan(φ);
Wherein βcFor erodable material percentage of consolidation;φ is internal friction angle
If fine particle content is less than 10% in erodable substrate:
D in above formula50For median particle diameter;ρswTo corrode solid particle and fluid section density in layer.
If fine particle content, which is more than 10%, can use following empirical equation:
τ2=6.8 (PI)1.68P-1.73e-0.97tan(φ);
Wherein PI is plasticity index;P is fine particle content;E is void ratio
Equation group carries out discrete, the time where variable subscript n expressions calculate using high-precision noninterlace form finite difference Step;Space grid node number on subscript i, j x, y directions, it is then noninterlaced rectangular mesh if integer, ifFor alternating expression grid;Δ x, Δ y represent x, spatial mesh size on y directions;Δ t represents time step, it is specific it is discrete after Equation is as follows:
It is directly that continuity equation and the equation of momentum is discrete by stagger scheme central difference method:
Iterative equation carries out Van-Lee type interpolation after will be discrete:
Wherein
By discrete equation in section
Carry out multiple integral:
Wherein:
Represent tn+1, tnVariable stagger scheme cell-average.
Wherein, convective term uses:
The discrete rear equation group of stagger scheme is converted into noninterlace form discrete equation:
After iteration special time step-length, output result is:Mud depth h, x directions at each discrete point of grid under specific precision grid Flowing velocity u, y direction flowing velocity v.
Formation-motion-accumulation Numerical Simulation Program based on mud-rock flow dynamic process is become using variable time step length Iteration is measured, initial time step is 0.01S, and variable time step meets:
Wherein ρ (A) is spectral radius;Cr represents Carat, and to meet the stability of discrete equation, Cr meets:
α=1.1 in formula.
With reference to discrete rear Algebraic Equation set specific steps are solved, the invention will be further described.
Discrete rear Algebraic Equation set is solved to concretely comprise the following steps:
(1) it is high to assign specific precision grid in initial value, including t=0 time steps zoning for the parameter for needing program Journey figure z is imported;The specific precision grid material resource elevation h in t=0 time steps zoning is imported;If considering, substrate is corroded along journey scale Enlarge-effect, consider that erodable layer elevation map Ze is imported;And determine that soil parameters imports constitutive relation by physics and mechanics;Meter Calculating program parameter and importing includes total time, Carat, result output gap time.
(2) continuity equation, renewal zoning grid each point mud change h deeply are solved under timing spacer step t=0.01s.
(3) velocity variations u, v on grid each point x, y directions are solved in zoning;If considering debris flow erosion substrate, ask Solve erodable basalis Ze changes.
(4) current time and renewal variable time step are updated, continuing iteration variable to current time by as above order is more than Equal to total time is calculated, iteration terminates.
(5) after iteration special time step-length, output result is:Mud depth h, x at each discrete point of grid under specific precision grid Direction flowing velocity u, y directions flowing velocity v.
The dynamics of debris flow equation along journey scale amplification mechanism for considering etching effect is a two dimension with being applied to The shallow water equation group of dynamics of debris flow feature constitutive relation, equation group are moved on y directions by x in continuity equation and space Conservation equation composition is measured, equation represents the change of z directions z coordinate in space by variable mud depth h change, therefore can consider It is the three dimensional fluid equation of motion.It is non-linear complicated systems of hyperbolic partial differential equation by shallow water equation essence, the present invention uses A kind of high-precision discrete solution of noninterlace form centered finite difference methods.The method compared with original method need not use it is cumbersome Niemann solver solve characteristic information, and final iterative relation equation is tried to achieve using relatively simple cell-average method, Time and space all ensure simplicity while second order accuracy, quickly calculate dynamics of debris flow process, can be accurate Inverting dynamics of debris flow evolutionary process, by with real event Comparative result, carry out model and parameter to a certain extent and repair Just, it can be very good to disclose dynamics of debris flow whole process, be placed on mitigation for dynamics of debris flow analysis and mud-rock flow and provide Data and technical support.
With reference to example is implemented, the invention will be further described.
Implement example
Such as Fig. 2 to Fig. 4, prick wooden debris flow gully and be located at Linzhi Area of Tibet Bowo County Yi Gong townshiies, belong to the Yarlung Zangbo River three Level tributary left bank Zhigou, Tanglha Range southern side is read positioned at Southeast Tibet area, and catchment area is about 20.2 square kilometres, wherein on It is 2.2 square kilometres to swim the permanent overlay area of ice and snow, and forest-covered area is 10.4 square kilometres, exposed rock formation covering about 7.6 Square kilometre.About 9.7 kilometers of tap drain total length, ditch bed longitudinal river slope is about 52.7%, and exit or entrance of a clitch elevation is about 2500 meters, and Yi Gong riverbanks are high 2300 meters of Cheng Yuewei, overall drop are about 3130 meters.Under the influence of being continued rainfall by rainy season, a large amount of rainwater sweep along cheuch upper and middle reaches normal The rock mass disintegration that year adds up, the clast for formation of coming down, it is about high-speed shadowgraph technique chip stream to form material resource amount, and completely stifled Disconnected Yi Gonghe.
Fig. 2 is that t=30s, 80s, 120s, 250s, 2000 years time Tibet Yi Gong landslides chip stream is moved, rushed in channels Go out raceway groove, the whole process in stifled disconnected Yi Gong rivers.In figure:(a), t=30s;(b), t=80s;(c), t=120s;(d), t= 250s。
Be on the upside of Fig. 3 under coulomb frictional resistance difference frictional resistance force coefficient Tibet Yi Gong come down chip stream ulking thickness with motion away from From variation diagram;It is that speed is with move distance variation diagram under coulomb frictional resistance difference frictional resistance force coefficient on the downside of Fig. 3, vertical line represents in figure The horizontal range in Yi Gong rivers, the horizontal line in vertical line are the stifled disconnected Yi Gong rivers minimum speed of landslide chip stream, and three broken lines are in horizontal stroke in figure Landslide chip stream can block up disconnected Yi Gonghe completely to explanation under three kinds of resistance coefficients in figure on line.
Fig. 4 is the stifled disconnected Yi Gong rivers whole process of chip inflow-accumulation-stream that come down under coulomb frictional resistance.
The event dynamics of debris flow is simulated using the present invention, comprised the following steps that:
The parameter that calculation procedure pretreatment needs is imported in program, starts mud-rock flow movement and calculates, can be according to program The subsidiary motion change monitor monitoring various movable informations of debris flow body, and exported necessarily according to pre-set time interval The result of form, whole event mud-rock flow movement process is reduced by the poster processing soft, can continue in animation, suspend, retreat, Accelerate to play, export as specific format animation etc., grid file space seat in automatic identification zoning in data load process Mark system, and whole mud-rock flow movement simulated scenario is realized by certain color value.
The foregoing is merely illustrative of the preferred embodiments of the present invention, is not intended to limit the invention, all essences in the present invention All any modification, equivalent and improvement made within refreshing and principle etc., should be included in the scope of the protection.

Claims (7)

  1. A kind of 1. new dynamics of debris flow Numerical Analysis methods, it is characterised in that the new dynamics of debris flow number Value analog analysing method is obtained a variety of suitable by analyzing the startup of mud-rock flow raceway groove material, mud-rock flow movement banking process and mechanism Constitutive equation for dynamics of debris flow feature;Centered difference numerical method based on non-alternate pattern simultaneously, simulation are various Dynamics of debris flow process;And the dynamic feature of debris flow slurry and solid particle is analyzed, the dynamic bed of debris flow erosion is introduced and draws The concept of mass exchange rate is played, analysis mud-rock flow corrodes along journey to be changed with disaster scale, is formed based on mud-rock flow dynamic process Formation-motion-accumulation Numerical Simulation Program;
    Solid discrete member is added in formation-motion based on mud-rock flow dynamic process-accumulation Numerical Simulation Program of formation, is formed The debris flows simulation program of solid-liquid two-way coupling;From analysis note mud-rock flow integral power feature to analysis mud-rock flow internal solids Dynamic characteristic under the influence of particle and fluid interaction, further simulation reduce true debris flow body liquefaction starting, ditch The dynamic characteristic that road motion, the amplification of dynamic erosion and deposition scale, accumulation stop.
  2. 2. new dynamics of debris flow Numerical Analysis methods as claimed in claim 1, it is characterised in that solid in mud-rock flow The continuity equation of body particle part and slurry part includes:
    <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;rho;</mi> <mi>s</mi> </msub> <msub> <mi>M</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <mo>&amp;dtri;</mo> <mrow> <mo>(</mo> <msub> <mi>&amp;rho;</mi> <mi>s</mi> </msub> <msub> <mi>M</mi> <mi>s</mi> </msub> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;Delta;M</mi> <mi>s</mi> </msub> <mo>;</mo> </mrow>
    <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;rho;</mi> <mi>f</mi> </msub> <msub> <mi>M</mi> <mi>f</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <mo>&amp;dtri;</mo> <mrow> <mo>(</mo> <msub> <mi>&amp;rho;</mi> <mi>f</mi> </msub> <msub> <mi>M</mi> <mi>f</mi> </msub> <msub> <mi>v</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;Delta;M</mi> <mi>f</mi> </msub> <mo>;</mo> </mrow>
    ρ in formulasfRespectively solid particle and slurry density;Ms,MfFor solid particle and slurry volume;vs,vfRespectively two Component velocity vector;ΔMs,ΔMfFor two parts mass change;
    Mud-rock flow is reduced to single-phase medium, the continuity equation of mud-rock flow includes:
    <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mrow> <mo>(</mo> <msub> <mi>&amp;rho;</mi> <mi>s</mi> </msub> <msub> <mi>m</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>&amp;rho;</mi> <mi>f</mi> </msub> <msub> <mi>m</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <mo>&amp;dtri;</mo> <mrow> <mo>(</mo> <msub> <mi>&amp;rho;</mi> <mi>s</mi> </msub> <msub> <mi>m</mi> <mi>s</mi> </msub> <msub> <mi>v</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>&amp;rho;</mi> <mi>f</mi> </msub> <msub> <mi>m</mi> <mi>f</mi> </msub> <msub> <mi>v</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow>
    ▽ is vector differential operator,For partial differential symbol,T partial differential is done in expression to function.
  3. 3. new dynamics of debris flow Numerical Analysis methods as claimed in claim 1, it is characterised in that a variety of to be applied to The constitutive equation of dynamics of debris flow feature includes:
    1)
    <mrow> <msub> <mi>&amp;tau;</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mi>n</mi> <mn>2</mn> </msup> <mi>&amp;rho;</mi> <mi>g</mi> <mfrac> <mrow> <mo>(</mo> <msup> <mi>u</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>v</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msup> <mi>h</mi> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> </msup> </mfrac> <mo>,</mo> </mrow>
    Wherein n is Manning's roughness coefficient;
    Or:
    τ1=Cbρmixture(u2+v2),
    Wherein CbFor dimensionless group, ρmixtureFor mud-rock flow averag density;
    2)
    τ2=ρ gh βctan(φ);
    Wherein βcFor erosion material percentage of consolidation;φ is internal friction angle;
    If fine particle content is less than 10% in erodable substrate:
    <mrow> <msub> <mi>&amp;tau;</mi> <mi>c</mi> </msub> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <msub> <mi>gd</mi> <mn>50</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;rho;</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>&amp;rho;</mi> <mi>w</mi> </msub> <mo>)</mo> </mrow> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    D in above formula50For median particle diameter;ρswTo corrode solid particle and fluid section density in layer;
    If fine particle content, which is more than 10%, can use following empirical equation:
    τ2=6.8 (PI)1.68P-1.73e-0.97tan(φ);
    Wherein PI is plasticity index;P is fine particle content;E is void ratio.
  4. 4. new dynamics of debris flow Numerical Analysis methods as claimed in claim 1, it is characterised in that
    The centered difference numerical method of the non-alternate pattern includes:Discrete, variable is carried out using noninterlace form finite difference Subscript n represents time step where calculating;Space grid node number on subscript i, j x, y directions, it is then noninterlace if integer Formula rectangular mesh, ifFor alternating expression grid;Δ x, Δ y represent x, spatial mesh size on y directions;When Δ t is represented Between step-length;
    Specific discrete rear equation is as follows:
    It is directly that continuity equation and the equation of momentum is discrete by stagger scheme central difference method:
    <mrow> <msubsup> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mi>n</mi> </msubsup> <mo>-</mo> <mi>&amp;lambda;</mi> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mi>&amp;eta;</mi> <mo>&amp;lsqb;</mo> <mi>g</mi> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mi>g</mi> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>;</mo> </mrow>
    Iterative equation carries out Van-Lee type interpolation after will be discrete:
    <mrow> <mi>u</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <msup> <mi>t</mi> <mi>n</mi> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mo>&amp;Sigma;</mo> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> <mrow> <mi>&amp;Delta;</mi> <mi>x</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mo>`</mo> <msub> <mi>u</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>y</mi> <mo>-</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> </mrow> <mrow> <mi>&amp;Delta;</mi> <mi>y</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msub> <mi>&amp;chi;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
    Wherein
    By discrete equation in section
    Carry out multiple integral:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mrow> <mo>(</mo> <msup> <mi>t</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mrow> <mo>(</mo> <msup> <mi>t</mi> <mi>n</mi> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>&amp;lambda;</mi> <mo>{</mo> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <mrow> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> <mo>|</mo> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <msub> <mi>J</mi> <mrow> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <msup> <mi>t</mi> <mi>n</mi> </msup> <msup> <mi>t</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </msubsup> <msub> <mo>&amp;Integral;</mo> <msub> <mi>J</mi> <mrow> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> </msub> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mi>d</mi> <mi>y</mi> <mi>d</mi> <mi>&amp;tau;</mi> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>&amp;eta;</mi> <mo>{</mo> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <mrow> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> <mo>|</mo> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <msub> <mi>J</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <msup> <mi>t</mi> <mi>n</mi> </msup> <msup> <mi>t</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </msubsup> <msub> <mo>&amp;Integral;</mo> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> </msub> <mo>&amp;lsqb;</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <msub> <mi>y</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mi>d</mi> <mi>x</mi> <mi>d</mi> <mi>&amp;tau;</mi> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
    Wherein:
    <mrow> <msub> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mrow> <mo>(</mo> <msup> <mi>t</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <msub> <mo>&amp;Integral;</mo> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <msup> <mi>t</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mi>d</mi> <mi>x</mi> <mi>d</mi> <mi>y</mi> <mo>,</mo> </mrow>
    Represent tn+1, tnVariable stagger scheme cell-average;
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mrow> <mo>(</mo> <msup> <mi>t</mi> <mi>n</mi> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <msub> <mo>&amp;Integral;</mo> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <msup> <mi>t</mi> <mi>n</mi> </msup> <mo>)</mo> </mrow> <mi>d</mi> <mi>x</mi> <mi>d</mi> <mi>y</mi> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>4</mn> </munderover> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <msub> <mi>S</mi> <mi>k</mi> </msub> <mo>|</mo> </mrow> </mfrac> <msub> <mo>&amp;Integral;</mo> <msub> <mi>S</mi> <mi>k</mi> </msub> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <msub> <mi>t</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mi>d</mi> <mi>x</mi> <mi>d</mi> <mi>y</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msubsup> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mn>4</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mo>`</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mo>`</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>-</mo> <mo>`</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mo>`</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>16</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
    Wherein, convective term uses:
    <mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <mrow> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> <mo>|</mo> </mrow> </mfrac> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <msub> <mi>J</mi> <mrow> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <msup> <mi>t</mi> <mi>n</mi> </msup> <msup> <mi>t</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </msubsup> <msub> <mo>&amp;Integral;</mo> <msub> <mi>J</mi> <mrow> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> </msub> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mi>d</mi> <mi>y</mi> <mi>d</mi> <mi>&amp;tau;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <msub> <mi>J</mi> <mrow> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <msub> <mo>&amp;Integral;</mo> <msub> <mi>J</mi> <mrow> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> </msub> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>y</mi> <mo>,</mo> <msup> <mi>t</mi> <mrow> <mi>n</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>y</mi> <mo>,</mo> <msup> <mi>t</mi> <mrow> <mi>n</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mi>d</mi> <mi>y</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>{</mo> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
    <mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <mrow> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> <mo>|</mo> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <msup> <mi>t</mi> <mi>n</mi> </msup> <msup> <mi>t</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </msubsup> <msub> <mo>&amp;Integral;</mo> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> </msub> <mo>&amp;lsqb;</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <msub> <mi>y</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mi>d</mi> <mi>x</mi> <mi>d</mi> <mi>&amp;tau;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mfrac> <mn>1</mn> <mrow> <mo>|</mo> <msub> <mi>I</mi> <mrow> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>|</mo> </mrow> </mfrac> <msub> <mo>&amp;Integral;</mo> <msub> <mi>I</mi> <mrow> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> </msub> <mo>&amp;lsqb;</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <msub> <mi>y</mi> <mrow> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msup> <mi>t</mi> <mrow> <mi>n</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>,</mo> <msup> <mi>t</mi> <mrow> <mi>n</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mi>d</mi> <mi>x</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;ap;</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>{</mo> <mo>&amp;lsqb;</mo> <mi>g</mi> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mi>g</mi> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>&amp;lsqb;</mo> <mi>g</mi> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mi>g</mi> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
    The discrete rear equation group of stagger scheme is converted into noninterlace form discrete equation:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>&amp;Delta;</mi> <mi>x</mi> <mi>&amp;Delta;</mi> <mi>y</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mo>&amp;Integral;</mo> <msub> <mo>&amp;Integral;</mo> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> </msub> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>d</mi> <mi>x</mi> <mi>d</mi> <mi>y</mi> <mo>+</mo> <mo>&amp;Integral;</mo> <msub> <mo>&amp;Integral;</mo> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> </msub> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>d</mi> <mi>x</mi> <mi>d</mi> <mi>y</mi> <mo>+</mo> <mo>&amp;Integral;</mo> <msub> <mo>&amp;Integral;</mo> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> </msub> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>d</mi> <mi>x</mi> <mi>d</mi> <mi>y</mi> <mo>+</mo> <mo>&amp;Integral;</mo> <msub> <mo>&amp;Integral;</mo> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> </msub> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>d</mi> <mi>x</mi> <mi>d</mi> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mrow> <mo>(</mo> <msubsup> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>u</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>16</mn> </mfrac> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>-</mo> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mo>`</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>-</mo> <mo>`</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mo>`</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>-</mo> <mo>`</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>,</mo> <mi>j</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
    After iteration special time step-length, output result is:Mud depth h, x directions are flowed at each discrete point of grid under specific precision grid Speed u, y direction flowing velocity v.
  5. 5. new dynamics of debris flow Numerical Analysis methods as claimed in claim 1, it is characterised in that based on mud-rock flow Formation-motion-accumulation Numerical Simulation Program of dynamic process carries out iteration of variables using variable time step length, and initial time step is 0.01S, variable time step meet:
    <mrow> <mi>d</mi> <mi>t</mi> <mo>=</mo> <mfrac> <mrow> <mi>C</mi> <mi>r</mi> <mo>&amp;CenterDot;</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>&amp;Delta;</mi> <mi>x</mi> <mo>,</mo> <mi>&amp;Delta;</mi> <mi>y</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>&amp;rho;</mi> <mrow> <mo>(</mo> <mi>A</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>;</mo> </mrow>
    Wherein ρ (A) is spectral radius;Cr represents Carat, and to meet the stability of discrete equation, Cr meets:
    <mrow> <mi>C</mi> <mi>o</mi> <mi>u</mi> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>t</mi> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msqrt> <mrow> <mn>4</mn> <mo>+</mo> <mn>4</mn> <mi>&amp;alpha;</mi> <mo>-</mo> <msup> <mi>&amp;alpha;</mi> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mn>4</mn> <mo>)</mo> </mrow> <mrow> <mn>2</mn> <mi>&amp;alpha;</mi> </mrow> </mfrac> <mo>;</mo> </mrow>
    α=1.1 in formula.
  6. 6. new dynamics of debris flow Numerical Analysis methods as claimed in claim 4, it is characterised in that using noninterlace Form finite difference carries out discrete specifically include:
    (1) parameter is assigned to specific precision gridded elevation figure z in initial value, including t=0 time steps zoning to import;T=0 The specific precision grid material resource elevation h in time step zoning is imported;Determine that soil parameters imports this structure and closed by physics and mechanics System;Calculating parameter, which imports, includes total time, Carat, result output gap time;
    (2) continuity equation, renewal zoning grid each point mud change h deeply are solved under timing spacer step t=0.01s;
    (3) velocity variations u, v on grid each point x, y directions are solved in zoning;If analyzing debris flow erosion substrate, solution can Corrode basalis Ze changes;
    (4) current time and renewal variable time step are updated, iteration variable is sequentially continued with variable time step by as above (2)-(3) It is more than or equal to current time and calculates total time, iteration terminates;
    (5) after iteration special time step-length, mud depth h, x directions flowing velocity at each discrete point of grid is exported under specific precision grid U, y direction flowing velocity v.
  7. A kind of 7. new dynamics of debris flow of new dynamics of debris flow Numerical Analysis methods as claimed in claim 1 Numerical Simulation Analysis System.
CN201710958968.9A 2017-10-16 2017-10-16 Debris flow dynamics numerical simulation analysis method and system Active CN107506566B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710958968.9A CN107506566B (en) 2017-10-16 2017-10-16 Debris flow dynamics numerical simulation analysis method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710958968.9A CN107506566B (en) 2017-10-16 2017-10-16 Debris flow dynamics numerical simulation analysis method and system

Publications (2)

Publication Number Publication Date
CN107506566A true CN107506566A (en) 2017-12-22
CN107506566B CN107506566B (en) 2021-01-05

Family

ID=60701097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710958968.9A Active CN107506566B (en) 2017-10-16 2017-10-16 Debris flow dynamics numerical simulation analysis method and system

Country Status (1)

Country Link
CN (1) CN107506566B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108411844A (en) * 2018-03-12 2018-08-17 中南大学 A kind of analysis of the debris flow velocity field of the irregular section of natural raceway groove and device
CN109002629A (en) * 2018-08-01 2018-12-14 苏州慧德仿真技术有限公司 A kind of convolutional neural networks and quick visualization method of Simulation of Multiphase Flow emulation
CN109190300A (en) * 2018-09-30 2019-01-11 中国科学院、水利部成都山地灾害与环境研究所 A kind of extensive Geological Hazards of debris Fast numerical simulation method and system
CN109357657A (en) * 2018-11-14 2019-02-19 华侨大学 A kind of prediction technique of seabeach animal hole depth capacity
CN109446587A (en) * 2018-09-30 2019-03-08 中国科学院、水利部成都山地灾害与环境研究所 A kind of extensive Landslide Hazards Fast numerical simulation method and system
CN109657322A (en) * 2018-12-13 2019-04-19 中国科学院、水利部成都山地灾害与环境研究所 A kind of solid-liquid multiphase is suitable for the Numerical Simulation On The Dynamics of mud-rock flow
CN110008599A (en) * 2019-04-09 2019-07-12 江西理工大学 A kind of analogy method on the water and soil coupling landslide based on the double set two-phase object particle methods of high-order
CN110232165A (en) * 2019-06-14 2019-09-13 成都理工大学 A kind of viscous mud-flow maximum deposition thickness calculation method
CN110705188A (en) * 2019-10-06 2020-01-17 中水东北勘测设计研究有限责任公司 High-precision format simulation method for one-dimensional ice-water coupled motion
CN110851765A (en) * 2019-11-01 2020-02-28 华北电力大学 Method for acquiring river course roughness in gradual flow state
CN111475937A (en) * 2020-04-03 2020-07-31 中国地质科学院地质力学研究所 Simulation method for flow-solid two-phase flow fluidization landslide
CN111784978A (en) * 2020-07-14 2020-10-16 云南大学 Plateau mountain land landslide hazard early warning system based on daily displacement rate
CN111881607A (en) * 2020-07-29 2020-11-03 华北水利水电大学 SPH-based trench bed erosive debris flow starting simulation method
CN112733472A (en) * 2021-01-11 2021-04-30 中国科学院、水利部成都山地灾害与环境研究所 Debris flow slope surface source starting amount dynamic calculation method and system
CN112818574A (en) * 2021-01-27 2021-05-18 江西理工大学 Numerical method for simulating start-up formation, flow development and re-siltation of debris flow
CN113657048A (en) * 2021-08-15 2021-11-16 中国科学院、水利部成都山地灾害与环境研究所 Debris flow rainfall confluence water source supply measuring and calculating method, debris flow dynamic process numerical simulation method and application
CN114239352A (en) * 2021-12-14 2022-03-25 西南交通大学 Fluid-solid coupling method for deep integral fluid model and block system
CN115952753A (en) * 2023-03-14 2023-04-11 中国测绘科学研究院 CA and LBM combined debris flow simulation method, system and equipment
CN117829031A (en) * 2024-03-01 2024-04-05 中国科学院、水利部成都山地灾害与环境研究所 Dynamics simulation method considering interaction of runoff and debris flow
CN118014223A (en) * 2024-04-09 2024-05-10 中国科学院、水利部成都山地灾害与环境研究所 Quantitative analysis method for river disaster chain breaking effect blocked by debris flow

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106529198A (en) * 2016-12-13 2017-03-22 中国科学院、水利部成都山地灾害与环境研究所 Numerical value simulation and numerical value calculation method for overall process of debris flow
CN106844859A (en) * 2016-12-21 2017-06-13 河海大学 A kind of Simulations of Water Waves Due To Landslides computational methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106529198A (en) * 2016-12-13 2017-03-22 中国科学院、水利部成都山地灾害与环境研究所 Numerical value simulation and numerical value calculation method for overall process of debris flow
CN106844859A (en) * 2016-12-21 2017-06-13 河海大学 A kind of Simulations of Water Waves Due To Landslides computational methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
胡凯衡等: "泥石流动力学模型与数值模拟", 《自然杂志》 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108411844A (en) * 2018-03-12 2018-08-17 中南大学 A kind of analysis of the debris flow velocity field of the irregular section of natural raceway groove and device
CN108411844B (en) * 2018-03-12 2019-08-06 中南大学 A kind of analysis method and device of the debris flow velocity field of the irregular section of natural channel
CN109002629A (en) * 2018-08-01 2018-12-14 苏州慧德仿真技术有限公司 A kind of convolutional neural networks and quick visualization method of Simulation of Multiphase Flow emulation
CN109190300A (en) * 2018-09-30 2019-01-11 中国科学院、水利部成都山地灾害与环境研究所 A kind of extensive Geological Hazards of debris Fast numerical simulation method and system
CN109446587A (en) * 2018-09-30 2019-03-08 中国科学院、水利部成都山地灾害与环境研究所 A kind of extensive Landslide Hazards Fast numerical simulation method and system
CN109357657B (en) * 2018-11-14 2020-08-07 华侨大学 Method for predicting maximum depth of beach animal hole
CN109357657A (en) * 2018-11-14 2019-02-19 华侨大学 A kind of prediction technique of seabeach animal hole depth capacity
CN109657322A (en) * 2018-12-13 2019-04-19 中国科学院、水利部成都山地灾害与环境研究所 A kind of solid-liquid multiphase is suitable for the Numerical Simulation On The Dynamics of mud-rock flow
CN109657322B (en) * 2018-12-13 2020-08-21 中国科学院、水利部成都山地灾害与环境研究所 Solid-liquid multiphase dynamic numerical simulation method suitable for debris flow
CN110008599A (en) * 2019-04-09 2019-07-12 江西理工大学 A kind of analogy method on the water and soil coupling landslide based on the double set two-phase object particle methods of high-order
CN110008599B (en) * 2019-04-09 2023-06-06 江西理工大学 Water-soil coupling landslide simulation method based on high-order double-sleeve double-phase object particle method
CN110232165B (en) * 2019-06-14 2023-05-05 成都理工大学 Method for calculating maximum siltation thickness of viscous debris flow
CN110232165A (en) * 2019-06-14 2019-09-13 成都理工大学 A kind of viscous mud-flow maximum deposition thickness calculation method
CN110705188B (en) * 2019-10-06 2023-04-18 中水东北勘测设计研究有限责任公司 High-precision format simulation method for one-dimensional ice-water coupled motion
CN110705188A (en) * 2019-10-06 2020-01-17 中水东北勘测设计研究有限责任公司 High-precision format simulation method for one-dimensional ice-water coupled motion
CN110851765A (en) * 2019-11-01 2020-02-28 华北电力大学 Method for acquiring river course roughness in gradual flow state
CN110851765B (en) * 2019-11-01 2022-02-18 华北电力大学 Method for acquiring river course roughness in gradual flow state
CN111475937A (en) * 2020-04-03 2020-07-31 中国地质科学院地质力学研究所 Simulation method for flow-solid two-phase flow fluidization landslide
CN111784978A (en) * 2020-07-14 2020-10-16 云南大学 Plateau mountain land landslide hazard early warning system based on daily displacement rate
CN111784978B (en) * 2020-07-14 2023-02-24 云南大学 Plateau mountain land landslide hazard early warning system based on daily displacement rate
CN111881607A (en) * 2020-07-29 2020-11-03 华北水利水电大学 SPH-based trench bed erosive debris flow starting simulation method
CN112733472A (en) * 2021-01-11 2021-04-30 中国科学院、水利部成都山地灾害与环境研究所 Debris flow slope surface source starting amount dynamic calculation method and system
CN112733472B (en) * 2021-01-11 2021-10-26 中国科学院、水利部成都山地灾害与环境研究所 Debris flow slope surface source starting amount dynamic calculation method and system
CN112818574B (en) * 2021-01-27 2022-10-14 江西理工大学 Numerical method for simulating start-up formation, flow development and re-siltation of debris flow
CN112818574A (en) * 2021-01-27 2021-05-18 江西理工大学 Numerical method for simulating start-up formation, flow development and re-siltation of debris flow
CN113657048A (en) * 2021-08-15 2021-11-16 中国科学院、水利部成都山地灾害与环境研究所 Debris flow rainfall confluence water source supply measuring and calculating method, debris flow dynamic process numerical simulation method and application
CN113657048B (en) * 2021-08-15 2023-05-09 中国科学院、水利部成都山地灾害与环境研究所 Debris flow rainfall converging water source replenishment measuring and calculating method, debris flow dynamic process numerical simulation method and application
CN114239352A (en) * 2021-12-14 2022-03-25 西南交通大学 Fluid-solid coupling method for deep integral fluid model and block system
CN114239352B (en) * 2021-12-14 2024-04-30 西南交通大学 Fluid-solid coupling method for depth integral fluid model and block system
CN115952753A (en) * 2023-03-14 2023-04-11 中国测绘科学研究院 CA and LBM combined debris flow simulation method, system and equipment
CN115952753B (en) * 2023-03-14 2023-05-12 中国测绘科学研究院 Chip flow simulation method, system and equipment combining CA and LBM
CN117829031A (en) * 2024-03-01 2024-04-05 中国科学院、水利部成都山地灾害与环境研究所 Dynamics simulation method considering interaction of runoff and debris flow
CN118014223A (en) * 2024-04-09 2024-05-10 中国科学院、水利部成都山地灾害与环境研究所 Quantitative analysis method for river disaster chain breaking effect blocked by debris flow

Also Published As

Publication number Publication date
CN107506566B (en) 2021-01-05

Similar Documents

Publication Publication Date Title
CN107506566A (en) A kind of new dynamics of debris flow Numerical Analysis methods and system
CN106529198B (en) A kind of mud-rock flow whole-course numerical modeling and numerical computation method
Lange Dynamics of transmission losses in a large arid stream channel
Tucker et al. Modelling landscape evolution
CN113553792A (en) Mountain disaster overall process numerical simulation and dangerous case forecasting method
CN102799756A (en) Landslide prediction method under rainfall action
CN102306233A (en) River basin landslide space-time predicting method under rainfall effect
CN109657322A (en) A kind of solid-liquid multiphase is suitable for the Numerical Simulation On The Dynamics of mud-rock flow
CN113409550B (en) Debris flow disaster early warning method and system based on runoff convergence simulation
CN113420515B (en) Landslide debris flow formation evolution simulation method based on rainfall data
CN113657048B (en) Debris flow rainfall converging water source replenishment measuring and calculating method, debris flow dynamic process numerical simulation method and application
Heydari et al. Flood Zoning Simulation byHEC-RAS Model (Case Study: Johor River-Kota Tinggi Region)
CN101865689B (en) Valley salt tide prediction method
Bauer et al. Flash Flood Investigations in El Gouna, Northern Red Sea Governorate
Tsubaki et al. Railway embankment failure due to ballast layer breach caused by inundation flows
CN106968217A (en) Debris flow sedimentation danger range division method based on rainfall frequency
Azarang et al. Simulating the erosion and sedimentation of Karun Alluvial River in the Region of Ahvaz (southwest of Iran)
Li et al. Simulation of a groundwater fall caused by geological discontinuities
Nasiri et al. Cut slope stability assessment along forest roads using the limit equilibrium approaches and slide software.
Daly et al. Estimating forces on an ice control structure using DEM
Zawawi et al. Mathematical Modeling for Flood Mitigation: Effect of bifurcatioin Angles in River Flowrates
Jeong A study on simulation of flood inundation in a coastal urban area using a two-dimensional well-balanced finite volume model
Itoh et al. Application of surface‐subsurface flow coupled with numerical simulator to runoff analysis in an actual field
CN117744535B (en) Method and system for predicting debris flow peak value of loose rock soil body dam
Fomenko et al. Thawing of permafrost soils under the water intake facility (the Taas-Yurekh river, Yakutia, Russia)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant