CN107480884A - 一种多闸坝平原河流冬季生态流量推求方法 - Google Patents

一种多闸坝平原河流冬季生态流量推求方法 Download PDF

Info

Publication number
CN107480884A
CN107480884A CN201710691543.6A CN201710691543A CN107480884A CN 107480884 A CN107480884 A CN 107480884A CN 201710691543 A CN201710691543 A CN 201710691543A CN 107480884 A CN107480884 A CN 107480884A
Authority
CN
China
Prior art keywords
water
mrow
fish
eco
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710691543.6A
Other languages
English (en)
Other versions
CN107480884B (zh
Inventor
陈求稳
王丽
林育青
胡柳明
关铁生
陈诚
余居华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Hydraulic Research Institute of National Energy Administration Ministry of Transport Ministry of Water Resources
Original Assignee
Nanjing Hydraulic Research Institute of National Energy Administration Ministry of Transport Ministry of Water Resources
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Hydraulic Research Institute of National Energy Administration Ministry of Transport Ministry of Water Resources filed Critical Nanjing Hydraulic Research Institute of National Energy Administration Ministry of Transport Ministry of Water Resources
Priority to CN201710691543.6A priority Critical patent/CN107480884B/zh
Publication of CN107480884A publication Critical patent/CN107480884A/zh
Priority to US16/100,242 priority patent/US10415202B2/en
Application granted granted Critical
Publication of CN107480884B publication Critical patent/CN107480884B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/20Movable barrages; Lock or dry-dock gates
    • E02B7/40Swinging or turning gates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/70Artificial fishing banks or reefs
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B1/00Equipment or apparatus for, or methods of, general hydraulic engineering, e.g. protection of constructions against ice-strains
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/10Dams; Dykes; Sluice ways or other structures for dykes, dams, or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B7/00Barrages or weirs; Layout, construction, methods of, or devices for, making same
    • E02B7/20Movable barrages; Lock or dry-dock gates
    • E02B7/205Barrages controlled by the variations of the water level; automatically functioning barrages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • G01C13/008Surveying specially adapted to open water, e.g. sea, lake, river or canal measuring depth of open water
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B1/00Equipment or apparatus for, or methods of, general hydraulic engineering, e.g. protection of constructions against ice-strains
    • E02B1/003Mechanically induced gas or liquid streams in seas, lakes or water-courses for forming weirs or breakwaters; making or keeping water surfaces free from ice, aerating or circulating water, e.g. screens of air-bubbles against sludge formation or salt water entry, pump-assisted water circulation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/08Fish passes or other means providing for migration of fish; Passages for rafts or boats
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/40Protecting water resources
    • Y02A20/402River restoration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/60Ecological corridors or buffer zones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Environmental Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Hydrology & Water Resources (AREA)
  • Operations Research (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Quality & Reliability (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)

Abstract

本发明公开了一种多闸坝平原河流冬季生态流量推求方法,针对多闸坝平原河流生物栖息地特征,以鱼类越冬期生境需求为基础,所述方法具体包含:首先对研究区域鱼类资源现状进行调查,确定生态流量计算的备选鱼类,然后采用层次分析方法进一步筛选目标鱼类;针对筛选出的目标鱼类通过室内水温响应实验及历史资料收集,建立目标鱼类越冬期对水温的定量响应曲线;根据河流温度垂直分布特征,结合目标物种越冬场生境需求确定保证目标鱼类安全越冬的生态水位,采用水量平衡公式计算维持生态水位所需流量。该发明可指导多闸坝平原河流生态修复及保护,对流域水资源规划及配置具有重要的理论与实践意义。

