CN107478320B - 晶体管声传感元件及其制备方法、声传感器和便携设备 - Google Patents

晶体管声传感元件及其制备方法、声传感器和便携设备 Download PDF

Info

Publication number
CN107478320B
CN107478320B CN201710729633.XA CN201710729633A CN107478320B CN 107478320 B CN107478320 B CN 107478320B CN 201710729633 A CN201710729633 A CN 201710729633A CN 107478320 B CN107478320 B CN 107478320B
Authority
CN
China
Prior art keywords
sensing element
active layer
sound sensing
pole
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710729633.XA
Other languages
English (en)
Other versions
CN107478320A (zh
Inventor
王庆贺
胡金良
彭锐
王东方
袁广才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Hefei Xinsheng Optoelectronics Technology Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Hefei Xinsheng Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, Hefei Xinsheng Optoelectronics Technology Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN201710729633.XA priority Critical patent/CN107478320B/zh
Publication of CN107478320A publication Critical patent/CN107478320A/zh
Priority to US15/949,112 priority patent/US11043644B2/en
Application granted granted Critical
Publication of CN107478320B publication Critical patent/CN107478320B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/006Transducers other than those covered by groups H04R9/00 - H04R21/00 using solid state devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • H04R31/003Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/491Vertical transistors, e.g. vertical carbon nanotube field effect transistors [CNT-FETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/4012D or 3D arrays of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/027Diaphragms comprising metallic materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/10Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising field-effect transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种晶体管声传感元件及其制备方法、声传感器和便携设备。该晶体管声传感元件包括设置在基底上的栅极、栅绝缘层、第一极、有源层和第二极,有源层为纳米细线三维网孔结构,有源层能在声音信号的作用下产生振动,以使晶体管声传感元件的输出电流发生相应变化。该晶体管声传感元件通过采用纳米细线三维网孔结构的有源层,能实现对声音信号的检测,由于该结构的有源层能够灵敏感测声波的微弱振动,所以该结构的有源层能提高该晶体管声传感元件感测声音信号的灵敏度,从而提高其对声音的感测性能。

Description

晶体管声传感元件及其制备方法、声传感器和便携设备
技术领域
本发明涉及传感器技术领域,具体地,涉及一种晶体管声传感元件及其制备方法、声传感器和便携设备。
背景技术
近年来,随着人工智能、可穿戴电子、物联网的快速发展,传感器得到了越来越多的关注,人们对传感器的性能需求,也从传统的能够实现对源信号的检测向器件高灵敏度、多类型、可柔性、小尺寸等方向发展。
其中,声学传感器由于可以感知声音信号的变化,在智能仿生机器人、可穿戴等领域应用广泛。但是,传统的声学传感器的基本结构、工艺和性能,很难达到人们在人工智能或可穿戴电子领域的灵敏度、柔性和小尺寸要求。
因此,发展新型的符合人工智能或可穿戴电子领域的性能要求的声传感器件,已成为现如今声传感器发展的一个重要方向。
发明内容
本发明针对现有技术中存在的上述技术问题,提供一种晶体管声传感元件及其制备方法、声传感器和便携设备。该晶体管声传感元件通过采用纳米细线三维网孔结构的有源层,能实现对声音信号的检测,由于该结构的有源层能够灵敏感测声波的微弱振动,所以该结构的有源层能提高该晶体管声传感元件感测声音信号的灵敏度,从而提高其对声音的感测性能。
本发明提供一种晶体管声传感元件,包括设置在基底上的栅极、栅绝缘层、第一极、有源层和第二极,所述有源层为纳米细线三维网孔结构,所述有源层能在声音信号的作用下产生振动,以使所述晶体管声传感元件的输出电流发生相应变化。
优选地,所述有源层设置在所述第一极和所述第二极之间,所述有源层采用聚合物有机半导体材料。
优选地,所述有源层的材料包括P3HT、PDQT、PDVT-10、PPhTQ、P(DPP4T-co-BDT)、P3OT、BAS-PPE、TA-PPE、PQT-12或PBIBDF-BT。
优选地,所述有源层的厚度范围为50~500nm。
优选地,所述有源层包括单个子膜层或多个子膜层。
优选地,所述栅绝缘层采用氧化铝材料。
优选地,所述栅极、所述第一极和所述第二极均采用石墨烯材料。
优选地,所述基底采用聚二甲基硅氧烷材料。
本发明还提供一种声传感器,包括多个上述晶体管声传感元件,多个所述晶体管声传感元件呈阵列排布。
优选地,还包括信号采集分析单元,所述信号采集分析单元连接各个所述晶体管声传感元件,用于采集各个所述晶体管声传感元件的输出信号并对其进行综合分析,以获得声音信号的来向分布信息和强度分布信息。
本发明还提供一种便携设备,包括上述声传感器。
本发明还提供一种上述晶体管声传感元件的制备方法,包括:在基底上依次形成栅极、栅绝缘层、第一极、有源层和第二极,所述有源层采用溶液旋涂的方法形成在衬底上,然后采用膜层转移的方法将所述有源层从所述衬底上转移到所述基底上;所述有源层由纳米细线三维网孔结构形成。
优选地,形成所述栅极、所述第一极和所述第二极的方法相同,包括:
在铜箔上制备形成石墨烯薄膜;
将所述石墨烯薄膜转移到所述基底上。
优选地,所述将所述石墨烯薄膜转移到所述基底上包括:
在所述石墨烯薄膜的背向所述铜箔的一侧形成聚合物支撑层并对其进行固化;
将所述铜箔去除,形成所述聚合物支撑层支撑的所述石墨烯薄膜;
将所述聚合物支撑层支撑的所述石墨烯薄膜转移到所述基底上;
当形成所述栅极和所述第一极时,所述将所述石墨烯薄膜转移到所述基底上还包括:
去除所述聚合物支撑层,以在所述基底上形成所述栅极和所述第一极;
当形成所述第二极时,所述将所述石墨烯薄膜转移到所述基底上还包括:
保留所述聚合物支撑层。
本发明的有益效果:本发明所提供的晶体管声传感元件,通过采用纳米细线三维网孔结构的有源层,该有源层能在声音信号的作用下产生振动,从而能使该晶体管声传感元件的第一极通过有源层向第二极传输的面电流在原电流基础上发生相应变化,进而实现对声音信号的检测,相比于现有的声传感器件,由于该结构的有源层能够灵敏感测声波的微弱振动,所以该结构的有源层能提高该晶体管声传感元件感测声音信号的灵敏度,从而提高其对声音的感测性能。
本发明所提供的声传感器,通过采用多个排布呈阵列的上述晶体管声传感元件,能够对声音进行更广范围的感测,同时还提高了其感测灵敏度。
本发明所提供的便携设备,通过采用上述声传感器,提高了该便携设备的声音感测灵敏度,并扩大了其声音感测范围。
附图说明
图1为本发明实施例1中晶体管声传感元件的结构剖视示意图;
图2为图1中有源层的微观形貌图;
图3为图1中垂直结构的晶体管中第一极、有源层和第二极之间的电流传输示意图;
图4为采用膜层转移方法将有源层从衬底上转移到基底上的示意图。
其中的附图标记说明:
1.基底;2.栅极;3.栅绝缘层;4.第一极;5.有源层;6.第二极;7.衬底;8.聚合物支撑层。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明所提供的一种晶体管声传感元件及其制备方法、声传感器和便携设备作进一步详细描述。
实施例1:
本实施例提供一种晶体管声传感元件,如图1和图2所示,包括设置在基底1上的栅极2、栅绝缘层3、第一极4、有源层5和第二极6,有源层5为纳米细线三维网孔结构,有源层5能在声音信号的作用下产生振动,以使晶体管声传感元件的输出电流发生相应变化。
其中,有源层5设置在第一极4和第二极6之间,该晶体管声传感元件为垂直结构的晶体管。第一极4和第二极6分别为晶体管的源极和漏极。该垂直结构的晶体管是电荷注入控制型器件,即当在源极和栅极2上应用负偏压时,空穴能够累积在源极和有源层5的界面处,从而有效地降低了源极到有源层5的电荷注入势垒;通过栅极2电压的调制,能够控制电荷的注入效率,从而达到调节源极和漏极之间电流的目的。该垂直结构的晶体管与传统的晶体管一样,都是通过栅极2电压对源极和漏极之间的电流进行调制且形成开关器件。与传统的晶体管不同的是,该垂直结构的晶体管源极和漏极之间的电流通过源极的整个电极面和有源层5的整个面向漏极的整个电极面进行面传输(如图3所示)。
本实施例中,垂直结构的晶体管对声音信号进行感测的原理为:在该晶体管声传感元件的栅极2与源极之间施加开启电压,使该晶体管声传感元件处于开启状态,其源极与漏极之间通过有源层5流过一定大小的电流;当有声音信号传入该声传感元件时,声波振动会引起纳米细线三维网孔结构的有源层5发生振动,该振动会使原本流过源极和漏极之间的电流的大小发生变化;通过对源极和漏极之间电流的大小变化进行检测,即可实现对传入的声音信号进行感测。
采用纳米细线三维网孔结构的有源层5能在声音信号的作用下产生振动,从而能使该晶体管声传感元件的第一极4通过有源层5向第二极6传输的面电流在原电流基础上发生相应变化,进而实现对声音信号的检测,相比于现有的声传感器件,由于该结构的有源层5能够灵敏感测声波的微弱振动,所以该结构的有源层5能提高该晶体管声传感元件感测声音信号的灵敏度,从而提高其对声音的感测性能。
优选的,有源层5设置在第一极4和第二极6之间,有源层5采用聚合物有机半导体材料。其中,只要是高分子的有机半导体材料,均能用于形成具有纳米细线三维网孔结构的有源层5。如有源层5的材料包括P3HT(3-己基噻吩的聚合物)、PDQT、PDVT-10、PPhTQ、P(DPP4T-co-BDT)(D-A聚合物)、P3OT(聚3-辛基噻吩)、BAS-PPE、TA-PPE、PQT-12或PBIBDF-BT(D-A型共轭聚合物)等的聚合物有机半导体材料。聚合物有机半导体材料具有一定的柔性,从而有利于实现柔性的晶体管声传感元件,进而便于该晶体管声传感元件更好的应用于可穿戴电子设备领域。
优选的,有源层5的厚度范围为50~500nm。该厚度范围的有源层5不仅能够更好地对声音信号进行感测,而且有利于实现晶体管声传感元件的薄型化和轻型化,从而使其能够更好的应用于可穿戴电子设备领域或人工智能领域。
本实施例中,有源层5包括单个子膜层或多个子膜层。即有源层可以由单个子膜层构成,也可以由多个子膜层构成,这主要决定于有源层5的制备工艺,由于某些制备工艺中单次只能形成一个较薄的小于有源层5要求厚度的膜层,所以为了使有源层5的厚度达到其要求厚度,需要通过多次制备工艺形成多个相互叠加的子膜层。当然,如果通过一次制备工艺即可形成要求厚度的有源层5,则只要制备一个膜层即可完成有源层5的制备。
本实施例中,栅绝缘层3采用氧化铝材料。该材料的栅绝缘层3具有较高的介电常数,能实现该晶体管声传感元件的低伏工作,从而降低该声传感元件的功耗,使该声传感元件更加适用于对功耗有较高要求的人工智能领域。
优选的,栅极2、第一极4和第二极6均采用石墨烯材料。该材料的电极电流传输性能好,从而提高了该声传感元件的导电性能和声音感测的灵敏度;同时,该材料制成的电极具有一定的柔性,从而有利于实现柔性的晶体管声传感元件;另外,该材料能够制备形成厚度超薄的电极(如纳米级厚度的电极),从而有利于实现晶体管声传感元件的薄型化和轻型化。
本实施例中,基底1采用聚二甲基硅氧烷材料。该材料的基底1具有一定的柔性,能够实现柔性的晶体管声传感元件。
基于晶体管声传感元件的上述结构,本实施例还提供一种该晶体管声传感元件的制备方法,如图4所示,包括:在基底1上依次形成栅极2、栅绝缘层3、第一极4、有源层5和第二极,有源层5采用溶液旋涂的方法形成在衬底7上,然后采用膜层转移的方法将有源层5从衬底7上转移到基底1上;有源层5由纳米细线三维网孔结构形成。
其中,采用溶液旋涂的方法在衬底7上形成有源层5的具体方法为:如将PBIBDF-BT聚合物半导体和PBA(稳定剂,分子量2000)成分按一定比例称取重量,将其溶于氯仿(CF)溶剂中,使用搅拌子搅拌混合均匀,获得PBIBDF-BT聚合物半导体材料和PBA两组分共混的溶液。然后在套箱内使用4000rpm的转速旋涂共混溶液于CYTOP(透明氟树脂)修饰的衬底7上,然后再用丙酮清洗掉PBA组分,就可以得到PBIBDF-BT材料的多孔膜,该膜的内部结构为纳米细线三维网孔结构。
另外,采用膜层转移的方法将有源层5从衬底7上转移到基底1上的具体方法为:如图4所示,将水滴滴在形成有多孔膜的衬底7上,然后将其置于低温冷冻室内,3小时之后,将多孔膜通过冰与衬底7剥离(冰与多孔膜的粘附力大于多孔膜与疏水性CYTOP衬底的粘附力),将冰与多孔膜转移到形成有栅极2、栅绝缘层3和第一极4的基底1上;最后使用真空干燥机将冰升华后可得到PBIBDF-BT聚合物半导体膜层(即有源层5)。
本实施例中,在基底1上形成栅极2、第一极4和第二极的材料和方法相同,具体为:首先在铜箔上制备形成石墨烯薄膜。如将铜箔置入CVD炉子中,在1000度的炉内温度下通入一定比例的甲烷和氢气,在铜箔上形成石墨烯薄膜。然后将石墨烯薄膜转移到基底1上,该步骤具体包括:在石墨烯薄膜的背向铜箔的一侧形成聚合物支撑层并对其进行固化;如将形成石墨烯薄膜的铜箔置于旋涂设备中,在石墨烯薄膜一侧旋涂一层聚合物支撑层(如聚甲基丙烯酸甲酯PMMA);旋涂后置于烘烤设备中将PMMA固化。再将铜箔去除,形成聚合物支撑层支撑的石墨烯薄膜;如将其置于稀释后的醋酸中,铜箔会被醋酸刻蚀掉,剩余PMMA支撑的石墨烯薄膜。然后将聚合物支撑层支撑的石墨烯薄膜转移到基底上;其中PMMA位于石墨烯薄膜的远离基底1的一侧。当形成栅极2和第一极4时,将石墨烯薄膜转移到基底1上还包括:去除聚合物支撑层,以在基底1上形成栅极2和第一极4;如使用丙酮溶剂去除PMMA就形成晶体管声传感元件的一个石墨烯膜层。当形成第二极时,将石墨烯薄膜转移到基底1上还包括:保留聚合物支撑层;即无须再用丙酮溶剂去除聚合物支撑层8,聚合物支撑层8可以留下来用作保护层(如图1所示),保护基底1上形成的各个膜层。
另外,本实施例中的栅绝缘层3采用传统的原子层沉积方法(ALD,atomic layerdeposition)形成,具体不再赘述。
实施例1的有益效果:实施例1中所提供的晶体管声传感元件,通过采用纳米细线三维网孔结构的有源层,该有源层能在声音信号的作用下产生振动,从而能使该晶体管声传感元件的第一极通过有源层向第二极传输的面电流在原电流基础上发生相应变化,进而实现对声音信号的检测,相比于现有的声传感器件,由于该结构的有源层能够灵敏感测声波的微弱振动,所以该结构的有源层能提高该晶体管声传感元件感测声音信号的灵敏度,从而提高其对声音的感测性能。
实施例2:
本实施例提供一种声传感器,包括多个实施例1中的晶体管声传感元件,多个晶体管声传感元件呈阵列排布。
由多个晶体管声传感元件阵列排布形成的声传感器,其对声音的感测范围更广,且对声音的感测灵敏度更高。
优选的,该声传感器还包括信号采集分析单元,信号采集分析单元连接各个晶体管声传感元件,用于采集各个晶体管声传感元件的输出信号并对其进行综合分析,以获得声音信号的来向分布信息和强度分布信息。其中,声音信号的来向分布信息指从哪个方向传过来的声音信号比较密集,从哪个方向传过来的声音信号比较稀疏。声音信号的强度分布信息指声传感器上哪个区域的晶体管声传感元件接收到的声音信号强度高,哪个区域的晶体管声传感元件接收到的声音信号强度低。通过获得的声音信号的来向分布信息和强度分布信息,能够对声音信号进行更宽范围和更多角度的感测,从而使该声传感器的功能更强大。
实施例2的有益效果:实施例2中所提供的声传感器,通过采用多个呈阵列排布的实施例1中的晶体管声传感元件,能够对声音进行更广范围的感测,同时还提高了其感测灵敏度。
实施例3:
本实施例提供一种便携设备,包括实施例2中的声传感器。
通过采用实施例2中的声传感器,提高了该便携设备的声音感测灵敏度,并扩大了其声音感测范围。
本发明所提供的便携设备为任意的能够随身携带的智能型电子设备。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (14)

1.一种晶体管声传感元件,包括设置在基底上的栅极、栅绝缘层、第一极、有源层和第二极,其特征在于,所述有源层为纳米细线三维网孔结构,所述有源层能在声音信号的作用下产生振动,以使所述晶体管声传感元件的输出电流发生相应变化;
所述有源层设置在所述第一极和所述第二极之间,所述晶体管声传感元件为垂直结构的晶体管。
2.根据权利要求1所述的晶体管声传感元件,其特征在于,所述有源层采用聚合物有机半导体材料。
3.根据权利要求2所述的晶体管声传感元件,其特征在于,所述有源层的材料包括P3HT、PDQT、PDVT-10、PPhTQ、P(DPP4T-co-BDT)、P3OT、BAS-PPE、TA-PPE、PQT-12或PBIBDF-BT。
4.根据权利要求1所述的晶体管声传感元件,其特征在于,所述有源层的厚度范围为50~500nm。
5.根据权利要求1所述的晶体管声传感元件,其特征在于,所述有源层包括单个子膜层或多个子膜层。
6.根据权利要求1所述的晶体管声传感元件,其特征在于,所述栅绝缘层采用氧化铝材料。
7.根据权利要求1所述的晶体管声传感元件,其特征在于,所述栅极、所述第一极和所述第二极均采用石墨烯材料。
8.根据权利要求1所述的晶体管声传感元件,其特征在于,所述基底采用聚二甲基硅氧烷材料。
9.一种声传感器,其特征在于,包括多个如权利要求1-8任意一项所述的晶体管声传感元件,多个所述晶体管声传感元件呈阵列排布。
10.根据权利要求9所述的声传感器,其特征在于,还包括信号采集分析单元,所述信号采集分析单元连接各个所述晶体管声传感元件,用于采集各个所述晶体管声传感元件的输出信号并对其进行综合分析,以获得声音信号的来向分布信息和强度分布信息。
11.一种便携设备,其特征在于,包括权利要求9-10任意一项所述的声传感器。
12.一种如权利要求1-8任意一项所述的晶体管声传感元件的制备方法,包括:在基底上依次形成栅极、栅绝缘层、第一极、有源层和第二极,其特征在于,所述有源层采用溶液旋涂的方法形成在衬底上,然后采用膜层转移的方法将所述有源层从所述衬底上转移到所述基底上;所述有源层由纳米细线三维网孔结构形成。
13.根据权利要求12所述的晶体管声传感元件的制备方法,其特征在于,形成所述栅极、所述第一极和所述第二极的方法相同,包括:
在铜箔上制备形成石墨烯薄膜;
将所述石墨烯薄膜转移到所述基底上。
14.根据权利要求13所述的晶体管声传感元件的制备方法,其特征在于,所述将所述石墨烯薄膜转移到所述基底上包括:
在所述石墨烯薄膜的背向所述铜箔的一侧形成聚合物支撑层并对其进行固化;
将所述铜箔去除,形成所述聚合物支撑层支撑的所述石墨烯薄膜;
将所述聚合物支撑层支撑的所述石墨烯薄膜转移到所述基底上;
当形成所述栅极和所述第一极时,所述将所述石墨烯薄膜转移到所述基底上还包括:
去除所述聚合物支撑层,以在所述基底上形成所述栅极和所述第一极;
当形成所述第二极时,所述将所述石墨烯薄膜转移到所述基底上还包括:
保留所述聚合物支撑层。
CN201710729633.XA 2017-08-23 2017-08-23 晶体管声传感元件及其制备方法、声传感器和便携设备 Active CN107478320B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710729633.XA CN107478320B (zh) 2017-08-23 2017-08-23 晶体管声传感元件及其制备方法、声传感器和便携设备
US15/949,112 US11043644B2 (en) 2017-08-23 2018-04-10 Transistor acoustic sensor element and method for manufacturing the same, acoustic sensor and portable device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710729633.XA CN107478320B (zh) 2017-08-23 2017-08-23 晶体管声传感元件及其制备方法、声传感器和便携设备

Publications (2)

Publication Number Publication Date
CN107478320A CN107478320A (zh) 2017-12-15
CN107478320B true CN107478320B (zh) 2019-11-05

Family

ID=60601225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710729633.XA Active CN107478320B (zh) 2017-08-23 2017-08-23 晶体管声传感元件及其制备方法、声传感器和便携设备

Country Status (2)

Country Link
US (1) US11043644B2 (zh)
CN (1) CN107478320B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107222821B (zh) * 2017-06-09 2019-09-17 京东方科技集团股份有限公司 复合电极、使用其的声学传感器及制造方法
CN109489804B (zh) * 2018-12-07 2021-09-28 翟如选 一种声波探测器
CN111121951A (zh) * 2019-12-13 2020-05-08 深圳瀚光科技有限公司 一种二维MXene基声音探测器及其制备方法和应用
CN111498794B (zh) * 2020-03-18 2022-12-06 天津师范大学 悬空石墨烯场效应管声学传感器
KR20210147635A (ko) 2020-05-29 2021-12-07 삼성전자주식회사 적외선 흡수재, 적외선 흡수/차단 필름, 광전 소자, 센서 및 전자 장치

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200968A (en) * 1978-08-09 1980-05-06 Harris Corporation VMOS transistor and method of fabrication
EP0345380A2 (en) * 1988-06-08 1989-12-13 Mitsubishi Denki Kabushiki Kaisha Manufacture of a semiconductor device
CN1953231A (zh) * 2005-10-17 2007-04-25 中国科学院化学研究所 一种有机场效应晶体管及其制备方法
CN101404321A (zh) * 2008-10-31 2009-04-08 中国科学院微电子研究所 一种垂直沟道有机场效应晶体管及其制备方法
CN101442105A (zh) * 2007-11-21 2009-05-27 中国科学院化学研究所 一种有机场效应晶体管及其专用源漏电极与制备方法
CN101447552A (zh) * 2008-11-25 2009-06-03 中国科学院微电子研究所 管状栅电极垂直沟道有机场效应晶体管及其制备方法
CN101454659A (zh) * 2006-05-29 2009-06-10 皇家飞利浦电子股份有限公司 用于感测应用的有机场效应晶体管
CN102263201A (zh) * 2010-05-25 2011-11-30 中国科学院微电子研究所 一种有机场效应晶体管及其制备方法
CN102320752A (zh) * 2011-06-09 2012-01-18 中国科学院化学研究所 材料的图案化方法
CN102637825A (zh) * 2012-04-24 2012-08-15 中国科学院苏州纳米技术与纳米仿生研究所 一种有机薄膜晶体管的制备方法
CN102719877A (zh) * 2011-06-09 2012-10-10 中国科学院金属研究所 一种低成本无损转移石墨烯的方法
CN202564377U (zh) * 2011-12-26 2012-11-28 彭鹏 一种石墨烯电极
CN103472116A (zh) * 2013-08-29 2013-12-25 中国科学院化学研究所 超薄膜场效应晶体管传感器及其应用
CN103490010A (zh) * 2013-09-04 2014-01-01 中国科学院苏州纳米技术与纳米仿生研究所 基于微结构栅绝缘层的压力传感器及其制备方法
CN105336857A (zh) * 2014-08-06 2016-02-17 中国科学院化学研究所 基于悬空栅极场效应晶体管的多功能传感器及其制备方法与应用
CN105552132A (zh) * 2016-02-04 2016-05-04 京东方科技集团股份有限公司 薄膜晶体管传感器及其制备方法
CN105977382A (zh) * 2016-06-28 2016-09-28 中国计量大学 一种垂直沟道的柔性有机发光场效应晶体管及其制备方法
CN106328729A (zh) * 2016-10-19 2017-01-11 天津大学 基于石墨烯电极的量子点垂直沟道场效应管及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2116325B1 (zh) * 1969-12-13 1973-12-07 Wojskowa Akademia Tec Ni
US7058184B1 (en) * 2003-03-25 2006-06-06 Robert Hickling Acoustic measurement method and apparatus
CA2653202A1 (en) * 2006-05-25 2008-06-05 Ultra-Scan Corporation Biometrical object reader having an ultrasonic wave manipulation device
FR2925765B1 (fr) * 2007-12-21 2009-12-04 E2V Semiconductors Procede de fabrication de capteurs a couche de co-polymere p(vdf-trfe) et capteur correspondant
CN101666931B (zh) * 2008-09-05 2011-12-28 北京京东方光电科技有限公司 液晶显示器、薄膜晶体管液晶显示器的阵列基板及其制造方法
CN102160178B (zh) * 2008-09-19 2013-06-19 株式会社半导体能源研究所 半导体器件
JP5705454B2 (ja) * 2009-04-27 2015-04-22 日東電工株式会社 エレクトレット材および静電型音響変換器
JP6213559B2 (ja) * 2013-03-18 2017-10-18 富士通株式会社 電子デバイスとその製造方法、及びネットワークシステム
IL225374A0 (en) * 2013-03-21 2013-07-31 Noveto Systems Ltd Array@Matamari
CN105036058B (zh) * 2015-05-27 2016-10-05 华南理工大学 集成化电容式微加工超声换能器及其制备方法
CN106744641B (zh) * 2015-11-20 2019-02-22 中国计量学院 一种悬臂梁结构的震动传感有机场效应晶体管及其制备方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4200968A (en) * 1978-08-09 1980-05-06 Harris Corporation VMOS transistor and method of fabrication
EP0345380A2 (en) * 1988-06-08 1989-12-13 Mitsubishi Denki Kabushiki Kaisha Manufacture of a semiconductor device
CN1953231A (zh) * 2005-10-17 2007-04-25 中国科学院化学研究所 一种有机场效应晶体管及其制备方法
CN101454659A (zh) * 2006-05-29 2009-06-10 皇家飞利浦电子股份有限公司 用于感测应用的有机场效应晶体管
CN101442105A (zh) * 2007-11-21 2009-05-27 中国科学院化学研究所 一种有机场效应晶体管及其专用源漏电极与制备方法
CN101404321A (zh) * 2008-10-31 2009-04-08 中国科学院微电子研究所 一种垂直沟道有机场效应晶体管及其制备方法
CN101447552A (zh) * 2008-11-25 2009-06-03 中国科学院微电子研究所 管状栅电极垂直沟道有机场效应晶体管及其制备方法
CN102263201A (zh) * 2010-05-25 2011-11-30 中国科学院微电子研究所 一种有机场效应晶体管及其制备方法
CN102320752A (zh) * 2011-06-09 2012-01-18 中国科学院化学研究所 材料的图案化方法
CN102719877A (zh) * 2011-06-09 2012-10-10 中国科学院金属研究所 一种低成本无损转移石墨烯的方法
CN202564377U (zh) * 2011-12-26 2012-11-28 彭鹏 一种石墨烯电极
CN102637825A (zh) * 2012-04-24 2012-08-15 中国科学院苏州纳米技术与纳米仿生研究所 一种有机薄膜晶体管的制备方法
CN103472116A (zh) * 2013-08-29 2013-12-25 中国科学院化学研究所 超薄膜场效应晶体管传感器及其应用
CN103490010A (zh) * 2013-09-04 2014-01-01 中国科学院苏州纳米技术与纳米仿生研究所 基于微结构栅绝缘层的压力传感器及其制备方法
CN105336857A (zh) * 2014-08-06 2016-02-17 中国科学院化学研究所 基于悬空栅极场效应晶体管的多功能传感器及其制备方法与应用
CN105552132A (zh) * 2016-02-04 2016-05-04 京东方科技集团股份有限公司 薄膜晶体管传感器及其制备方法
CN105977382A (zh) * 2016-06-28 2016-09-28 中国计量大学 一种垂直沟道的柔性有机发光场效应晶体管及其制备方法
CN106328729A (zh) * 2016-10-19 2017-01-11 天津大学 基于石墨烯电极的量子点垂直沟道场效应管及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"有机场效应晶体管传感器研究进展";臧亚萍 等;《中国科学》;20161231;第46卷(第10期);第5.1节 *

Also Published As

Publication number Publication date
US20190067608A1 (en) 2019-02-28
CN107478320A (zh) 2017-12-15
US11043644B2 (en) 2021-06-22

Similar Documents

Publication Publication Date Title
CN107478320B (zh) 晶体管声传感元件及其制备方法、声传感器和便携设备
Jiang et al. A multifunctional and highly flexible triboelectric nanogenerator based on MXene-enabled porous film integrated with laser-induced graphene electrode
Deng et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates
Liu et al. Conductive elastic sponge-based triboelectric nanogenerator (TENG) for effective random mechanical energy harvesting and ammonia sensing
Zhang et al. Robust design of unearthed single-electrode TENG from three-dimensionally hybridized copper/polydimethylsiloxane film
Patnam et al. High-performance and robust triboelectric nanogenerators based on optimal microstructured poly (vinyl alcohol) and poly (vinylidene fluoride) polymers for self-powered electronic applications
Briscoe et al. Nanostructured p‐n junctions for kinetic‐to‐electrical energy conversion
CN106787931B (zh) 一种可拉伸同轴纤维状摩擦发电和传感器件及其制备方法
Uddin et al. Improving the working efficiency of a triboelectric nanogenerator by the semimetallic PEDOT: PSS hole transport layer and its application in self-powered active acetylene gas sensing
CN108793145B (zh) 一种原子级厚度石墨烯/氮化硼复合异质薄膜及制备
Mahanty et al. An effective flexible wireless energy harvester/sensor based on porous electret piezoelectric polymer
CN104374486B (zh) 一种基于石墨烯纳米墙的柔性温度传感器及其制备方法
Eom et al. Tailored poly (vinylidene fluoride-co-trifluoroethylene) crystal orientation for a triboelectric nanogenerator through epitaxial growth on a chitin nanofiber film
Lv et al. Trap distribution and conductivity synergic optimization of high-performance triboelectric nanogenerators for self-powered devices
CN105006450B (zh) 一种可延展无机柔性led阵列的制备方法
TWI445183B (zh) 肖特基二極體及其製備方法
Fatma et al. Maghemite/polyvinylidene fluoride nanocomposite for transparent, flexible triboelectric nanogenerator and noncontact magneto-triboelectric nanogenerator
Sun et al. Impact of substrate characteristics on stretchable polymer semiconductor behavior
CN107101752B (zh) 一种基于具有尖锥结构石墨烯的高灵敏度压力传感器及其制备方法
CN104614101B (zh) 一种柔性有源压力传感器结构及制备方法
Wang et al. Strain sensor with high sensitivity and large response range based on self-assembled elastic-sliding conductive networks
CN203982517U (zh) 自驱动智能警报系统
Rodriquez et al. Measurement of cohesion and adhesion of semiconducting polymers by scratch testing: effect of side-chain length and degree of polymerization
CN106953001A (zh) 一种基于碳纳米管薄膜及光刻胶的柔性压力传感器及其制备方法
CN105152162A (zh) 二维材料膜的批量大面积制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant