CN107479569B - 一种可调螺旋翼姿态的无人机自动飞行控制系统 - Google Patents

一种可调螺旋翼姿态的无人机自动飞行控制系统 Download PDF

Info

Publication number
CN107479569B
CN107479569B CN201710542498.8A CN201710542498A CN107479569B CN 107479569 B CN107479569 B CN 107479569B CN 201710542498 A CN201710542498 A CN 201710542498A CN 107479569 B CN107479569 B CN 107479569B
Authority
CN
China
Prior art keywords
attitude
temporary storage
control
motor
path point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710542498.8A
Other languages
English (en)
Other versions
CN107479569A (zh
Inventor
刘大龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanning University
Original Assignee
Nanning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanning University filed Critical Nanning University
Priority to CN201710542498.8A priority Critical patent/CN107479569B/zh
Publication of CN107479569A publication Critical patent/CN107479569A/zh
Application granted granted Critical
Publication of CN107479569B publication Critical patent/CN107479569B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明提供了一种可调螺旋翼姿态的无人机自动飞行控制系统,包括中控模块、I/O接口、路径点暂存器、路线规划、位置判断、压力传感器、姿态控制、伸缩机构、电机控制、电机;所述中控模块分别与I/O接口、路径点暂存器、路线规划、位置判断、压力传感器、姿态控制、伸缩机构、电机控制、电机通信连接。本发明通过中控模块、I/O接口、路径点暂存器、路线规划、位置判断等模块的设置,能有效解决定点自动飞行的问题,为短距离物流的高效率低成本运营提供有力保障。

Description

一种可调螺旋翼姿态的无人机自动飞行控制系统
技术领域
本发明涉及一种可调螺旋翼姿态的无人机自动飞行控制系统。
背景技术
目前,部分高校校园较大,或者有多个临近的校区,其中的小件物流多采用专人骑行的方式,人力成本高、效率低。
特别的,上述短距离物流大多定点、小批量,可采用无人机进行运输以节约人力成本,但现有技术中的无人机技术对此并没有提供足够的支持,尤其是现有技术中对于无人机自动飞行控制,一般是通过外部控制中心统一控制,但该方式对通信信号的要求较高,而且控制中心假设成本较高,因此对于实施物流的单位而言,其成本和故障率(因信号异常导致)都难以接受。
发明内容
为解决上述技术问题,本发明提供了一种可调螺旋翼姿态的无人机自动飞行控制系统,该可调螺旋翼姿态的无人机自动飞行控制系统通过中控模块、I/O接口、路径点暂存器、路线规划、位置判断等模块的设置,能有效解决定点自动飞行的问题,为短距离物流的高效率低成本运营提供有力保障。
本发明通过以下技术方案得以实现。
本发明提供的一种可调螺旋翼姿态的无人机自动飞行控制系统,包括中控模块、I/O接口、路径点暂存器、路线规划、位置判断、压力传感器、姿态控制、伸缩机构、电机控制、电机;所述中控模块分别与I/O接口、路径点暂存器、路线规划、位置判断、压力传感器、姿态控制、伸缩机构、电机控制、电机通信连接;
所述路径点暂存器存储用户通过I/O接口传入的路径点集合;
所述路线规划按照路径点暂存器中的路径点集合,按序连接每两个路径点得到飞行路线;
所述位置判断从压力传感器中读取受力数据,并通过受力数据以及电机转速、姿态信息,对当前位置进行判断;
所述姿态控制通过对伸缩机构进行控制,实现对螺旋翼的姿态控制;
所述电机控制通过对电机进行控制以提供飞行动力;
所述中控模块协调信号传递,将I/O接口接收并由用户确认的路径点集合发送至路径点暂存器,将路径点暂存器中的路径点数据发送至路线规划,接受路线规划返回的飞行路线并置入内存,实时对比位置判断返回的当前位置和内存中的飞行路线,并根据对比结果向姿态控制和电机控制发送调整指令。
所述路线规划还连接有地图暂存库,路线规划对每两个路径点之间的连线,通过从地图暂存库中读取带有建筑物高度信息的地图数据,附上高度值,并根据地图数据中建筑物高度对路径点连线进行弯曲调整,避免连线穿过建筑物,最终形成能避开建筑物的飞行路线。
还包括姿态调整,姿态调整信号连接中控模块,且中控模块对姿态调整的指令发送至姿态调整;姿态调整连接有姿态模型库;姿态调整根据从姿态模型库中读取的姿态-操作模型,将姿态调整指令进行计算转换得到伸缩机构控制指令集,并将伸缩机构控制指令集发送姿态控制执行。
还包括平衡基准库,平衡基准库信号连接中控模块,平衡基准库中存储初始化过程中记载的平衡状态下,多个电机功率的比例值,中控模块通过电机控制对电机的控制以平衡基准库中存储的比例值作为控制基准。
所述平衡基准库、路径点暂存器、地图暂存库、姿态模型库均为eMMC。
本发明的有益效果在于:通过中控模块、I/O接口、路径点暂存器、路线规划、位置判断等模块的设置,能有效解决定点自动飞行的问题,为短距离物流的高效率低成本运营提供有力保障。
附图说明
图1是本发明的结构示意图;
图中:101-中控模块,102-平衡基准库,103-I/O接口,104-路径点暂存器,211-路线规划,212-地图暂存库,221-位置判断,222-压力传感器,231-姿态调整,232-姿态模型库,241-姿态控制,242-伸缩机构,251-电机控制,252-电机。
具体实施方式
下面进一步描述本发明的技术方案,但要求保护的范围并不局限于所述。
如图1所示的一种可调螺旋翼姿态的无人机自动飞行控制系统,包括中控模块101、I/O接口103、路径点暂存器104、路线规划211、位置判断221、压力传感器222、姿态控制241、伸缩机构242、电机控制251、电机252;所述中控模块101分别与I/O接口103、路径点暂存器104、路线规划211、位置判断221、压力传感器222、姿态控制241、伸缩机构242、电机控制251、电机252通信连接;
所述路径点暂存器104存储用户通过I/O接口103传入的路径点集合;
所述路线规划211按照路径点暂存器104中的路径点集合,按序连接每两个路径点得到飞行路线;
所述位置判断221从压力传感器222中读取受力数据,并通过受力数据以及电机转速、姿态信息,对当前位置进行判断;
所述姿态控制241通过对伸缩机构242进行控制,实现对螺旋翼的姿态控制;
所述电机控制251通过对电机252进行控制以提供飞行动力;
所述中控模块101协调信号传递,将I/O接口103接收并由用户确认的路径点集合发送至路径点暂存器104,将路径点暂存器104中的路径点数据发送至路线规划211,接受路线规划211返回的飞行路线并置入内存,实时对比位置判断221返回的当前位置和内存中的飞行路线,并根据对比结果向姿态控制241和电机控制251发送调整指令。
由此,用户使用时,将待运输的物件捆绑在无人机上,通过I/O接口103连接的操作屏幕等任意交互设备,对路径点进行设置并确认,即可等待无人机自动完成飞行运输。不过考虑到无人机的运载能力,同时为确保无人机自动飞行过程中有足够的调整余地,因此不适用于运输过重的包裹。
进一步的,无人机飞行直接通过路径点连线,可能会撞上建筑物,除非用户在设定路径点时刻意避开建筑物,因此为提高用户体验,避免用户在设定路径点时疏于考虑而导致无人机撞损,所述路线规划211还连接有地图暂存库212,路线规划211对每两个路径点之间的连线,通过从地图暂存库212中读取带有建筑物高度信息的地图数据,附上高度值,并根据地图数据中建筑物高度对路径点连线进行弯曲调整,避免连线穿过建筑物,最终形成能避开建筑物的飞行路线。地图数据应提前设置并写入地图暂存库212中。
更进一步的,中控模块101主要负责整体控制,因此如果还让中空模块101负责计算姿态调整对应的伸缩机构控制量,则很可能导致计算量过大、芯片过热等异常情况,故还包括姿态调整231,姿态调整231信号连接中控模块101,且中控模块101对姿态调整的指令发送至姿态调整231;姿态调整231连接有姿态模型库232;姿态调整231根据从姿态模型库232中读取的姿态-操作模型,将姿态调整指令进行计算转换得到伸缩机构控制指令集,并将伸缩机构控制指令集发送姿态控制241执行。
由于电机252在使用过程中可能会出现不同程度的耗损,导致同样的控制量却有不同的转速,同时无人机捆绑的物件重心大多情况下也不在理想状态,因此为确保无人机整体平衡易控,还包括平衡基准库102,平衡基准库102信号连接中控模块101,平衡基准库102中存储初始化过程中记载的平衡状态下,多个电机功率的比例值,中控模块101通过电机控制251对电机的控制以平衡基准库102中存储的比例值作为控制基准。由此,只要每次无人机开机时,完成一次初始化过程即可确保之后的平衡问题得以解决。
具体而言,所述平衡基准库102、路径点暂存器104、地图暂存库212、姿态模型库232均为eMMC。

Claims (3)

1.一种可调螺旋翼姿态的无人机自动飞行控制系统,包括中控模块(101)、I/O接口(103)、路径点暂存器(104)、路线规划(211)、位置判断(221)、压力传感器(222)、姿态控制(241)、伸缩机构(242)、电机控制(251)、电机(252),其特征在于:所述中控模块(101)分别与I/O接口(103)、路径点暂存器(104)、路线规划(211)、位置判断(221)、压力传感器(222)、姿态控制(241)、伸缩机构(242)、电机控制(251)、电机(252)通信连接;
所述路径点暂存器(104)存储用户通过I/O接口(103)传入的路径点集合;
所述路线规划(211)按照路径点暂存器(104)中的路径点集合,按序连接每两个路径点得到飞行路线;
所述位置判断(221)从压力传感器(222)中读取受力数据,并通过受力数据以及电机转速、姿态信息,对当前位置进行判断;
所述姿态控制(241)通过对伸缩机构(242)进行控制,实现对螺旋翼的姿态控制;
所述电机控制(251)通过对电机(252)进行控制以提供飞行动力;
所述中控模块(101)协调信号传递,将I/O接口(103)接收并由用户确认的路径点集合发送至路径点暂存器(104),将路径点暂存器(104)中的路径点数据发送至路线规划(211),接受路线规划(211)返回的飞行路线并置入内存,实时对比位置判断(221)返回的当前位置和内存中的飞行路线,并根据对比结果向姿态控制(241)和电机控制(251)发送调整指令;
还包括姿态调整(231),姿态调整(231)信号连接中控模块(101),且中控模块(101)对姿态调整的指令发送至姿态调整(231);姿态调整(231)连接有姿态模型库(232);姿态调整(231)根据从姿态模型库(232)中读取的姿态-操作模型,将姿态调整指令进行计算转换得到伸缩机构控制指令集,并将伸缩机构控制指令集发送姿态控制(241)执行;
还包括平衡基准库(102),平衡基准库(102)信号连接中控模块(101),平衡基准库(102)中存储初始化过程中记载的平衡状态下,多个电机功率的比例值,中控模块(101)通过电机控制(251)对电机的控制以平衡基准库(102)中存储的比例值作为控制基准。
2.如权利要求1所述的可调螺旋翼姿态的无人机自动飞行控制系统,其特征在于:所述路线规划(211)还连接有地图暂存库(212),路线规划(211)对每两个路径点之间的连线,通过从地图暂存库(212)中读取带有建筑物高度信息的地图数据,附上高度值,并根据地图数据中建筑物高度对路径点连线进行弯曲调整,避免连线穿过建筑物,最终形成能避开建筑物的飞行路线。
3.如权利要求1所述的可调螺旋翼姿态的无人机自动飞行控制系统,其特征在于:所述平衡基准库(102)、路径点暂存器(104)、地图暂存库(212)、姿态模型库(232)均为eMMC。
CN201710542498.8A 2017-07-05 2017-07-05 一种可调螺旋翼姿态的无人机自动飞行控制系统 Active CN107479569B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710542498.8A CN107479569B (zh) 2017-07-05 2017-07-05 一种可调螺旋翼姿态的无人机自动飞行控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710542498.8A CN107479569B (zh) 2017-07-05 2017-07-05 一种可调螺旋翼姿态的无人机自动飞行控制系统

Publications (2)

Publication Number Publication Date
CN107479569A CN107479569A (zh) 2017-12-15
CN107479569B true CN107479569B (zh) 2020-11-06

Family

ID=60595528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710542498.8A Active CN107479569B (zh) 2017-07-05 2017-07-05 一种可调螺旋翼姿态的无人机自动飞行控制系统

Country Status (1)

Country Link
CN (1) CN107479569B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110162102A (zh) * 2019-05-17 2019-08-23 广东技术师范大学 基于云平台和机器视觉的无人机自动识别跟踪方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103838152B (zh) * 2014-02-28 2016-08-17 北京航空航天大学 一种用于飞控系统的地面测试装置及控制方法
CN104236548B (zh) * 2014-09-12 2017-04-05 清华大学 一种微型无人机室内自主导航方法
CN105573330B (zh) * 2015-03-03 2018-11-09 广州亿航智能技术有限公司 基于智能终端的飞行器操控方法
CN104802985B (zh) * 2015-04-30 2017-01-18 数字鹰(泰州)农业科技有限公司 变轴向多旋翼飞行器及其飞行姿态调整方法
CN105547366A (zh) * 2015-12-30 2016-05-04 东北农业大学 微小型无人机农作物信息获取与施肥灌溉指导装置
CN205540284U (zh) * 2016-04-06 2016-08-31 成都普蓝特科技有限公司 一种用于无人机的联合控制系统
CN106054920A (zh) * 2016-06-07 2016-10-26 南方科技大学 一种无人机飞行路径规划方法和装置
CN106094857A (zh) * 2016-08-22 2016-11-09 京东方科技集团股份有限公司 无人机、穿戴设备及无人机的飞行控制方法、装置
CN106774374B (zh) * 2017-01-20 2020-07-10 武汉科技大学 一种无人机自动巡检方法及系统

Also Published As

Publication number Publication date
CN107479569A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
US10068486B1 (en) Transportation network utilizing multiple autonomous vehicles to transport items between network locations
US11565806B2 (en) Method of navigating an unmanned aerial vehicle for streetlight maintenance
CN104246733A (zh) 用于通用串行总线设备的数据重定向
JP2018505094A (ja) 集合型無人航空機の構成
US20120221291A1 (en) Indoor testing device for a plurality of rotor-containing flying objects
CN107297748B (zh) 一种餐厅服务机器人系统及应用
CN104301151A (zh) 电力通信网移动运维系统及方法
CN104503473B (zh) 一种惯性稳定控制器
US20210232136A1 (en) Systems and methods for cloud edge task performance and computing using robots
CN107479569B (zh) 一种可调螺旋翼姿态的无人机自动飞行控制系统
CN102528821A (zh) 一种基于多独立云台的仿生多目视觉物理平台
CN105359213A (zh) 具有重叠操作的磁带驱动
CN206203184U (zh) 一种堆垛机及其系统
CN104880195A (zh) 移动通信导航终端及其导航方法
CN107479570B (zh) 一种可调螺旋翼姿态的无人机自动飞行控制方法
CN206307269U (zh) 一种公路勘测用无人机
CN211478958U (zh) 基于Arduino的无线小车循迹视频回传与控制系统
CN204989976U (zh) 一种运输机器人无线射频控制系统
CN208190672U (zh) 一种跨平台网关
CN202781193U (zh) 一种基于多独立云台的仿生多目视觉物理平台
CN207427355U (zh) 一种潜水器用高速大容量数据传输与存储系统
CN215067824U (zh) 实时反馈姿态数据与实时控制的云台电路
CN112389651B (zh) 一种非接触式无人机换电方法和系统
CN204287966U (zh) 一种基于rfid技术的智能小车
KR20190042367A (ko) 무인항공기기의 자동 배터리 교환 장치 및 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20171215

Assignee: Reverse Expansion Technology (Liaoning) Co.,Ltd.

Assignor: NANNING University

Contract record no.: X2023980053202

Denomination of invention: An Automatic Flight Control System for Unmanned Aerial Vehicles with Adjustable Spiral Wing Attitudes

Granted publication date: 20201106

License type: Common License

Record date: 20231222

EE01 Entry into force of recordation of patent licensing contract