CN107473537A - 一种三维‑类电芬顿处理土霉素的水处理系统及方法 - Google Patents
一种三维‑类电芬顿处理土霉素的水处理系统及方法 Download PDFInfo
- Publication number
- CN107473537A CN107473537A CN201710948400.9A CN201710948400A CN107473537A CN 107473537 A CN107473537 A CN 107473537A CN 201710948400 A CN201710948400 A CN 201710948400A CN 107473537 A CN107473537 A CN 107473537A
- Authority
- CN
- China
- Prior art keywords
- dimensional
- class
- reaction area
- fenton
- electro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/005—Combined electrochemical biological processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
- C02F2103/343—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hydrology & Water Resources (AREA)
- Molecular Biology (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
本发明提供一种三维‑类电芬顿处理土霉素的水处理系统及方法,包括反应器,反应器包括三维‑类电芬顿反应区I、三维‑类电芬顿反应区II和生物滤料反应区,所述三维‑类电芬顿反应区II填水渣基Co/Fe0粒子电极。污水首先进入三维‑类电芬顿反应区I进行预处理,提高污水的可生化性,然后经过生物滤料反应区,在生物滤料的作用下,污水中小分子有机物得以降解,然后经过双层多孔承托板,携带加药装置加入的过硫酸盐进入三维‑类电芬顿反应区II深度处理难生物降解的物质。在粒子电极负载的Fe0和电场作用下,过硫酸盐被活化产生硫酸根自由基,粒子电极基体中的过渡金属电催化产生羟基自由基,通过硫酸根自由基和羟基自由基有效降解污染物。
Description
技术领域
本发明涉及水处理技术领域,尤其涉及一种三维-类电芬顿处理土霉素的水处理系统及方法。
背景技术
土霉素是一类抗生素,由于其具有广谱性、质优价廉的特点,陆续被应用于临床,并已成为我国畜禽饲养业中生产量和临床使用量最大的抗生素。在低剂量添加时用来作为畜禽的生长促进剂,而高剂量使用时用来治疗疾病。其对水环境的污染特性表现为具有较强的持久性、生物累积性和缓慢的生物降解性等特点,长期存在于人体和水生、陆生生物体内,会给人类健康和生态环境带来潜在的危害,残留在环境介质中的医药类污染物正在以各种方式影响着环境中的生物体。目前常规的污水处理厂工艺对土霉素的处理效果不理想。
高级氧化法产生的强氧化活性物质对大分子有机物具有强氧化作用,有利于处理污水中的土霉素,而三维电极是一种新型的高级氧化方法,其反应区域不再局限于电极的简单几何表面上,而是在整个床层的三维空间表面上进行,近年来有较多的研究。专利CN102070230 A公开了一种三维电极电芬顿去除水中有机物的方法及装置,所述的装置包括反应室和气室,反应室内设置碳材料阴极、铁板阳极和固定床三维粒子电极,碳材料阴极和铁板阳极分别连接电源的两极,通电后,阳极氧化生成铁离子,阴极表面生成过氧化氢,铁离子和过氧化氢构成电芬顿试剂氧化去除废水中的有机物。阳极氧化生成铁离子后,阳极被消耗,一方面,使处理过程中需要不断更换阳极板,成本较高,更换时需要停工,影响上游生产,不能形成连续处理;另一方面,阳极消耗后生成的铁离子会随着污水一起流出,无法继续使用,需要不断消耗阳极产生铁离子,不利于循环利用,增加成本,且铁泥随污水流出后沉淀在污水中形成会形成二次污染,增加处理成本。
发明内容
本发明针对现有技术的不足,提供一种三维-类电芬顿处理土霉素的水处理系统及方法,有效处理污水中的土霉素。
本发明是通过如下技术方案实现的,提供一种三维-类电芬顿处理土霉素的水处理系统,包括反应器、供水装置、曝气装置、加药装置和电源,所述供水装置、所述曝气装置和所述电源分别连接所述反应器。
所述反应器包括三维-类电芬顿反应区I、三维-类电芬顿反应区II和生物滤料反应区,所述三维-类电芬顿反应区I位于所述生物滤料反应区的下方,所述三维-类电芬顿反应区II位于所述生物滤料反应区的上方,所述三维-类电芬顿反应区I和所述三维-类电芬顿反应区II的底部为主电极阳极,顶部为主电极阴极,所述电源的正负极分别电连接所述主电极阳极和所述主电极阴极,所述主电极阳极和所述主电极阴极之间填水渣基Co/Fe0粒子电极;
所述生物滤料反应区内填充生物滤料,所述生物滤料反应区和所述三维-类电芬顿反应区I之间固定有单层多孔承托板,所述生物滤料反应区和所述三维-类电芬顿反应区II之间固定有双层多孔承托板,所述三维-类电芬顿反应区I的底部还固定有双层多孔承托板,所述加药装置连通所述双层多孔承托板的两层板之间的空隙;
所述三维-类电芬顿反应区I的下方设置有进水口和反冲洗出水口,所述供水装置通过所述进水口连通所述反应器,所述三维-类电芬顿反应区II的上方设置有出水口和反冲洗进水口。
本发明提供的三维-类电芬顿处理土霉素的水处理系统,包括三维-类电芬顿反应区I和三维-类电芬顿反应区II,所述的三维-类电芬顿反应区I和三维-类电芬顿反应区II之间设置生物滤料反应区,污水自下方的进水口进入后首先经过三维-类电芬顿反应区I底部的双层多孔承托板,携带过硫酸盐进入三维-类电芬顿反应区I进行预处理,提高污水的可生化性,然后经过生物滤料反应区,在生物滤料的作用下,污水中小分子有机物得以降解,然后经过双层多孔承托板,携带加药装置加入的过硫酸盐进入三维-类电芬顿反应区II进行深度处理。三维-类电芬顿反应区II中的水渣基Co/Fe0粒子电极在电场的作用下被复极化而两端分别带正负电荷,形成一个个微小的电场,增大了反应器内的有效反应面积,水渣基Co/Fe0粒子电极所负载的Fe0能有效活化过硫酸盐,生成硫酸根自由基,即:
Fe0+2Fe3+→3Fe2+;
以Fe0作为活化剂时,活化过硫酸盐产生的Fe2+可再次活化过硫酸盐,使活化效率大大提高,且所生成的Fe3+在阴极被还原成Fe2+,继续活化过硫酸盐,保证水渣基Co/Fe0粒子电极持久高效催化土霉素。另外,在电场作用下,Fe3+得电子生成Fe2+继续活化过硫酸盐,即:
Fe3++e-→Fe2+;
S2O8 2-+Fe2+→Fe3++SO4 2-+SO4.-;
其中,反应生成的Fe3+还能在阴极还原成Fe2+,实现了Fe2+的重复利用。另外,电场强化活化过硫酸盐:S2O8 2-+e-→SO4 2-+SO4.-,电场催化粒子电极基体中的过渡金属产生羟基自由基,在反应区同时存在羟基自由基和硫酸根自由基,土霉素在两种自由基的共同作用下高效降解。且本发明设置反冲洗系统,所述反冲洗进水口位于上方,反冲洗出水口位于下方,反冲洗进水口连通纯净的水源,污水处理一段时间后可对生物滤料进行冲洗,当开始反冲洗阶段时,关闭供水装置,打开反冲洗系统,即反冲洗进水口和反冲洗出水口对生物滤料进行冲洗,生物滤料反应区定期反冲洗可以保证生物滤料的清洁和处理水质,延长其使用寿命。
本发明将Fe0负载于粒子电极上,不需要消耗阳极产生Fe2+,减少了阳极消耗的成本,并且不需要停工更换阳极,不影响上游工艺运行,减少了停工更换阳极产生的成本,负载于粒子电极上的Fe0与粒子电极形成一个统一的整体,不会随污水流出,持续发挥作用的同时不会对污水造成进一步污染。且本发明设置三维-类电芬顿反应区I和生物与滤料区,污水自下方的进水口进入后首先经过预反应区进行预处理,再经过生物滤料反应区,与生物滤料反应区内填充的生物滤料接触,在生物滤料上微生物的作用下,污水中小分子有机物得以降解,最后经三维-类电芬顿反应区II进行深度处理难降解的土霉素。
作为优选,所述水渣基Co/Fe0粒子电极由以下重量份数的组分组成:骨料55~65份,成孔剂8~12份,活化剂10~20份,粘合剂15~25份;其中,所述活化剂为Fe0、Co,所述骨料为水渣。
水渣基Co/Fe0粒子电极以Fe0为活化剂,能更好的激发活化过硫酸盐。当采用三维电极处理器处理含有土霉素的污水时,污水中的过硫酸盐在本发明提供的水渣基Co/Fe0粒子电极所负载的Fe0的作用下,被活化产生硫酸根自由基,水渣中的过渡金属电催化产生羟基自由基,土霉素可以被硫酸根自由基和羟基自由基有效降解。
作为优选,所述水渣基Co/Fe0粒子电极的制备方法为:
将水渣研磨成粉,使用80~120目的筛网筛分得到水渣粉骨料;然后将原料按上述比例充分混合后滚动成球,然后置于25~35℃恒温培养箱中培养8~12日,得到水渣基Co/Fe0粒子电极。
基于废物利用理念,充分利用水渣制备粒子电极,其在电催化反应中是良好的活化剂,能良好的促进电催化反应,掺杂Fe0、Co活性物质可作为过硫酸盐活化剂能良好的活化过硫酸盐;既提高了粒子电极的性能,又实现了变废为宝,减少了环境的污染和土地的占用。
作为优选,所述主电极阳极为PANI/Ti主电极阳极,所述PANI/Ti主电极阳极为负载聚苯胺的多孔钛网;所述主电极阴极为碳纤维。
本发明采用电催化以产生强氧化活性物质羟基自由基降解污染物,但在电催化反应体系中,阳极易腐蚀问题导致电催化应用受限。本发明提供的PANI/Ti主电极阳极,PANI即为聚苯胺,作为一种导电聚合物,负载于多孔钛网表面,能有效提高主电极阳极的抗腐蚀性。
所述PANI/Ti主电极阳极的制备方法按照如下步骤进行:
S01:将用砂纸打磨后的多孔钛网分别用NaOH溶液在95℃下碱洗1h、用HCl溶液在90℃酸洗1h、用去离子水冲洗,然后在鼓风干燥箱中105℃烘干备用。
钛网的表面存在一些氧化物等的杂质,使用砂纸打磨、碱性溶液和酸性溶液分别冲洗,可以有效去除钛材料表面的杂质,使其更好的发挥作用。除了NaOH溶液和HCl溶液外,还可以采用其他的碱性溶液或者酸性溶液来冲洗,但以不使钛网表面钝化,不产生其他杂质,不影响钛网性能为宗旨,例如,不可使用硫酸、硝酸类的酸性溶液来酸洗。
S02:将十二烷基磺酸钠、正丁醇以及丙烯酸丁酯与乙醇的混合液加入到去离子水中并磁力搅拌得到微乳液状,将微乳液体的pH值用盐酸调节到1,然后向微乳液中滴加苯胺单体得到均一溶液;其中,丙烯酸丁酯与乙醇的混合液中,丙烯酸丁酯与乙醇的质量比为1:1。
S03:在氮气、冰水浴反应条件下,向所述均一溶液中缓慢滴加过硫酸铵溶液,滴加过程持续40min;保持冰水浴、搅拌、氮气保护的条件下,持续反应24h得到聚苯胺悬浮液。
S04:将所述聚苯胺悬浮液均匀涂覆在所述步骤S01中得到的多孔钛网表面,105℃烘干2h,如此反复8~12次;最后一次置于马弗炉中300℃焙烧,得到PANI/Ti阳极。
作为优选,所述反应器还包括曝气区,所述曝气区位于所述三维-类电芬顿反应区I的下方并连通所述三维-类电芬顿反应区I,所述曝气区与所述三维-类电芬顿反应区I之间固定有双层多孔承托板,所述双层层多孔承托板位于所述主电极阳极下方,所述加药装置连通所述双层多孔承托板的两层板之间的空隙;所述曝气装置连通所述曝气区,所述曝气区的底部开设有出水口和反冲洗进水口。
本发明设置两个双层多孔承托板,分别位于曝气区与三维-类电芬顿反应区I之间、生物滤料反应区与三维-类电芬顿反应区II之间,每个双层多孔承托板均连通加药装置,污水首先经过曝气区与三维-类电芬顿反应区I之间的双层多孔承托板,携带过硫酸盐进入三维-类电芬顿反应区I,预处理后经生物滤料降解,继续经过生物滤料反应区与三维-类电芬顿反应区II之间的双层多孔承托板,再次携带过硫酸盐进入三维-类电芬顿反应区II进行深度处理。设置两个双层多孔承托板,使污水经过三维-类电芬顿反应区I和三维-类电芬顿反应区II时均有过硫酸盐活化反应,增强污水处理效果,提高污水处理效率。
作为优选,所述供水装置包括依次连通的水箱、计量泵和进水管,所述进水管连通所述进水口。
所述水箱经过计量泵计量后通过进水管连通反应器,水箱内的污水可以连续的进入反应器进行处理,水箱内的污水还可以进行补充,实现污水的连续处理,使用方便。
作为优选,所述曝气装置包括依次连通的空压机、进气管和溶气板,所述溶气板位于所述曝气区内,使整个反应器曝气均匀。所述溶气板可以是一中空的长方体或正方体或圆柱体结构,但厚度较小,其上下表面设置通孔,空压机内的气体经进气管进入溶气板的空腔内,经其上下表面的通孔进入曝气区,所述进气管上可以设置阀门,需要曝气时打开阀门,不需要曝气时关闭阀门和空压机。
作为优选,所述加药装置包括依次连通的加药箱和加药管,所述加药管连通所述双层多孔承托板之间的空隙。
加药装置将过硫酸盐加入至双层多孔承托板的两层板之间的空隙内,污水经进水口进入反应器内,首先经过三维-类电芬顿反应区I底部的双层多孔承托板,携带加药管加入的过硫酸盐向上到达生物滤料反应区,然后经过三维-类电芬顿反应区II底部的双层多孔承托板,携带过硫酸盐通过双层多孔承托板的上层板的通孔进入三维-类电芬顿反应区II进行反应,过硫酸盐通过加药装置加入可以避免过硫酸盐的损失,保证过硫酸盐的初始浓度。过硫酸盐由加药装置向反应器中持续加入;过硫酸盐活化剂Fe0掺杂在粒子电极中,构成三维-类电芬顿反应。
过硫酸盐的添加采用向供水装置中的污水中添加的方式时,可能存在过硫酸盐损失的情况,使过硫酸盐的初始浓度发生改变,直接向反应器中添加则不方便,因此本发明的优选方案设置了加药装置,加药装置将过硫酸盐加入至双层多孔承托板的两层板之间的空隙内,然后通过其上下的板上的孔进入反应区,采用加药装置添加过硫酸盐可以避免过硫酸盐的损失,保证过硫酸盐的初始浓度。
本发明还提供一种三维-类电芬顿处理土霉素的水处理系统的水处理方法,所述方法包括:
制备水渣基Co/Fe0粒子电极和主电极阳极;
将所述反应器、供水装置、曝气装置、加药装置和电源按照上述结构组装好;
主电极阳极、主电极阴极和水渣基Co/Fe0粒子电极构成三维粒子电极体系,通过加药装置向所述反应器中加入过硫酸盐,通过供水装置向反应器中通入污水,使带有过硫酸盐的污水进入三维粒子电极反应体系构成三维-类电芬顿反应,强化产生硫酸根自由基,粒子电极基体中的过渡金属在电场的作用下催化产生羟基自由基,两者共同有效降解污水中的土霉素。
本发明实施例提供的技术方案可以包含以下有益效果:
本发明提供的水处理系统及方法,供水装置中的污水首先进入三维-类电芬顿反应区I进行预处理,提高污水的可生化性,然后经过生物滤料反应区,在生物滤料的作用下,污水中小分子有机物得以降解,然后经过双层多孔承托板,携带加药装置加入的过硫酸盐进入三维-类电芬顿反应区II进行深度处理难生物降解的物质。在三维-类电芬顿反应区II中粒子电极负载的Fe0作用下,过硫酸盐被活化产生硫酸根自由基,电催化产生羟基自由基,通过硫酸根自由基和羟基自由基有效降解水中的污染物。粒子电极上负载有Fe0,不需要消耗阳极产生Fe2+,减少了阳极消耗的成本,并且不需要停工更换阳极,不影响上游生产,减少了停工更换阳极产生的成本,负载于粒子电极上的Fe0与粒子电极形成一个统一的整体,不会随污水流出,持续发挥作用的同时不会对污水造成进一步污染。
本发明在三维-类电芬顿反应区II上方设置三维-类电芬顿反应区I和生物滤料反应区,污水自进水口进入后首先经过三维-类电芬顿反应区I进行预处理,然后进入生物滤料反应区,与生物滤料反应区内填充的生物滤料接触,在生物滤料的作用下,污水中小分子有机物得以降解,最后再经过三维-类电芬顿反应区II进行深度处理难生物降解的物质,达到更好的处理效果。本发明还设置反冲洗系统,包括反冲洗进水口和反冲洗出水口,污水处理一段时间后可对生物滤料进行定期冲洗,以保证生物滤料的清洁和处理水质,延长其使用寿命。
附图说明
为了更清楚的说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见的,对于本领域技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种三维-类电芬顿处理土霉素的水处理系统的结构示意图。
图2为本发明实施例提供的一种三维-类电芬顿处理土霉素的水处理系统的PANI/Ti电极与Ti电极的Tafel曲线图。
图中所示:水箱1、进水管2、蠕动泵3、反应器4、电源5、导线6、主电极阳极7、主电极阴极8、空压机9、进气管10、溶气板11、水渣基Co/Fe0粒子电极12、加药箱13、加药管14、双层多孔承托板15、单层多孔承托板16、生物滤料反应区17、反冲洗进水口18、出水口19、反冲洗出水口20、反冲洗控制阀21、进水控制阀22。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明的保护范围。
参见附图1,所示为本发明实施例提供的一种三维-类电芬顿处理土霉素的水处理系统的结构示意图。
由图1可知,所述三维-类电芬顿水处理系统包括反应器4、供水装置、曝气装置、加药装置和电源5,所述供水装置、所述曝气装置和所述加药装置分别连通所述反应器4。
所述反应器4自上而下包括三维-类电芬顿反应区II、生物滤料反应区17、三维-类电芬顿反应区I、曝气区,曝气区的底部设置进水口和反冲洗出水口20,且所述进水口和所述反冲洗出水口20相连通,供水装置通过进水口连通反应器,进水口上设置进水控制阀22,反冲洗出水口20上设置反冲洗控制阀21,三维-类电芬顿反应区II的上方设置出水口19和反冲洗进水口18,反冲洗进水口18连通纯净的水源,生物滤料反应区17内填充生物滤料,生物滤料反应区17和三维-类电芬顿反应区I之间设置单层多孔承托16,生物滤料反应区17和三维-类电芬顿反应区II之间、曝气区和三维-类电芬顿反应区I之间均设置双层多孔承托板15,加药管14分别连通这两个双层多孔承托板15的两个板之间的空隙,加药管14上设置加药控制阀;三维-类电芬顿反应区I和三维-类电芬顿反应区II的顶部均固定主电极阴极8,底部设置主电极阳极7,所述电源5的正负极分别通过导线6电连接所述主电极阳极7和所述主电极阴极8;所述主电极阳极7和主电极阴极8之间的三维-类电芬顿反应区II内填水渣基Co/Fe0粒子电极,所述曝气装置连通所述曝气区。
所述主电极阳极7为PANI/Ti主电极阳极,所述PANI/Ti主电极阳极为负载聚苯胺的多孔钛网;所述主电极阴极8为碳纤维。所述供水装置包括依次连通的水箱1和蠕动泵3,所述蠕动泵3通过所述进水管2连通所述进水口。所述曝气装置包括依次连通的空压机9、进气管10和溶气板11,所述溶气板11位于所述曝气区内。所述加药装置包括依次连通的加药箱13和加药管14,所述加药管14连通所述双层多孔承托板15的两层板之间的空隙。
反应器4为圆柱体,直径15cm,高110cm,从下到上依次为进水口、溶气板11、双层多空承托板15、PANI/Ti阳极7、水渣基Co/Fe0粒子电极12、碳纤维阴极8、单层多空承托板16、生物滤料、双层多孔承托板15、PANI/Ti阳极7、水渣基Co/Fe0粒子电极12、碳纤维阴极8、出水口19。电源5采用直流电源用以调节槽电压,三维-类电芬顿反应区I和三维-类电芬顿反应区II内的PANI/Ti阳极7通过导线6连接,三维-类电芬顿反应区I和三维-类电芬顿反应区II内的碳纤维阴极8通过导线6连接,直流电源正负极分别与两个PANI/Ti阳极7连接的导线和两个碳纤维阴极8连接的导线相连。
供水装置由高位水箱1、蠕动泵3和进水管2组成,水箱1中的城市污水由进水管2经蠕动泵3后进入反应器4,经处理后由出水口19出水。曝气装置由空压机9、曝气管10和溶气板11组成,溶气板11可使三维-类电芬顿反应区II曝气均匀。加药装置由加药箱13和加药管14组成,加药管14连通双层多空承托板15,双层多空承托板15由上下两个多空承托板构成且间距为2cm,加药管外径为2cm,连接到双层多空承托板15的中间,系统运行时,加药装置通过加药管14将过硫酸盐加入到双层多空承托板15中间,与进水均匀混合。
本发明实施例提供的三维-类电芬顿处理土霉素的水处理系统运行过程为:
首先制备水渣基Co/Fe0粒子电极12和PANI/Ti阳极7,然后将反应器4、供水装置、曝气装置、加药装置和电源5按照上述的结构组装完毕;水箱1中的城市污水经蠕动泵3后由进水管2经进水口进入反应器4内,首先经过曝气区和三维-类电芬顿反应区I之间的双层多孔承托板15,携带加药装置加入的过硫酸盐进入三维-类电芬顿反应区I,在三维-类电芬顿反应区I中的粒子电极和电场作用下完成预反应,增加污水的可生化性,然后穿过单层多孔承托板16进入生物滤料反应区,在生物滤料的作用下,使污水中小分子有机物得以降解,然后穿过双层多孔承托板15进入三维-类电芬顿反应区II,与此同时,过硫酸盐通过加药装置在双层多空承托板15内均匀混和到进水中进入到三维-类电芬顿反应区II并与水渣基Co/Fe0粒子电极相接触,在Fe0和电场的作用下,过硫酸盐被活化产生硫酸根自由基,电催化产生羟基自由基,城市污水中剩余污染物经硫酸根自由基和羟基自由基有效降解后,经反应器4的出水口19出水,完成处理过程。每当污水处理一段时间后,可关闭供水装置的进水控制阀22,停止污水处理过程,打开反冲洗控制阀21,通过反冲洗进水口18向反应器4内通入纯净的水,对生物滤料进行反冲洗,使反冲洗后的污水经反冲洗出水口20流出,对生物滤料进行定期冲洗,可以保证生物滤料的清洁和处理水质,延长其使用寿命。
其中,水渣基Co/Fe0粒子电极12的制备方法为:
将水渣进行充分浸泡、超声2h清洗,并在120℃条件下烘干4h,冷却至室温,置于磨球机中研磨成粉,使用80目的筛网筛分水渣粉;然后准确称取重量份数:水渣粉骨料60份、氯化钠成孔剂10份、水泥粘合剂20份、Co、Fe0活性组分10份,充分混合后滚动成球(直径在3~5mm之间),后置于25℃恒温培养箱中培养12日,得到稳定的水渣基Co/Fe0粒子电极12。
基于废物利用理念,充分利用水渣制备粒子电极,其在电催化反应中是良好的活化剂,能良好的促进电催化反应,掺杂Fe0、Co活性物质可作为过硫酸盐活化剂能良好的活化过硫酸盐;既提高了粒子电极的性能,又实现了变废为宝,减少了环境的污染和土地的占用。
PANI/Ti阳极的制备方法为:
S01:将用不同粗细程度的砂纸打磨后的多孔钛网分别用NaOH溶液在95℃下碱洗1h、用HCl溶液在90℃酸洗1h、用去离子水冲洗,然后在鼓风干燥箱中105℃烘干备用。
S02:将十二烷基磺酸钠0.06份、正丁醇0.12份以及丙烯酸丁酯与乙醇的混合液10份,加入到30份去离子水中并磁力搅拌至透明微乳液状,用盐酸将pH值调节到1,滴加3份苯胺单体得到均一溶液。
S03:在氮气、冰水浴条件下,向上述步骤S02得到的均一溶液中缓慢滴加10份过硫酸铵溶液,滴加过程持续40min,以缓慢引发聚合反应,保持冰水浴、搅拌、氮气保护的条件下,持续反应24h得到聚苯胺悬浮液。
S04:将所述聚苯胺悬浮液均匀涂覆在所述步骤S01中得到的多孔钛网表面,105℃烘干2h,如此反复8次;最后一次置于马弗炉中300℃焙烧,得到PANI/Ti阳极。
参见附图2,为本实施例制备的PANI/Ti阳极与Ti电极的Tafel曲线。由图2可知,由使用电化学工作站对PANI/Ti电极与Ti电极进行描述的Tafel曲线可以看出,PANI/Ti电极耐腐蚀性大大提高。
实施例2
本实施例与上述实施例1不同之处在于,本实施例中的水渣基Co/Fe0粒子电极12的制备方法为:
将水渣进行充分浸泡、超声2h清洗,并在110℃条件下烘干6h,冷却至室温,置于磨球机中研磨成粉,使用80目的筛网筛分水渣粉;然后准确称取重量份数:水渣粉骨料55份、氯化钠成孔剂12份、水泥粘合剂15份、Co、Fe0活性组分20份,充分混合后滚动成球(直径在3~5mm之间),后置于35℃恒温培养箱中培养8日,得到稳定的水渣基Co/Fe0粒子电极12。
实施例3
本实施例与上述实施例1不同之处在于,本实施例中的水渣基Co/Fe0粒子电极12的制备方法为:
将水渣进行充分浸泡、超声2h清洗,并在115℃条件下烘干3h,冷却至室温,置于磨球机中研磨成粉,使用80目的筛网筛分水渣粉;然后准确称取重量份数:水渣粉骨料65份、氯化钠成孔剂8份、水泥粘合剂25份、Co、Fe0活性组分15份,充分混合后滚动成球(直径在3~5mm之间),后置于30℃恒温培养箱中培养10日,得到稳定的水渣基Co/Fe0粒子电极12。
在本发明的其他实施例中,所述水处理系统的装置还可以是其他结构,比如反应器设置为长方体结构;根据处理的污水性质的不同还可以更换不同基体的粒子电极,比如,所述粒子电极的基体可以是:钢渣沸石、锰渣、彩钢废渣、黄金尾矿、粉煤灰、赤泥、瓦斯泥、转炉泥以及高炉除尘灰等,可以通过在基体上负载不同形式的Fe来处理不同性质的污水。
当然,上述说明也并不仅限于上述举例,本发明未经描述的技术特征可以通过或采用现有技术实现,在此不再赘述;以上实施例仅用于说明本发明的技术方案并非是对本发明的限制,参照优选的实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改型、添加或替换都不脱离本发明的宗旨,也应属于本发明的权利要求保护范围。
Claims (9)
1.一种三维-类电芬顿处理土霉素的水处理系统,其特征在于,包括反应器(4)、供水装置、曝气装置、加药装置和电源(5),所述供水装置、所述曝气装置、所述加药装置和所述电源(5)分别连接所述反应器(4);
所述反应器(4)包括三维-类电芬顿反应区I、三维-类电芬顿反应区II和生物滤料反应区(17),所述三维-类电芬顿反应区I位于所述生物滤料反应区(17)的下方,所述三维-类电芬顿反应区II位于所述生物滤料反应区(17)的上方,所述三维-类电芬顿反应区I和所述三维-类电芬顿反应区II的底部为主电极阳极(7),顶部为主电极阴极(8),所述电源(5)的正负极分别电连接所述主电极阳极(7)和所述主电极阴极(8),所述主电极阳极(7)和所述主电极阴极(8)之间填充水渣基Co/Fe0粒子电极(12);
所述生物滤料反应区(17)内填充生物滤料,所述生物滤料反应区(17)和所述三维-类电芬顿反应区I之间固定有单层多孔承托板(16),所述生物滤料反应区(17)和所述三维-类电芬顿反应区II之间固定有双层多孔承托板(15),所述的三维-类电芬顿反应区I下方固定有双层多孔承托板(15),所述加药装置连通所述双层多孔承托板(15)的两层板之间的空隙;
所述三维-类电芬顿反应区I的下方设置有进水口和反冲洗出水口(20),所述供水装置通过所述进水口连通所述反应器(4),所述三维-类电芬顿反应区II的上方设置有出水口(19)和反冲洗进水口(18)。
2.根据权利要求1所述的一种三维-类电芬顿处理土霉素的水处理系统,其特征在于,所述水渣基Co/Fe0粒子电极(12)由以下重量份数的组分组成:骨料55~65份,成孔剂8~12份,活化剂10~20份,粘合剂15~25份;其中,所述活化剂为Fe0、Co,所述骨料为水渣。
3.根据权利要求2所述的一种三维-类电芬顿处理土霉素的水处理系统,其特征在于,所述水渣基Co/Fe0粒子电极(12)的制备方法为:
将水渣研磨成粉,使用80~120目的筛网筛分得到水渣粉骨料;然后将原料按上述比例充分混合后滚动成球,置于25~35℃恒温培养箱中培养8~12日,得到水渣基Co/Fe0粒子电极。
4.根据权利要求1所述的一种三维-类电芬顿处理土霉素的水处理系统,其特征在于,所述主电极阳极(7)为PANI/Ti主电极阳极,所述PANI/Ti主电极阳极为负载聚苯胺的多孔钛网;所述主电极阴极(8)为碳纤维。
5.根据权利要求1所述的一种三维-类电芬顿处理土霉素的水处理系统,其特征在于,所述反应器还包括曝气区,所述曝气区位于所述三维-类电芬顿反应区I的下方并连通所述三维-类电芬顿反应区I,所述曝气区与所述三维-类电芬顿反应区I之间固定有双层多孔承托板(15),所述双层多孔承托板(15)位于所述主电极阳极(7)下方,所述加药装置连通所述双层多孔承托板(15)的两层板之间的空隙;所述曝气装置连通所述曝气区,所述曝气区的底部开设有进水口和反冲洗出水口(20)。
6.根据权利要求1~5任一项所述的一种三维-类电芬顿处理土霉素的水处理系统,其特征在于,所述供水装置包括依次连通的水箱(1)、蠕动泵(3)和进水管(2),所述进水管(2)连通所述进水口。
7.根据权利要求6所述的一种三维-类电芬顿处理土霉素的水处理系统,其特征在于,所述曝气装置包括依次连通的空压机(9)、进气管(10)和溶气板(11),所述溶气板(11)位于所述曝气区内。
8.根据权利要求7所述的一种三维-类电芬顿处理土霉素的水处理系统,其特征在于,所述加药装置包括依次连通的加药箱(13)和加药管(14),所述加药管(14)连通所述双层多孔承托板(15)之间的空隙。
9.一种用于权利要求1所述的三维-类电芬顿处理土霉素的水处理系统的水处理方法,其特征在于,所述方法包括:
制备水渣基Co/Fe0粒子电极(12)和主电极阳极(7);
将所述反应器(4)、供水装置、曝气装置、加药装置和电源(5)按照上述结构组装好;
主电极阳极(7)、主电极阴极(8)和水渣基Co/Fe0粒子电极(12)构成三维粒子电极体系,通过加药装置向所述反应器(4)中加入过硫酸盐,通过供水装置向反应器中通入污水,使带有过硫酸盐的污水进入三维粒子电极反应体系构成三维-类电芬顿反应,强化产生硫酸根自由基,粒子电极基体中的过渡金属在电场的作用下催化产生羟基自由基,两者共同有效降解污水中的土霉素。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710948400.9A CN107473537A (zh) | 2017-10-12 | 2017-10-12 | 一种三维‑类电芬顿处理土霉素的水处理系统及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710948400.9A CN107473537A (zh) | 2017-10-12 | 2017-10-12 | 一种三维‑类电芬顿处理土霉素的水处理系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107473537A true CN107473537A (zh) | 2017-12-15 |
Family
ID=60605218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710948400.9A Withdrawn CN107473537A (zh) | 2017-10-12 | 2017-10-12 | 一种三维‑类电芬顿处理土霉素的水处理系统及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107473537A (zh) |
-
2017
- 2017-10-12 CN CN201710948400.9A patent/CN107473537A/zh not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107473540A (zh) | 一种三维‑类电芬顿降解喹诺酮类抗生素的水处理系统及方法 | |
CN107459234A (zh) | 一种三维‑类电芬顿处理四环素水处理系统及方法 | |
CN107512762A (zh) | 一种三维‑类电芬顿降解水杨酸的水处理系统及方法 | |
CN106082399A (zh) | 一种电化学高级氧化装置 | |
CN107010728B (zh) | 一种渐变式全程自养脱氮系统及其处理方法 | |
CN208234701U (zh) | 一种三维-类电芬顿处理头孢氨苄的水处理系统 | |
CN102583910A (zh) | 一种多级催化氧化加微电解法处理废水的方法 | |
CN113735227A (zh) | 曝气式三维电芬顿流化床 | |
CN109867353A (zh) | 一种电增强零价铁厌氧水处理装置与方法 | |
CN107473536A (zh) | 一种三维‑类电芬顿降解双氯芬酸的水处理系统及方法 | |
CN107459232A (zh) | 一种三维‑类电芬顿降解萘普生的水处理系统及方法 | |
CN108163934A (zh) | 一种采用铑电极进行电解脱氮的系统及方法 | |
CN105060656B (zh) | 一种生化系统辅助设备及其应用 | |
KR101649112B1 (ko) | 전기분해수단이 구비된 펜톤산화 폐수처리장치 | |
CN107986519A (zh) | 一种电催化和光催化污水处理方法 | |
CN107473539A (zh) | 一种三维‑类电芬顿处理磺胺甲恶唑的水处理系统及方法 | |
WO2023098252A1 (zh) | 一种光电微生物耦合脱氮除碳系统 | |
CN107459233A (zh) | 一种三维‑类电芬顿处理三氯卡班的水处理系统及方法 | |
CN107473537A (zh) | 一种三维‑类电芬顿处理土霉素的水处理系统及方法 | |
CN207632680U (zh) | 一种废水处理装置 | |
CN102923828A (zh) | 一种垃圾渗滤液的处理装置及其处理方法 | |
CN107010729B (zh) | 一种气水异向流渐变式全程自养脱氮系统及其处理方法 | |
CN107473338A (zh) | 一种三维‑类电芬顿降解酮洛芬的水处理系统及方法 | |
CN207998523U (zh) | 一种三维—类电芬顿降解萘普生的水处理系统 | |
CN208008520U (zh) | 一种三维-类电芬顿降解酮洛芬的水处理系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20171215 |
|
WW01 | Invention patent application withdrawn after publication |