CN107475797A - 一种磁性纳米短纤维及其制备方法 - Google Patents

一种磁性纳米短纤维及其制备方法 Download PDF

Info

Publication number
CN107475797A
CN107475797A CN201610404961.8A CN201610404961A CN107475797A CN 107475797 A CN107475797 A CN 107475797A CN 201610404961 A CN201610404961 A CN 201610404961A CN 107475797 A CN107475797 A CN 107475797A
Authority
CN
China
Prior art keywords
magnetic nano
chopped fiber
dispersion liquid
magnetic
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610404961.8A
Other languages
English (en)
Inventor
冯章启
赵宾
李家城
史传梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201610404961.8A priority Critical patent/CN107475797A/zh
Publication of CN107475797A publication Critical patent/CN107475797A/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明公开了一种磁性纳米短纤维及其制备方法,其步骤为:(1)配制四氧化三铁纳米颗粒的N,N‑二甲基甲酰胺分散液;(2)将聚丙烯腈原丝加入到步骤(1)的分散液中,配得静电纺丝溶液;(3)采用步骤(2)所得静电纺丝溶液纺丝,制备磁性纳米纤维膜;(4)对步骤(3)所得磁性纳米纤维膜高速剪切得到磁性纳米短纤维分散液;(5)将步骤(4)的磁性纳米短纤维分散液离心,得到高浓度磁性纳米短纤维分散液,将其干燥,即得磁性纳米短纤维。本发明制备磁性纳米短纤维的方法简单有效,且制备的短纤维表现出铁磁性及良好的磁响应性。

Description

一种磁性纳米短纤维及其制备方法
技术领域
本发明属于功能材料的制备领域,具体涉及一种磁性纳米短纤维及其制备方法。
背景技术
随着纳米技术的快速发展,纳米材料因结构的特殊性表现出独特的性质,在生物医学领域成为研究的热点。磁性纳米材料是生物医学领域极为重要的材料,它既具有纳米材料所特有的性质,又具有优异的磁性能以及磁响应性。磁性纳米材料以其独特的理化性质,被广泛地应用于细胞操控、药物运输、肿瘤热疗、磁共振成像等领域。
磁性纳米颗粒、磁凝胶和磁性纳米纤维是当前生物医学领域常见的磁性材料,它们既具有良好的生物相容性又可以对外界磁场下做出快速响应。通常,磁性纳米颗粒和磁凝胶作为细胞培养材料,通过施加外界磁场研究细胞行为变化,进而作为研究磁场对细胞行为学影响的手段,磁性纳米纤维常作为磁热疗的工具,在交变磁场下吸收电磁波产热,作为研究治疗肿瘤疾病的手段之一。虽然以上三种材料有广泛的应用,但是仍存在一些问题,比如磁性纳米颗粒被细胞吞噬后,可能对细胞生理产生影响;磁性纳米纤维只针对热疗难以实现对细胞的控制。磁性纳米短纤维恰恰弥补了这些短板,一方面,细胞通过粘附在磁性纳米短纤维上,避免了磁性颗粒被细胞吞噬的后果,另一方面,磁性纳米短纤维对磁场有快速响应,可成功实现对细胞的操控。
近年来,短纤维因具有便于操纵、易于成型等优势,成为研究的热点。当前已有研究组报道了聚丙烯腈短纤维、聚甲基丙烯酸甲酯等短纤维的制备与应用(Hall J, Kai H, Roberts P. Multicompartmental microcylinders.[J]. Angewandte Chemie, 2009, 48(25):4589-4593;Si Y, Yu J, Tang X, et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality[J]. Nature Communications, 2014, 5:5802-5802;Duan G, Jiang S, Jérôme V, et al. Ultralight, Soft Polymer Sponges by Self-Assembly of Short Electrospun Fibers in Colloidal Dispersions[J]. Advanced Functional Materials, 2015, 25(19):2850–2856.)。但其制备短纤维方法多采用冷冻切片或在有机溶剂中长时间超声等步骤,其工艺相对复杂、过程相对繁琐,且难以实现短纤维的功能化,比如制备具有导电性、磁性的短纤维,复杂的制备过程严重限制了短纤维在催化、医学等领域的应用。
发明内容
本发明的目的在于提供一种磁性纳米短纤维及其制备方法。
本发明的一种磁性纳米短纤维及其制备方法,包括以下具体步骤:
步骤(1):四氧化三铁纳米颗粒分散液的制备
将四氧化三铁纳米颗粒置于N, N二甲基甲酰胺溶液中,通过超声振荡处理,得到四氧化三铁纳米颗粒的分散液;
步骤(2):静电纺丝溶液的配制
将聚丙烯腈原丝加入到步骤(1)的分散液中,将其磁力加热搅拌,即得静电纺丝溶液;
步骤(3):磁性纳米纤维膜的制备
将步骤(2)中的静电纺丝溶液除去气泡,采用静电纺丝技术制得磁性纳米纤维膜,将其干燥;
步骤(4):磁性纳米短纤维分散液的制备
将步骤(3)中所得磁性纳米纤维膜剪成1±0.1cmx1±0.1cm形状,分散到水溶液中,对其高速剪切,得到磁性纳米短纤维分散液;
步骤(5):磁性纳米短纤维的制备
将步骤(4)中所得磁性纳米短纤维分散液离心,得到高浓度磁性纳米短纤维分散液,干燥,即得磁性纳米短纤维。
优选地,所述步骤(1)中,四氧化三铁纳米颗粒分散液的浓度为0.01~
0.02g/mL。
优选地,所述步骤(1)中,超声振荡处理时间为60~80min。
优选地,所述步骤(2)中,聚丙烯腈原丝占静电纺丝溶液质量分数的8%~15%。
优选地,所述步骤(2)中,加热温度为40~60℃,搅拌速度为150~200rpm/min。
优选地,所述步骤(3)中,纺丝参数设置:纺丝温度为23℃,湿度为40%,电压为15kV,推进速度为1.0~3.0ml/L,接收距离为10~15cm,针头为21号平口针。
优选地,所述步骤(4)中,高速剪切采用均质分散机,其转速为13000~
18000rpm/min;剪切时间为20~40min。
本发明与现有技术相比,具有以下优点:
(1) 采用高速剪切法制备磁性纳米短纤维,与现有冷冻切片或超声方法相比,该方法操作方便、过程简单,且制备的磁性纳米短纤维表现出铁磁性及优异的磁响应性,在生物医学领域有广阔的应用前景。
(2)本发明选用水溶液作为剪切磁性纳米短纤维的分散介质,避免了常规方法中使用的叔丁醇、二氧六环等有毒性有机溶剂。
(3)所述方法操作简单,重复性好,省时省力。
附图说明
图1为本发明实施例1所制得的磁性纳米纤维膜的扫描电镜图。
图2为本发明实施例2所制得的磁性纳米短纤维的磁滞回线图。
图3为本发明实施例3所制得的磁性纳米短纤维在外加磁场调控后的磁响应图。
具体实施方式
下面结合具体实施实例,进一步阐述本发明。
实施例 1
(1) 量取5 mL 的N, N二甲基甲酰胺于螺口玻璃瓶中,加入0.05g四氧化三铁纳米颗粒,将螺口玻璃瓶旋紧后用封口膜封口,超声振荡 60分钟,得到四氧化三铁纳米颗粒分散液;
(2)称取0.40g 聚丙烯腈原丝加入到四氧化三铁纳米颗粒分散液中,在40℃、150r/min下磁力加热搅拌12小时,制得纺丝溶液;
(3) 将纺丝溶液静置5小时除去溶液中的气泡,在搭建的电纺装置进行电纺,电纺参数设置:纺丝温度为23℃,湿度为40%,电压为15kV,推进速度为1.0ml/L,接收距离为10cm,针头为21号平口针。制备的纳米纤维膜在40℃下进行干燥,即得到磁性纳米纤维膜,其扫描电镜图如图1所示;
(4) 将1g步骤(3)中所得磁性纳米纤维膜剪成1cmx1cm形状,分散到100mL水溶液中,利用均质分散机在13000rpm/min对其高速剪切20分钟得到磁性纳米短纤维分散液;
(5)将步骤(4)中所得磁性纳米短纤维分散液离心,得到高浓度短纤维分散液,将其40℃干燥,即得磁性纳米短纤维。
实施例 2
(1) 量取5 mL 的N, N二甲基甲酰胺于螺口玻璃瓶中,加入0.1g四氧化三铁纳米颗粒,将螺口玻璃瓶旋紧后用封口膜封口,超声振荡 80分钟,得到四氧化三铁纳米颗粒分散液;
(2)称取0.75g 聚丙烯腈原丝加入到四氧化三铁分散液中,在60℃、200r/min下磁力加热搅拌12小时,制得纺丝溶液;
(3) 将纺丝溶液静置5小时除去溶液中的气泡,在搭建的电纺装置进行电纺,电纺参数设置:纺丝温度为23℃,湿度为40%,电压为15kV,推进速度为3.0ml/L,接收距离为15cm,针头为21号平口针。制备的纳米纤维膜在60℃下进行干燥,即得到磁性纳米纤维膜;
(4) 将1g步骤(3)中所得磁性纳米纤维膜剪成1cmx1cm形状,分散到100mL水溶液中,利用均质分散机在18000rpm/min对其高速剪切30分钟得到磁性纳米短纤维分散液;
(5)将步骤(4)中所得磁性纳米短纤维分散液离心,得到高浓度短纤维分散液,将其60℃干燥,即得磁性纳米短纤维,其磁滞回线如图2所示。
实施例 3
(1) 量取5 mL 的N, N二甲基甲酰胺于螺口玻璃瓶中,加入0.08g四氧化三铁纳米颗粒,将螺口玻璃瓶旋紧后用封口膜封口,超声振荡 60分钟,得到四氧化三铁纳米颗粒分散液溶液;
(2)称取0.60g 聚丙烯腈原丝加入到四氧化三铁纳米颗粒分散液中,在55℃、180r/min下磁力加热搅拌12小时,制得纺丝溶液;
(3) 将纺丝溶液静置5小时除去溶液中的气泡,在搭建的电纺装置进行电纺,电纺参数设置:纺丝温度为23℃,湿度为40%,电压为15kV,推进速度为3.0ml/L,接收距离为15cm,针头为21号平口针。制备的纳米纤维膜在60℃下进行干燥,即得到磁性纳米纤维膜;
(4) 将1g步骤(3)中所得磁性纳米纤维膜剪成1cmx1cm形状,分散到100mL水溶液中,利用均质分散机在16000rpm/min对其高速剪切40分钟得到磁性纳米短纤维分散液,其在外加磁场调控后的磁响应效果如图3所示;
(5)将步骤(4)中所得磁性纳米短纤维分散液离心,得到高浓度短纤维分散液,干燥,即得磁性纳米短纤维。

Claims (8)

1.一种磁性纳米短纤维,其特征在于,由以下步骤制备:
步骤(1):四氧化三铁纳米颗粒分散液的制备
将四氧化三铁纳米颗粒置于N, N二甲基甲酰胺溶液中,通过超声振荡处理,得到四氧化三铁纳米颗粒的分散液;
步骤(2):静电纺丝溶液的配制
将聚丙烯腈原丝加入到步骤(1)的分散液中,将其磁力加热搅拌,即得静电纺丝溶液;
步骤(3):磁性纳米纤维膜的制备
将步骤(2)中的静电纺丝溶液除去气泡,采用静电纺丝技术制得磁性纳米纤维膜,将其干燥;
步骤(4):磁性纳米短纤维分散液的制备
将步骤(3)中所得磁性纳米纤维膜剪成1±0.1cmx1±0.1cm形状,分散到水溶液中,对其高速剪切,得到磁性纳米短纤维分散液;
步骤(5):磁性纳米短纤维的制备
将步骤(4)中所得磁性纳米短纤维分散液离心,得到高浓度磁性纳米短纤维分散液,干燥,即得磁性纳米短纤维。
2.如权利要求1所述的磁性纳米短纤维,其特征在于,步骤(1)中,四氧化三铁纳米颗粒分散液的浓度为0.01~0.02g/mL。
3.如权利要求1所述的磁性纳米短纤维,其特征在于,步骤(1)中,超声振荡处理时间为60~80min。
4.如权利要求1所述的磁性纳米短纤维,其特征在于,步骤(2)中,聚丙烯腈原丝占静电纺丝溶液质量分数的8%~15%。
5.如权利要求1所述的磁性纳米短纤维,其特征在于,步骤(2)中,加热温度为40~60℃,搅拌速度为150~200rpm/min。
6.如权利要求1所述的磁性纳米短纤维,其特征在于,步骤(3)中,纺丝参数设置:纺丝温度为23℃,湿度为40%,电压为15kV,推进速度为1.0~3.0ml/L,接收距离为10~15cm,针头为21号平口针。
7.如权利要求1所述的磁性纳米短纤维,其特征在于,步骤(4)中,高速剪切采用均质分散机,其转速为13000~18000rpm/min,剪切时间为20~40min。
8.如权利要求1-7任一所述的磁性纳米短纤维的制备方法。
CN201610404961.8A 2016-06-08 2016-06-08 一种磁性纳米短纤维及其制备方法 Pending CN107475797A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610404961.8A CN107475797A (zh) 2016-06-08 2016-06-08 一种磁性纳米短纤维及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610404961.8A CN107475797A (zh) 2016-06-08 2016-06-08 一种磁性纳米短纤维及其制备方法

Publications (1)

Publication Number Publication Date
CN107475797A true CN107475797A (zh) 2017-12-15

Family

ID=60594148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610404961.8A Pending CN107475797A (zh) 2016-06-08 2016-06-08 一种磁性纳米短纤维及其制备方法

Country Status (1)

Country Link
CN (1) CN107475797A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102978728A (zh) * 2012-12-04 2013-03-20 东华大学 一种磁性纳米复合粒子及其磁性纤维的制备方法
CN105040409A (zh) * 2015-07-07 2015-11-11 哈尔滨工业大学 一种磁性纳米复合材料的制备方法
CN105536075A (zh) * 2016-02-27 2016-05-04 青岛大学 一种纳微米纤维壳聚糖聚乳酸复合支架及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102978728A (zh) * 2012-12-04 2013-03-20 东华大学 一种磁性纳米复合粒子及其磁性纤维的制备方法
CN105040409A (zh) * 2015-07-07 2015-11-11 哈尔滨工业大学 一种磁性纳米复合材料的制备方法
CN105536075A (zh) * 2016-02-27 2016-05-04 青岛大学 一种纳微米纤维壳聚糖聚乳酸复合支架及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
何婷婷 等: "静电纺丝法制备PAN/Fe3O4磁性纳米纤维", 《化工新型材料》 *

Similar Documents

Publication Publication Date Title
Omidinia‐Anarkoli et al. An injectable hybrid hydrogel with oriented short fibers induces unidirectional growth of functional nerve cells
Lu et al. Hydrogel Assembly with Hierarchical Alignment by Balancing Electrostatic Forces.
CN104511045B (zh) 一种含纳米银的聚乙烯醇/壳聚糖纳米纤维膜敷料的制备方法
Rockwood et al. Materials fabrication from Bombyx mori silk fibroin
Wang et al. Dissolution and regeneration of silk from silkworm Bombyx mori in ionic liquids and its application to medical biomaterials
Voge et al. Directional conductivity in SWNT‐collagen‐fibrin composite biomaterials through strain‐induced matrix alignment
CN104761737B (zh) 一种静电纺丝法制备胶原蛋白/氧化石墨烯纳米纤维复合膜的方法
Li et al. Coaxial electrospinning and characterization of core-shell structured cellulose nanocrystal reinforced PMMA/PAN composite fibers
Narita et al. Characterization of ground silk fibroin through comparison of nanofibroin and higher order structures
CN106048892A (zh) 一种载有纳米银粒子的go/sa/pva复合纳米纤维膜的制备方法
CN112957526B (zh) 基于丝素蛋白的取向性生物墨水及其制备方法和应用
CN103611192B (zh) 部分还原的氧化石墨烯和丝素蛋白复合膜及其制备方法和应用
CN109166960A (zh) 一种纤维基柔性压电传感器的制备方法
CN109111575B (zh) 一种金属-有机框架纳米颗粒的制备方法和应用
CN110218339A (zh) 串珠状纳米纤维素微纤维、制备方法及其在复合水凝胶制备中的应用
Sun et al. Contribution of hydrogen-bond nanoarchitectonics to switchable photothermal-mechanical properties of bioinorganic fibers
Nazari et al. Optimized polylactic acid/polyethylene glycol (PLA/PEG) electrospun fibrous scaffold for drug delivery: effect of graphene oxide on the cefixime release mechanism
CN107475784A (zh) 一种四氧化三铁纳米纤维的制备方法
CN107475793A (zh) 一种氧化石墨烯包裹聚丙烯腈复合纳米纤维的制备方法
CN106581777A (zh) 一种聚己内酯‑氧化石墨烯复合多孔支架材料的制备方法
Mirakabad et al. Optimization of topography and surface properties of polyacrylonitrile-based electrospun scaffolds via nonoclay concentrations and its effect on osteogenic differentiation of human mesenchymal stem cells
CN104311848A (zh) 一种再生丝素-纳米氧化钛复合膜的制备方法
Arumuganathar et al. Living scaffolds (specialized and unspecialized) for regenerative and therapeutic medicine
CN106120151B (zh) 一种除甲醛复合纤维膜的制备方法
CN107475797A (zh) 一种磁性纳米短纤维及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171215

RJ01 Rejection of invention patent application after publication