Description

一种多闸坝平原河流冬季生态流量推求方法
技术领域
本发明涉及水利技术领域,尤其涉及一种多闸坝平原河流冬季生态流量推求方法。
背景技术
河流是地球生命的支持系统,是物质传递和能量流动的重要通道。河流蕴藏着丰富的水资源和水能资源,拦河闸坝是人类开发利用河流资源的重要的方式之一。为了满足社会经济发展需要,人类在河流上修建了大量的闸坝工程。闸坝运行在带来巨大社会经济效益的同时,改变了河流原有的物质场和能量场,直接影响生源要素在河流中的生物地球化学行为,进而改变河流生态系统的物种组成、栖息地分布以及相应的生态功能。修复受损河流生态系统,对保障社会经济可持续发展具有重要意义,已经成为水资源开发利用中迫切需要解决的问题。生态流量是保证河流生态功能的最基本要素,也是近年来国际水利科学界广泛关注的热点,建立了包括水文学法、水力学法、栖息地法、综合法及组合分析法等生态流量推求方法。但是,针对多闸坝平原河流生态流量的确定尚缺乏较为完善的计算方法。
多闸坝平原河流管理已经从资源利用进入生态修复阶段,生态流量推求作为生态修复的重要手段还处于初步研究阶段,推求方法多采用水文法或水力学法,以生物生境需求为基础的多闸坝平原河流生态流量推求方法相对较少。尤其在冬季多闸坝平原河流流速很小甚至为零,现有的河流生态流量计算理论与方法很难适用。
发明内容
发明目的:本发明围绕多闸坝平原河流鱼类越冬场的保护,针对该类型河流冬季可能出现的流速很小甚至为零生态流量推求困难的问题,提供一种多闸坝平原河流冬季生态流量推求方法。
技术方案:本发明所述的多闸坝平原河流冬季生态流量推求方法,包括:
(1)对研究区域开展鱼类资源现状调查,然后采用层次分析方法筛选目标鱼类;
(2)针对筛选出的目标鱼类,通过室内胁迫实验及历史资料收集,建立目标鱼类对水温T的定量响应关系曲线f1(T);
(3)建立研究区域的垂直水温T与水位H之间的变化关系式f2(H);
(4)基于水量动态平衡原则,建立研究区域所需水量Wi与水域面积Ai、月蒸发水量Ei和月降雨量Pi之间的水量平衡关系式f3(Ai,Ei,Pi);
(5)根据目标鱼类对水温的响应关系曲线f1(T)确定目标鱼类越冬所需最低水温Tmin,然后依据Tmin采用关系式f2(H)得出可以保证鱼类安全越冬的生态水位Heco,再根据生态水位Heco采用水力学模型计算研究区域水域面积Aeco,最后根据水域面积Aeco采用水量平衡关系式f3(Ai,Ei,Pi)计算当月保持生态水位所需水量Weco,再将所需水量Weco除以时间即得到所需生态流量。
进一步的,所述步骤(1)具体包括:
(1-1)鱼类资源现状调查:鱼类资源现状调查不仅要掌握鱼类的种群数量,还要测定鱼类群体的结构生态状况,掌握渔业利用情况,研究鱼类种群和数量变动规律,以判断资源现状及其变化趋势。依据研究区域鱼类资源现状及历史资料,确定多闸坝平原河流生态流量计算备选鱼类。
(1-2)目标物种筛选:根据鱼类生物学特性制定筛选原则,对备选鱼类运用层次分析法构建判断矩阵,计算各备选种类的排序权值,筛选研究区域对生境要求具有代表性的目标物种。
进一步的,所述步骤(3)中的水位T与水位H之间的变化关系式f2(H)具体为:
式中,m为月份,Tb为月平均水底水温,单位℃;T0为月平均表层水温,单位℃;TH为水深H处的月平均水温,单位℃。
进一步的,所述步骤(4)中的水量平衡关系式f3(Ai,Ei,Pi)具体为:
Wi=f3(Ai,Ei,Pi)==Ai(Ei-Pi)
式中,Wi为当年i月的所需水量;Ai为水域面积;Ei为月蒸发水量;Pi为月降雨量。
进一步的,所述步骤(5)中
研究区域水域面积Aeco的计算式为:
其中,A0表示平均水域面积,表示水域面积随水位的变化率。
进一步的,所述步骤(5)中当月保持生态水位所需水量Weco的计算式为:
Weco=Aeco(Ei-Pi)。
有益效果:本发明与现有技术相比,其显著优点是:
(1)多闸坝平原河流冬季流速很小甚至为零,栖息地特征对流量变化不敏感,采用栖息地空间特性与流量响应关系推求生态流量传统栖息地法很难适用,因此,以鱼类生境需求为基础的多闸坝平原河流冬季生态流量的推求存在困难。采用水量平衡法计算有效解决上述问题。
(2)结合多闸坝平原河流栖息地特性,水量平衡法计算出的生态流量结果在同样满足目标物种生境需求情况下量值较小,尤其在冬季枯水期可以有效减缓水资源调度压力,提高可达性。
附图说明
图1是本发明的一个实施例的流程示意图;
图2是各月表层水温和河底水温示意图;
图3是各月水温随水深的变量示意图。
具体实施方式
如图1所示,本实施例的多闸坝平原河流冬季生态流量推求方法,包括以下步骤:
(1)对研究区域开展鱼类资源现状调查,然后采用层次分析方法筛选目标鱼类。
该步骤具体包括:
(1-1)鱼类资源现状调查:鱼类资源现状调查不仅要掌握鱼类的种群数量,还要测定鱼类群体的结构生态状况,掌握渔业利用情况,研究鱼类种群和数量变动规律,以判断资源现状及其变化趋势。依据研究区域鱼类资源现状及历史资料,确定多闸坝平原河流生态流量计算备选鱼类。
具体采集鱼类标本时,原则上要采集调查水域的全部种类。对于常见鱼类和经济鱼类,主要从当地的渔业捕捞中获得;对于非捕捞水体、非经济鱼类或者稀有和珍贵鱼类,则需要通过专门的采捕而获得;还可以通过当地水产市场、餐馆和休闲垂钓等途径补充采集。同时收集历史鱼类资源调查数据,最终选取渔获物中出现一定次数以上鱼类作为目标鱼类的备选对象。
(1-2)目标物种筛选:根据鱼类生物学特性制定筛选原则,对备选鱼类运用层次分析法构建判断矩阵,计算各备选种类的排序权值,筛选研究区域对生境要求具有代表性的目标物种。
对研究区域备选鱼类从产卵环境和摄食环境等方面进行筛选研究,运用层次分析法构建判断矩阵,计算各备选鱼类的排序权值,最后筛选研究区域对生境要求具有代表性的目标鱼类为鳊鱼。鳊鱼,淡水鱼种之一,是“长春鳊”“三角鲂”“团头鲂(注:即武昌鱼)”等的统称,鲤科,鳊亚科。鳊鱼是典型的草食性鱼类,其食物组成的季节变化基本与湖中水生植物的季节性盛衰相一致,位于营养级中层。同时,鳊鱼产卵时要求一定的流水环境,对生境要求相对较高。
(2)针对筛选出的目标鱼类,通过室内胁迫实验及历史资料收集,建立目标鱼类对水温T的定量响应关系曲线f1(T)。
鱼类经过夏秋季节的索饵,大都长得身体肥壮,有的体内贮积大量脂肪。每年入秋以后,天气转冷,水温随之下降,同时河道流量逐渐减少,水位下降,透明度增大,饵料减少,此时在不同深度、不同环境中觅食的主要经济鱼类,逐渐受气候等各种内外因素变化的影响进入深水区越冬。当表层水温10℃左右时,鱼类都纷纷进入越冬场,由于越冬场深水处的水温相比表层水温高而恒定(越冬场底层水温较表层高0.5℃-1℃),越冬场水深一般10米以上,最深的达25-30米。因此,水温是鱼类越冬的关键环境因子。室内胁迫实验表明,当温度低于5℃或高于35℃时鳊鱼将死亡,因此可得到目标物种鳊鱼对水温T的定量响应关系曲线f1(T)。
(3)建立研究区域的垂直水温T与水位H之间的变化关系式f2(H)。
其中,f2(H)采用东勘院水温与水位的垂直分布关系公式,具体为:
式中,m为月份,Tb为月平均水底水温,单位℃;T0为月平均表层水温,单位℃;TH为水深H处的月平均水温,单位℃。采用研究区域气象站的气象资料,查河底水温和表层水温T0沿纬度的分布曲线,可得某典型多闸坝平原河流关键断面的月平均河底水温Tb与水面表层水温T0(图2)。水位H处月平均水温TH垂直分布见图3。
(4)基于水量动态平衡原则,建立研究区域所需水量Wi与月水域面积Ai、月蒸发水量Ei和月降雨量Pi之间的水量平衡关系式f3(Ai,Ei,Pi),具体为:Wi=f3(Ai,Ei,Pi)==Ai(Ei-Pi)式中,Wi为当年i月的所需水量。
其推导过程为:对于研究区域水量平衡计算不考虑区间的取水工程,采用公式如下:
ΔW=P+Rin-Rf-E+ΔWg
其中,ΔW表示某段时间内研究河段水量的变化;P表示降雨量;Rin表示区间入流量;Rf表示区间出流量;ΔWg表示地下水交换变化量。对于一个特定区域全年的区域流量一般变化不大,即ΔW≈0,地下水交换是一个动态平衡的过程,可以认为ΔWg≈0,则区域内水量损耗为水面蒸发量。根据以上分析,可以将上述公式改写为:
Wi=Ai(Ei-Pi)
(5)根据目标鱼类对水温的响应关系曲线f1(T)确定目标鱼类越冬所需最低水温Tmin,然后依据Tmin采用关系式f2(H)得出可以保证鱼类安全越冬的生态水位Heco,再根据生态水位Heco采用水力学模型计算研究区域水域面积Aeco,最后根据水域面积Aeco采用水量平衡关系式f3(Ai,Ei,Pi)计算当月保持生态水位所需水量Weco,再将所需水量Weco除以时间即得到所需生态流量。
例如,对于鳊鱼,根据定量响应关系曲线f1(T)可以得知目标物种越冬场所需求的最低水温Tmin为5℃,根据Tmin=5℃采用关系式f2(H)确定越冬场所需求的12月最低水位eco为15m,再根据最低水位Heco=15m采用水力学模型计算得到研究区域水域面积Aeco计算得到水域面积Aeco为39.7km2,最后根据区域水域面积Aeco带入水量平衡关系式f3(Ai,Ei,Pi),获取各月蒸发量和降水量,计算得到12月维持当前河流栖息地状态所需最小流量Weco=Aeco(Ei-Pi),i=12,12月有31天,所以除以31*12*3600(s),最后流量单位为m3/s。
在水量平衡计算时,考虑最不利情况(只考虑蒸发损失),蒸发量采用计算时段月平均值(表1),最终冬季四个月的平均需求最小流量为。
表1中国某典型多闸坝平原河流冬季生态流量计算结果
以上所揭露的仅为本发明一种较佳实施例而已,不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (6)

1.一种多闸坝平原河流冬季生态流量推求方法,其特征在于该方法包括:
(1)对研究区域开展鱼类资源现状调查,然后采用层次分析方法筛选目标鱼类;
(2)针对筛选出的目标鱼类,通过室内胁迫实验及历史资料收集,建立目标鱼类对水温T的定量响应关系曲线f1(T);
(3)建立研究区域的垂直水温T与水位H之间的变化关系式f2(H);
(4)基于水量动态平衡原则,建立研究区域所需水量Wi与水域面积Ai、月蒸发水量Ei和月降雨量Pi之间的水量平衡关系式f3(Ai,Ei,Pi);
(5)根据目标鱼类对水温的响应关系曲线f1(T)确定目标鱼类越冬所需最低水温Tmin,然后依据Tmin采用关系式f2(H)得出可以保证鱼类安全越冬的生态水位Heco,再根据生态水位Heco采用水力学模型计算研究区域水域面积Aeco,最后根据水域面积Aeco采用水量平衡关系式f3(Ai,Ei,Pi)计算当月保持生态水位所需水量Weco,再将所需水量Weco除以时间即得到所需生态流量。
2.根据权1所述的多闸坝平原河流冬季生态流量推求方法,其特征在于:所述步骤(1)具体包括:
(1-1)鱼类资源现状调查:依据研究区域鱼类资源现状及历史资料,确定多闸坝平原河流生态流量计算备选鱼类;
(1-2)目标物种筛选:根据鱼类生物学特性制定筛选原则,对备选鱼类运用层次分析法构建判断矩阵,计算各备选种类的排序权值,筛选研究区域对生境要求具有代表性的目标物种。
3.根据权1所述的多闸坝平原河流冬季生态流量推求方法,其特征在于:所述步骤(3)中的温度T与水位H之间的变化关系式f2(H)具体为:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>T</mi> <mi>H</mi> </msub> <mo>=</mo> <msub> <mi>f</mi> <mn>2</mn> </msub> <mo>(</mo> <mi>H</mi> <mo>)</mo> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>T</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>T</mi> <mi>b</mi> </msub> </mrow> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>H</mi> <mo>/</mo> <mi>x</mi> <mo>)</mo> <mi>n</mi> </mrow> </msup> </msup> <mo>+</mo> <msub> <mi>T</mi> <mi>b</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>n</mi> <mo>=</mo> <mfrac> <mn>15</mn> <msup> <mi>m</mi> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mfrac> <msup> <mi>m</mi> <mn>2</mn> </msup> <mn>35</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> <mo>=</mo> <mfrac> <mn>40</mn> <mi>m</mi> </mfrac> <mo>+</mo> <mfrac> <msup> <mi>m</mi> <mn>2</mn> </msup> <mrow> <mn>2.37</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mn>0.1</mn> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced>
式中,m为月份,Tb为月平均水底水温,单位℃;T0为月平均表层水温,单位℃;TH为水深H处的月平均水温,单位℃。
4.根据权1所述的多闸坝平原河流冬季生态流量推求方法,其特征在于:所述步骤(4)中的水量平衡关系式f3(Ai,Ei,Pi)具体为:
Wi=f3(Ai,Ei,Pi)==Ai(Ei-Pi)
式中,Wi为当年i月的所需水量;Ai为i月水域面积;Ei为i月蒸发水量;Pi为i月降雨量。
5.根据权1所述的多闸坝平原河流冬季生态流量推求方法,其特征在于:所述步骤(5)中研究区域水域面积Aeco的计算式为:
<mrow> <msub> <mi>A</mi> <mrow> <mi>e</mi> <mi>c</mi> <mi>o</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>H</mi> <mrow> <mi>e</mi> <mi>c</mi> <mi>o</mi> </mrow> </msub> <mo>&amp;times;</mo> <mfrac> <mrow> <mi>d</mi> <mi>A</mi> </mrow> <mrow> <mi>d</mi> <mi>H</mi> </mrow> </mfrac> </mrow>
其中,A0表示平均水域面积,表示水域面积随水位的变化率。
6.根据权1所述的多闸坝平原河流冬季生态流量推求方法,其特征在于:所述步骤(5)中当月保持生态水位所需水量Weco的计算式为:
Weco=Aeco(Ei-Pi)。
CN201710691543.6A 2017-08-14 2017-08-14 一种多闸坝平原河流冬季生态流量推求方法 Active CN107480884B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710691543.6A CN107480884B (zh) 2017-08-14 2017-08-14 一种多闸坝平原河流冬季生态流量推求方法
US16/100,242 US10415202B2 (en) 2017-08-14 2018-08-10 Method for controlling the gate based on the habitat requirement for fish overwintering in rives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710691543.6A CN107480884B (zh) 2017-08-14 2017-08-14 一种多闸坝平原河流冬季生态流量推求方法

Publications (2)

Publication Number Publication Date
CN107480884A true CN107480884A (zh) 2017-12-15
CN107480884B CN107480884B (zh) 2019-10-22

Family

ID=60599434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710691543.6A Active CN107480884B (zh) 2017-08-14 2017-08-14 一种多闸坝平原河流冬季生态流量推求方法

Country Status (2)

Country Link
US (1) US10415202B2 (zh)
CN (1) CN107480884B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109615076A (zh) * 2018-12-13 2019-04-12 水利部交通运输部国家能源局南京水利科学研究院 一种面向鱼类生境保护的河流生态流量过程推求方法
CN109615238A (zh) * 2018-12-13 2019-04-12 水利部交通运输部国家能源局南京水利科学研究院 一种平原城市河网水力调控对河流生境影响的评价方法
CN112396306A (zh) * 2020-11-10 2021-02-23 华中科技大学 一种基于生态闸门时空水量均衡的分层次配水方法及系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110197017B (zh) * 2019-05-17 2022-10-18 长安大学 一种城市河流橡胶坝群水生态调控方法
CN110348083B (zh) * 2019-06-26 2022-11-15 长江水利委员会长江科学院 一种基流加脉冲的鱼类产卵期生态流量设计方法
CN111733759B (zh) * 2020-05-27 2021-03-19 长江水利委员会长江科学院 一种考虑区间支流来水的干流水库生态调度方法
CN112129932B (zh) * 2020-09-11 2022-11-08 中国科学院海洋研究所 一种定量潮间带生物胁迫水平的方法
CN112487640B (zh) * 2020-11-27 2023-02-14 交通运输部天津水运工程科学研究所 一种内河航道整治工程生态影响模拟预测方法
CN113283743B (zh) * 2021-05-21 2023-06-20 中国科学院南京地理与湖泊研究所 一种流域中不同生态修复类型生境阈值的判定方法
CN113519417B (zh) * 2021-07-14 2022-03-29 中国水产科学研究院黄海水产研究所 一种斑石鲷陆海接力养殖方法
CN113807017B (zh) * 2021-09-23 2022-05-24 西安理工大学 一种鱼类偏好栖息地的确定方法及终端设备
CN117252121B (zh) * 2023-09-28 2024-05-07 中国水利水电科学研究院 一种基于水流雷诺数的鱼卵漂流数值模拟及验证方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6942423B2 (en) * 2001-12-26 2005-09-13 Robert E. Davis Migratory fish channel associated with one or more dams in a river
US7670083B2 (en) * 2005-09-19 2010-03-02 Mcwha William W Inflatable weir fish passage systems and methods
CN103530530A (zh) * 2013-11-01 2014-01-22 中国水利水电科学研究院 一种干旱区湖泊湿地生态需水的定量计算方法
CN106407671A (zh) * 2016-09-08 2017-02-15 河海大学 面向产粘沉性卵鱼类繁殖需求的梯级水库调控系统及方法
CN106777959A (zh) * 2016-12-12 2017-05-31 郑州大学 人工干扰无水文资料地区河流环境流量分区界定计算方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1046964A (en) * 1912-03-29 1912-12-10 John R Burkholder Fishway.
US1047604A (en) * 1912-04-02 1912-12-17 Danil L Abernathy Fishway.
US1292246A (en) * 1918-05-18 1919-01-21 Henry T Burkey Electric fish-stop.
US1376889A (en) * 1919-11-24 1921-05-03 James B Kirby Lake or pond
US3293862A (en) * 1963-08-21 1966-12-27 Charles M Harding Overflow fishway
US4349296A (en) * 1980-01-28 1982-09-14 Langeman Peter J Irrigation ditch gate
US4498809A (en) * 1983-06-20 1985-02-12 Farmer Edward J Flow compensated computing controller
CA2096269C (en) * 1993-05-14 1997-09-30 Peter Langemann Irrigation control structure
GB9810192D0 (en) * 1998-05-14 1998-07-08 Timms Cyril A Self-regulating weirs and fishways
US6427718B1 (en) * 2000-12-06 2002-08-06 The United States Of America As Represented By The Secretary Of The Interior Automated farm turnout
US6588370B1 (en) * 2001-10-03 2003-07-08 The United States Of America As Represented By The Secretary Of The Interior Labyrinth weir and pool fishway
CA2450151A1 (en) * 2003-11-19 2005-05-19 Aqua Systems 2000 Inc. Irrigation gate system
US20080213045A1 (en) * 2006-12-08 2008-09-04 Paul Tappel Structure and method for facilitating safe downstream passage of migrating fish around hydroelectric projects
JP5166311B2 (ja) * 2009-02-04 2013-03-21 日本工営株式会社 開閉装置
US8550748B2 (en) * 2009-05-08 2013-10-08 Kenneth T. Millard Parallel fish passage apparatuses with hydroelectric power generator and method
US20160017558A1 (en) * 2010-04-23 2016-01-21 French Development Enterprises, LLC Aquatic Animal Passage With Counter
US8608404B2 (en) * 2010-07-29 2013-12-17 Douglas Steven Safreno Smart sustainable agricultural/aquacultural system and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6942423B2 (en) * 2001-12-26 2005-09-13 Robert E. Davis Migratory fish channel associated with one or more dams in a river
US7670083B2 (en) * 2005-09-19 2010-03-02 Mcwha William W Inflatable weir fish passage systems and methods
CN103530530A (zh) * 2013-11-01 2014-01-22 中国水利水电科学研究院 一种干旱区湖泊湿地生态需水的定量计算方法
CN106407671A (zh) * 2016-09-08 2017-02-15 河海大学 面向产粘沉性卵鱼类繁殖需求的梯级水库调控系统及方法
CN106777959A (zh) * 2016-12-12 2017-05-31 郑州大学 人工干扰无水文资料地区河流环境流量分区界定计算方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109615076A (zh) * 2018-12-13 2019-04-12 水利部交通运输部国家能源局南京水利科学研究院 一种面向鱼类生境保护的河流生态流量过程推求方法
CN109615238A (zh) * 2018-12-13 2019-04-12 水利部交通运输部国家能源局南京水利科学研究院 一种平原城市河网水力调控对河流生境影响的评价方法
CN112396306A (zh) * 2020-11-10 2021-02-23 华中科技大学 一种基于生态闸门时空水量均衡的分层次配水方法及系统
CN112396306B (zh) * 2020-11-10 2022-07-12 华中科技大学 一种基于生态闸门时空水量均衡的分层次配水方法及系统

Also Published As

Publication number Publication date
US20180347133A1 (en) 2018-12-06
CN107480884B (zh) 2019-10-22
US10415202B2 (en) 2019-09-17

Similar Documents

Publication Publication Date Title
CN107480884B (zh) 一种多闸坝平原河流冬季生态流量推求方法
CN107464202B (zh) 基于鱼类生境需求的多闸坝平原河流生态流量过程推求方法
CN107563610B (zh) 一种闸坝调控对鱼类栖息地空间特性影响的量化分析方法
CN109615076A (zh) 一种面向鱼类生境保护的河流生态流量过程推求方法
Iwasaki et al. Assessment of factors influencing groundwater-level change using groundwater flow simulation, considering vertical infiltration from rice-planted and crop-rotated paddy fields in Japan
Wickstrom et al. Dynamics of cyanobacterial and ostracod interactions in an Oregon hot spring
Pawar-Patil et al. Potential roof rain water harvesting in Pirwadi village of Kolhapur District, Maharashtra (India)-A geospatial approach
Banerji et al. Adapting to climate change in Himalayan cold deserts
Tolan Estuarine fisheries community-level response to freshwater inflows
Li et al. Application of genetic algorithm to improve the fuzzy logic river habitat model
Kimera et al. Economic benefits of supplemental irrigation in Uganda
Zhang et al. Calculation and evaluation of suitable ecological flows for eco-environmental recovery of cascade-developed rivers
Wale et al. Performance evaluation of technical aspects of ex-situ rainwater harvesting systems at Wag-Lasta, Northern, Ethiopia
ŽALAKEVIČIUS et al. The impact of global climate change on wildlife in Lithuania: theoretical and practical aspects
Behailu et al. Water harvesting in northern Ethiopia: Environmental, health and socio-economic impacts
Makau et al. Rain water harvesting for enhanced household water, food and nutritional security: case study of Kitui west, lower Yatta and Matinyani districts, Kenya
Angelini et al. Mixed food web control and stability in a Cerrado river (Brazil)
Bala Water Resource management in the Kandi Area of Punjab: Description of State Policies
D’Elia et al. Groundwater recharge quantification for the sustainability of ecosystems in plains of Argentina
Asl et al. Theoretical and practical analysis of waste heat recovery system in off-season rainbow trout production
Gondwe Geothermal Energy Utilization Model for Nkhotakota Geothermal Springs in Malawi
Peimin et al. Progress of limnology in China
Halder et al. Socio-Hydrological Approach to Explore Groundwater–Human Wellbeing Nexus: Case Study from Sundarbans, India. Water 2021, 13, 1635
Bunthan A review of the current situation for water resources management and the role of agricultural education in Cambodia
Hall et al. A master water resources and agricultural plan for the state of Qatar: Part I: Physical setting and resources

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant