CN107473520B - 结合混凝旋流过滤与多维汇水湿地的一种工艺方法 - Google Patents

结合混凝旋流过滤与多维汇水湿地的一种工艺方法 Download PDF

Info

Publication number
CN107473520B
CN107473520B CN201710860010.6A CN201710860010A CN107473520B CN 107473520 B CN107473520 B CN 107473520B CN 201710860010 A CN201710860010 A CN 201710860010A CN 107473520 B CN107473520 B CN 107473520B
Authority
CN
China
Prior art keywords
water
flocculation
vortex
magnetic powder
biological filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710860010.6A
Other languages
English (en)
Other versions
CN107473520A (zh
Inventor
常素云
占强
任必穷
董立新
吴涛
许伟
王松庆
张艳芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TIANJIN HYDRAULIC RESEARCH INSTITUTE
Original Assignee
TIANJIN HYDRAULIC RESEARCH INSTITUTE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIANJIN HYDRAULIC RESEARCH INSTITUTE filed Critical TIANJIN HYDRAULIC RESEARCH INSTITUTE
Publication of CN107473520A publication Critical patent/CN107473520A/zh
Application granted granted Critical
Publication of CN107473520B publication Critical patent/CN107473520B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/001Runoff or storm water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

结合混凝旋流过滤与多维汇水湿地的一种工艺方法,包括以下三个步骤:磁强化絮凝,涡流沉积分离以及人工湿地净化;分别对水体进行絮凝反应、污染物沉积分离和人工湿地过滤处理,实现对水体的净化,并且包括对磁粉的回收利用的步骤,实现磁粉的循环利用。本技术方案将絮凝、涡流、过滤、微生物降解与人工湿地技术联合应用到初期雨水处理装置中,通过絮凝、涡流、过滤与人工湿地技术来强化雨水中污染物的分离,分理离出的污染物进一步通过微生物技术降解去除,该工艺方法能大幅度去除雨水中的悬浮物、油污、漂浮物等物质,同时该工艺方法极大地减少了对土地的占用。

Description

结合混凝旋流过滤与多维汇水湿地的一种工艺方法
技术领域
本发明涉及一种对初期雨水的处理方法,具体涉及结合混凝旋流过滤与多维汇水湿地的一种工艺方法。
背景技术
随着人类的快速发展,自然区域的森林、湿地、草地等不断被道路、广场、建筑等取代,并且城市的规模还在不断扩大中,城市水文、水质、水资源等问题日益突出。大量的研究表明,颗粒物是径流雨水中各类污染物的主要载体,在径流雨水中起着前期吸附污染物,中期输送污染物和后期沉降释放污染物的作用,同时颗粒物自身又是影响水体透明度、浊度的重要水质指标。
相对于发达国家,国内对初期雨水处理虽然已渐进入正轨,但还需要进一步摸索和尝试。国内对初期雨水的处理措施主要是包括两种:过滤拦截法和自然沉降法。
过滤拦截法:通过人工构建一些过滤系统,把雨水引入到过滤系统进行简单的过滤处理,如采用不同级配石料盲沟或穿孔混凝土过滤板等来对雨水进行一个简单的过滤。过滤拦截法对雨水中的污染物能很好地去除、运行操作简单等优点,但是也存在过滤拦截系统容易堵死失效、且失效后清理服务困难等缺点。
自然沉降法:通过建设雨水调蓄池,把初期雨水排入到调蓄池后通过重力沉降来去除雨水中污染物。建设调蓄池既能很好地避免初期雨水对承受水体的污染,又能实现雨水的循环利用等有地,但是也存在雨水调蓄池的占地面积大、人工清理难度大与不能连续运行去污等问题。
因此,迫切需要引入其它一些方法,联合开发、设计新型的装置。
发明内容
为解决现有技术存在的易失效、占地面积大、人工清理难度大与不能连续运行去污等缺陷,本发明提供结合混凝旋流过滤与多维汇水湿地的一种工艺方法。
本发明的目的主要通过以下的技术方案来实现。
本发明的结合混凝旋流过滤与多维汇水湿地的一种工艺方法,包括以下三个步骤:磁强化絮凝,涡流沉积分离以及人工湿地净化;
上述方法通过磁强化絮凝装置、具有反冲洗功能的涡流沉积分离装置联合人工湿地形成的系统共同实现。其中磁强化絮凝装置、具有反冲洗功能的涡流沉积分离装置可以单独作为一种装置用于水体净化,满足实际的生产生活需要。
其中,磁强化絮凝步骤包括:将水从絮凝主体的进水口引入絮凝装置内,污水在絮凝主体内依次与加入的磁粉、无机絮凝剂和有机絮凝剂混合,发生絮凝反应,不同药剂与污水混合的位置和阶段均不相同;经过磁强化絮凝过程的水体切向引导至涡流沉积分离装置,使得水体沿着与涡流沉积分离装置的周向相切的方式进入分离装置主体内部;
涡流沉积分离步骤包括:污水切向进入生物滤料层限定的旋流过滤区,在旋流过滤区形成涡流,旋流过滤区内还设置有导流筒,强化涡流旋转;聚集在生物滤料层的内壁附近的污染物在重力作用下沉积到沉积物收集区,由排渣口排出;去除污染物的水体进入导流筒内部并由导流筒的涡流出水口排出;
当生物填料层出现堵塞问题时或者当运行一定时间后,执行反冲洗步骤,以冲走沉积于生物滤料层中的污物,提高吸附降解效率;
在人工湿地净化步骤中,经过涡流沉积分离的水体排入到人工湿地,该湿地建设在河道的岸坡上,利用岸坡的斜面,通过土壤、人工介质、植物、微生物的物理、化学、生物三重协同作用,对水体进行净化处理。
进一步的,反冲洗步骤包括:将洁净的水从反冲洗水进入口引入反冲洗进水区,水流经生物滤料层,冲走生物滤料层中的污物,进入旋流过滤区,污泥等污染物沉降到沉积物收集区,通过排渣口排出,反冲洗后上层洁净的水从过滤出水口排出;和/或净化方法还包括磁粉回收步骤,由设置在磁强化絮凝装置底部的磁粉回收口和涡流沉积分离装置的排渣口排出的污染物被输送至磁粉回收设备,磁分离机将磁粉从污染物中分离出来,并回送至磁粉加入口,进行再循环利用。
与现有技术相比,本发明的结合混凝旋流过滤与多维汇水湿地的一种工艺方法的有益效果在于:
(1)由于絮凝的加入使得该系统能去除水体中的大部分污染物,包含微小颗粒及溶解态的物质,出水水质良好;
(2)由于磁粉的加入,强化了絮凝作用,使得絮凝沉降时间得到大幅降低,从而提升了处理效率;
(3)絮凝药剂的加入为自动加入,大大简化了系统的操作运行过程;
(4)由于涡流沉降的作用,使得水体中颗粒物的分离效果强于一般的重力沉降,进一步提升了水体的净化效果与处理效率;
(5)由于湿地技术的加入,使得出水水质得到进一步净化效果,提升了出水水质;
(6)由于磁粉分离回收的加入,使得该系统具有良好的环境及经济效益。
(7)该系统充分利用的河岸的护坡,即较少了对土地的占用,有增加了湿地的净化效果。
附图说明
图1是本发明的一实施结构的俯视示意图。
图2是本发明的一实施结构的主视示意图。
图中:1进水口,2磁粉加入口,3无机混凝剂加入口,4有机絮凝剂加入口,5外壳,6导流筒,7过滤出水口,8内筒,9外筒,10涡流出水口,11总出水管道,12导流板,13沉积物收集区,14集泥口,15排渣口,16生物滤料层,17磁分离机,18再循环管道,19小颗粒生物滤料层,20大颗粒生物滤料层,21反冲洗水进入口,22过滤出水口阀门,23平直折流板,24L型折流板,25磁粉回收口,26人工湿地,27填料,28河岸,29河面。
具体实施方式
在下文中,将参考附图对本发明的具体实施例进行详细地描述,依照这些详细的描述,所属领域技术人员能够清楚地理解本发明,并能够实施本发明。在不违背本发明原理的情况下,各个不同的实施例中的特征可以进行组合以获得新的实施方式,或者替代某些实施例中的某些特征,获得其它优选的实施方式。
本发明工艺方法的实现由以下三大部分实现,第一部分为磁强化絮凝,第二部分为涡流沉积分离,第三部分为人工湿地。
磁强化絮凝装置包括进水口1、絮凝主体和药剂供应装置,进水口1位于絮凝主体的侧壁上,药剂供应装置包括设置在絮凝主体顶部上的3个药剂加入口,3个药剂加入口分别是磁粉加入口2、无机混凝剂加入口3和有机絮凝剂加入口4。磁粉加入口2、无机混凝剂加入口3和有机絮凝剂加入口4按照水流方向顺序布置在絮凝主体上。磁粉加入口2伸入到絮凝主体上部,无机混凝剂加入口3伸入到絮凝主体下部,在磁粉加入口2和无机混凝剂加入口3之间设置有从絮凝主体顶部向下延伸的平直折流板23,平直折流板23的高度大于无机混凝剂伸入絮凝主体的高度。有机絮凝剂加入口4伸入到絮凝主体上部。磁强化絮凝装置还包括L型折流板24,L型折流板24的竖直段位于无机混凝剂加入口和有机絮凝剂加入口之间,且竖直段顶端与絮凝主体顶部具有一定距离,以供水流流向出水管道,出水管道位于絮凝主体与进水口相对的侧壁上,L型折流板24的水平段位于出水管道下方以限定水流经出水管道流出。平直折流板23和L型折流板用于限定水流的通路和方向,为水流和药剂的混合提供足够的路径和时间,掺混更加均匀,絮凝反应更充分。首先在水流中加入磁粉,为后续的絮凝反应提供有利的反应条件。随后依次加入无机混凝剂和有机混凝剂,使得水中污染物能够分阶段的逐一凝聚成团,形成絮凝体。磁粉例如是包括四氧化三铁的磁粉。无机混凝剂可以是铝盐、铁盐和氯化钙的一种或几种混合。有机絮凝剂可以是聚丙烯酰胺及其衍生物等高分子有机物。通过向水中投加混凝剂和絮凝剂,使水中难以沉淀的颗粒互相聚合而形成絮凝体。絮凝体具有强大吸附力,不仅能吸附悬浮物,还能吸附部分细菌和溶解性物质,絮凝体与水体中的杂质结合形成更大的絮凝体。絮凝体通过吸附作用,体积增大而下沉,从而进行初步去除水中污染物。磁粉能够强化絮凝内部的反应,大大提升了污染物沉降速率。
药剂供应装置还包括自动加料设备,磁粉、无机混凝剂与有机絮凝剂的加入量均根据水的流量自动控制。此外,考虑到水流速度的大小对絮凝沉降作用时间的影响,磁粉、无机混凝剂与有机絮凝剂的加入比例也根据水流量自动调节,从而实现智能化添加药剂,这极大地简化了磁强化絮凝装置的操作运行步骤,不仅节约了人力成本也节约了运行成本。
进一步地,磁强化絮凝装置的出水管道倾斜向下设置在涡流沉积分离装置的外壳5上,从而有利于水流和形成的絮凝体顺利流向涡流沉积分离装置,避免发生堵塞。优选的,出水管道与水平面的夹角小于30°,更优选的,该夹角可以是5°,10°,或者15°。如图2所示,出水管道与涡流沉积分离装置的主体沿周向相切并插入至主体内部,污水沿分离装置外壳5切向方向进入主体内,形成涡流流动。
具有反冲洗功能的涡流沉积分离装置,包括外壳5,生物滤料层16,涡流出水口10和排渣口15。生物滤料层16间隔设置在外壳5内,并将分离装置主体分割为两个区域,生物滤料层16和外壳5之间的区域为反冲洗进水区,生物滤料层16内部为旋流过滤区。反冲洗水进入口21设置在反冲洗进水区顶部。絮凝装置的出水管道倾斜向下连接至生物滤料层16,与旋流过滤区连通。反冲洗水进入口21和出水管道位于分离装置同侧。出水管道以与生物滤料层16的圆周体相切的方式插入生物滤料层16内壁固定,使得水流进入生物滤料层16内的旋流过滤区形成涡流状态。旋流过滤区内还设置有导流筒6,导流筒6位于旋流过滤区上部,出水管道的对应位置处。导流筒6通过支撑装置(未示出)安装到生物滤料层16内部。导流筒6包括内筒8、外筒9和涡流出水口10。在生物滤料层16、导流筒外筒9和内筒8之间分别形成环形空间,水沿生物滤料层16切向方向进入旋流过滤区内,在生物滤料层16和导流筒外筒9之间以及导流筒外筒9和内筒8之间形成涡流状态,导流筒6的设置进一步加大水在分离装置主体内的离心作用。在离心力作用下,水体中的污泥便会被分离,首先聚集在生物滤料层16的内壁附近,并在重力作用下沿着生物滤料层16内壁向下沉积;去除污染物的水体由导流筒6下部开口进入导流筒外筒9和内筒8之间的环形空间,螺旋上升后运动到涡流出水口10排出。涡流出水口10位于导流筒外筒9上部远离出水管道的一侧。导流筒外筒9为上小下大的圆台形状,从而使得水体可以在涡流沉积分离装置的旋流过滤区内进行螺旋下降运动,有利于分离后的水经导流筒6外筒下部进入到导流筒外筒和内筒之间的空间内。优选的,导流筒外筒9形成的圆台母线与其高线的夹角小于10°,更优选的,该夹角可以是3°或者5°。导流筒内筒8为圆柱形,使得水体在导流筒内筒8和外筒9之间螺旋上升流动,并从涡流出水口10排出。
旋流过滤区内部还设置有导流板12,导流板12位于导流筒6下方的主体下部位置,从而在导流板12下方的旋流过滤区进一步形成沉积物收集区13。导流板12底部具有向下表面,并且在导流板底部具有集泥口14,生物滤料层16内壁沉积的污染物沿导流板12的向下表面引导至集泥口14,经集泥口14进入沉积物收集区13。在沉积物收集区13,生物滤料层16的侧壁上还设有排渣口15,沉积在沉积物收集区13的污染物从排渣口15排出。
在离心作用下,聚集在生物滤料层16内壁附近的污染物被吸附在生物滤料层16的多孔结构内,此外,生物滤料层16内的微生物具有降解作用,且不向水体释放有毒有害物,能大大强化水体的净化效果。生物滤料层16还设置有过滤出水口7,过滤出水口7位于涡流出水口10下方,反冲洗水进入口21的相对侧的生物滤料层16内壁并延伸出分离装置外部。在过滤出水口7还设置有过滤出水口阀门22。
涡流沉积分离装置还包括总出水管道11,总出水管道11分别连通涡流出水口10与过滤出水口7,由此使得去除污染物的污水和反冲洗过滤后的水流经总出水管道11向外排出。
涡流沉积分离装置为圆柱形筒体,该圆柱形筒体的高度是其底面直径的1.5~3倍,优选为2倍或者2.5倍。该长筒形结构使得发生涡流分离的导流筒设置在沉积物收集区上方,涡流分离和重力沉降区域上下布置,不仅增加了水体的净化处理量,而且大大减少了净化系统的占地面积。
生物滤料层16包括内外两层,内层为小颗粒生物滤料层19,外层为大颗粒生物滤料层20。小颗粒生物滤料层19由石英砂、微孔陶粒中任一种或两种组成,大颗粒生物滤料层20由沸石、火山石、大孔陶粒中的任一种或几种混合而成。
磁强化絮凝装置相对进水口1的侧壁底部还设置有磁粉回收口25。磁强化絮凝装置和涡流沉积分离装置底部具有分别向排渣口15和磁粉回收口25方向倾斜向下的表面,有利于污泥在重力作用下流出。
此外,具有反冲洗的混凝旋流过滤的净化系统还包括磁粉回收利用设备。磁粉回收利用设备包括磁分离机17和再循环管道18,磁强化絮凝装置的磁粉回收口25和涡流沉积分离装置的排渣口15排出的污泥经过磁分离机17,把磁粉分离出来。磁分离机17的磁粉出口通过再循环管道18与磁粉加入口2连通,分离后的磁粉经过再循环管道18返回至磁粉加入口2,进行循环使用。磁粉回收利用设备可以与磁粉回收口25和排渣口15直接连接,也可以通过运输设备将磁粉回收口25和排渣口15排出的污泥运送至磁粉回收利用设备进行操作。通过磁粉的循环利用,大大节约了磁粉的消耗量,具有很好的经济及环境效应。
还具有湿地,该部分可以为人工湿地26,经过涡流沉积分离的水体排入到湿地,该湿地的形式主要是建设在河道的岸坡上,可以充分利用岸坡的斜面,河岸28的坡度有利于湿地的净化效果,利用土壤、人工介质即填料27、植物、微生物的物理、化学、生物三重协同作用,对污水、污泥进行处理,最后使其出水得到有效的净化。
磁粉回收利用部分为涡流沉积分离装置沉积出来的污泥,经过磁分离机17,把污泥中的磁粉分离出来,已实现磁粉的循环利用,这大大节约了磁粉的消耗量,具有很好的经济及环境效应。此部分是该专利工艺的一部分,但是实际的净化系统中该部分可以是与前两部分连接一体,也可以是分离状态。
本发明提供的一种结合混凝旋流过滤与多维汇水湿地的一种工艺方法,包括磁强化絮凝步骤、旋流强化过滤步骤、反冲洗步骤和人工湿地净化步骤。
磁强化絮凝步骤包括:通过磁强化絮凝装置进行絮凝反应,将水从絮凝主体的进水口1引入絮凝装置内,污水在絮凝主体内依次与加入的磁粉、无机絮凝剂和有机絮凝剂混合,发生絮凝反应,使水中难以沉淀的颗粒互相聚合而形成絮凝体。不同药剂与污水混合的位置和阶段均不相同。磁粉能够强化絮凝内部的反应,大大提升了污染物沉降速率。经过磁强化絮凝过程的水体切向引导至涡流沉积分离装置,使得水体沿着与涡流沉积分离装置的周向相切的方式进入分离装置主体内部。旋流强化过滤步骤包括:污水经絮凝装置的出水管道切向进入生物滤料层16限定的旋流过滤区,在旋流过滤区形成涡流。旋流过滤区内还设置有导流筒6,强化涡流旋转;由于离心分离的作用,水体中携带的污染物便会被分离,聚集在生物滤料层16的内壁附近,并在重力作用下沉积到沉积物收集区13,由排渣口15排出;去除污染物的水体由导流筒6下部开口进入导流筒6中,经导流筒6的涡流出水口10排出。当生物填料层出现堵塞问题时或者当运行一定时间后,执行反冲洗步骤,以冲走沉积于生物滤料层16中的污物,提高吸附降解效率;反冲洗步骤包括:将洁净的水从反冲洗水进入口21引入反冲洗进水区,水流经生物滤料层16,冲走生物滤料层16中的污物,进入旋流过滤区,携带污物的水随后经由导流筒6的旋流分离作用,污泥等污染物沉降到沉积物收集区,通过排渣口排出。反冲洗后上层洁净的水从过滤出水口7排出。
净化方法还可以包括磁粉回收步骤,由磁粉回收口25和排渣口15排出的污染物被输送至磁粉回收设备,磁分离机17将磁粉从污染物中分离出来,并回送至磁粉加入口2,进行再循环利用。这大大节约了磁粉的消耗量,具有很好的经济及环境效应。此部分是该专利工艺的一部分,但是实际的净化系统中该部分可以是与前两部分连接一体,也可以是分离状态。
在人工湿地净化步骤中,经过涡流沉积分离的水体排入到人工湿地,该湿地建设在河道的岸坡上,利用岸坡的斜面,通过土壤、人工介质、植物、微生物的物理、化学、生物三重协同作用,对水体进行净化处理。
尽管在上文中参考特定的实施例对本发明进行了描述,但是所属领域技术人员应当理解,在本发明公开的原理和范围内,可以针对本发明公开的配置和细节做出许多修改。本发明的保护范围由所附的权利要求来确定,并且权利要求意在涵盖权利要求中技术特征的等同物文字意义或范围所包含的全部修改。

Claims (9)

1.一种结合混凝旋流过滤与多维汇水湿地的工艺方法,其特征在于,包括以下三个步骤:磁强化絮凝,涡流沉积分离以及人工湿地净化;其中,磁强化絮凝步骤包括:将水从絮凝主体的进水口(1)引入磁化絮凝装置内,污水在絮凝主体内依次与加入的磁粉、无机絮凝剂和有机絮凝剂混合,发生絮凝反应,不同药剂与污水混合的位置和阶段均不相同;经过磁强化絮凝过程的水体切向引导至涡流沉积分离装置,使得水体沿着与涡流沉积分离装置的周向相切的方式进入分离装置主体内部;涡流沉积分离步骤包括:污水切向进入生物滤料层(16)限定的旋流过滤区,在旋流过滤区形成涡流,旋流过滤区内还设置有导流筒(6),强化涡流旋转;聚集在生物滤料层(16)的内壁附近的污染物在重力作用下沉积到沉积物收集区(13),由排渣口(15)排出;去除污染物的水体进入导流筒(6)内部并由导流筒(6)的涡流出水口(10)排出;当生物填料层出现堵塞问题时或者当运行一定时间后,执行反冲洗步骤,以冲走沉积于生物滤料层(16)中的污物,提高吸附降解效率;在人工湿地净化步骤中,经过涡流沉积分离的水体排入到人工湿地,该湿地建设在河道的岸坡上,利用岸坡的斜面,通过土壤、人工介质、植物、微生物的物理、化学、生物三重协同作用,对水体进行净化处理,反冲洗步骤包括:将洁净的水从反冲洗水进入口(21)引入反冲洗进水区,水流经生物滤料层(16),冲走生物滤料层(16)中的污物,进入旋流过滤区,污泥等污染物沉降到沉积物收集区,通过排渣口排出,反冲洗后上层洁净的水从过滤出水口(7)排出;和/或净化方法还包括磁粉回收步骤,由设置在磁强化絮凝装置底部的磁粉回收口(25)和涡流沉积分离装置的排渣口(15)排出的污染物被输送至磁粉回收设备,磁分离机(17)将磁粉从污染物中分离出来,并回送至磁粉加入口(2),进行再循环利用,所述磁强化絮凝装置包括进水口(1)、絮凝主体和药剂供应装置,进水口(1)位于絮凝主体的侧壁上,药剂供应装置包括设置在絮凝主体顶部上的3个药剂加入口,3个药剂加入口分别是磁粉加入口(2)、无机混凝剂加入口(3)和有机絮凝剂加入口(4);磁粉加入口(2)、无机混凝剂加入口(3)和有机絮凝剂加入口(4)按照水流方向顺序布置在絮凝主体上;出水管道位于絮凝主体与进水口(1)相对的侧壁上;絮凝装置的出水管道倾斜向下设置在涡流沉积分离装置的外壳(5)上,絮凝装置的出水管道与水平面的夹角小于30°;涡流沉积分离装置包括外壳(5),生物滤料层(16),涡流出水口(10)和排渣口(15);生物滤料层(16)间隔设置在外壳(5)内,并将分离装置主体分割为两个区域,生物滤料层(16)和外壳(5)之间的区域为反冲洗进水区,生物滤料层(16)内部为旋流过滤区;反冲洗水进入口(21)设置在反冲洗进水区顶部;
絮凝装置的出水管道以与生物滤料层(16)的圆周体相切的方式插入生物滤料层(16)内壁固定;旋流过滤区内还设置有导流筒(6),水流在生物滤料层(16)和导流筒(6)外筒之间形成涡流,导流筒(6)上部设置有涡流出水口(10);涡流沉积分离装置底部设置有排渣口(15);生物滤料层(16)包括内、外两层,内层为小颗粒生物滤料层(19),外层为大颗粒生物滤料层(20);小颗粒生物滤料层(19)由石英砂、微孔陶粒中任一种或两种组成,大颗粒生物滤料层(20)由沸石、火山石、
大孔陶粒中的任一种或几种混合而成;生物滤料层(16)还设置有过滤出水口(7),过滤出水口(7)位于涡流出水口(10)下方,反冲洗水进入口(21)的相对侧的生物滤料层(16)内壁并延伸出分离装置外部,在过滤出水口(7)还设置有过滤出水口阀门(22);磁强化絮凝装置相对进水口(1)的侧壁底部还设置有磁粉回收口(25);净化系统还包括磁粉回收利用设备,磁粉回收利用设备包括磁分离机(17)和再循环管道(18),磁强化絮凝装置的磁粉回收口(25)和涡流沉积分离装置的排渣口(15)连通磁分离机(17),磁分离机(17)的磁粉出口通过再循环管道(18)与磁粉加入口(2)连通。
2.根据权利要求1所述的结合混凝旋流过滤与多维汇水湿地的工艺方法,所述涡流沉积分离装置内部还设置有导流板(12),所述导流板(12)位于所述导流筒(6)下方,从而在所述导流板(12)下方形成沉积物收集区(13);所述导流板(12)底部具有向下表面,并且在所述导流板底部具有集泥口(14),所述外壳(5)内壁沉积的污染物沿所述导流板(12)的向下表面引导至所述集泥口(14),经所述集泥口(14)进入沉积物收集区(13)。
3.根据权利要求2所述的结合混凝旋流过滤与多维汇水湿地的工艺方法,其特征在于,磁粉加入口(2)伸入到絮凝主体上部,无机混凝剂加入口(3)伸入到絮凝主体下部,在磁粉加入口(2)和无机混凝剂加入口(3)之间设置有从絮凝主体顶部向下延伸的平直折流板(23);有机絮凝剂加入口(4)伸入到絮凝主体上部;磁强化絮凝装置还包括L型折流板(24),L型折流板(24)的竖直段位于无机混凝剂加入口和有机絮凝剂加入口之间。
4.根据权利要求3所述的结合混凝旋流过滤与多维汇水湿地的工艺方法,其特征在于,药剂供应装置还包括自动加料设备;磁粉、无机混凝剂与有机絮凝剂的加入量均根据水的流量自动控制;和/或磁粉、无机混凝剂与有机絮凝剂的加入比例根据水流量自动调节。
5.根据权利要求4所述的结合混凝旋流过滤与多维汇水湿地的工艺方法,其特征在于,磁粉是包括四氧化三铁的磁粉;无机混凝剂是铝盐、铁盐和氯化钙的一种或几种混合;有机絮凝剂是聚丙烯酰胺及其衍生物等高分子有机物。
6.根据权利要求5所述的结合混凝旋流过滤与多维汇水湿地的工艺方法,其特征在于,涡流沉积分离装置还包括总出水管道(11),总出水管道(11)分别连通涡流出水口(10)与过滤出水口(7),由此使得去除污染物的污水和反冲洗过滤后的水流经总出水管道(11)向外排出;磁强化絮凝装置和涡流沉积分离装置底部具有分别向排渣口(15)和磁粉回收口(25)方向倾斜向下的表面。
7.根据权利要求6所述的结合混凝旋流过滤与多维汇水湿地的工艺方法,其特征在于,涡流沉积分离装置为圆柱形筒体,该圆柱形筒体的高度是其底面直径的1.5~3倍。
8.根据权利要求7所述的结合混凝旋流过滤与多维汇水湿地的工艺方法,其特征在于,该圆柱形筒体的高度是其底面直径的2倍或者2.5倍。
9.根据权利要求8所述的结合混凝旋流过滤与多维汇水湿地的工艺方法,其特征在于,出水管道与水平面的夹角是5°、10°或者15°。
CN201710860010.6A 2017-08-31 2017-09-21 结合混凝旋流过滤与多维汇水湿地的一种工艺方法 Active CN107473520B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017107672361 2017-08-31
CN201710767236 2017-08-31

Publications (2)

Publication Number Publication Date
CN107473520A CN107473520A (zh) 2017-12-15
CN107473520B true CN107473520B (zh) 2023-08-01

Family

ID=60586246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710860010.6A Active CN107473520B (zh) 2017-08-31 2017-09-21 结合混凝旋流过滤与多维汇水湿地的一种工艺方法

Country Status (1)

Country Link
CN (1) CN107473520B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113582441B (zh) * 2021-07-22 2023-04-18 长沙理工大学 一种干散货码头污染径流的收集净化与回用系统
CN113735390A (zh) * 2021-09-29 2021-12-03 深圳艾萨科技有限公司 一种小区生活污水处理设备及其工艺
CN114262078A (zh) * 2021-12-14 2022-04-01 上海琸源水生态环境工程有限公司 一种用于固液分离的一体化旋流净化装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685918B2 (ja) * 1989-04-27 1994-11-02 東京都 廃水の磁気的固液分離方法
CN101041491A (zh) * 2007-03-15 2007-09-26 郭玉同 二级磁分离技术处理工业废/污水的方法
CN205313193U (zh) * 2015-09-06 2016-06-15 南京大学 微污染入库(入湖)河流的水质净化及生态湿地修复系统
CN105668700A (zh) * 2016-04-07 2016-06-15 翟艳云 一种沉砂去油装置
CN206127066U (zh) * 2016-09-19 2017-04-26 深圳市楠柏环境科技有限公司 一种磁加载沉淀与曝气生物滤池复合污水处理系统

Also Published As

Publication number Publication date
CN107473520A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
CN203065263U (zh) 一种用于处理初期雨水径流污染的装置
CN105060434B (zh) 一种沉淀澄清池
KR101249741B1 (ko) 미생물 처리조를 포함한 통합 장치형 우수 처리 장치 및 우수 처리 방법
KR100987316B1 (ko) 유수분리 및 상향여과 복합방식의 비점 오염물질 처리장치 및 정화 방법
CN107459219B (zh) 一种旋流强化过滤的净化结构及其净化方法
KR200417011Y1 (ko) 비점 오염원 처리장치의 내부 침전조
CN103787527B (zh) 一种含油污水气浮悬浮层过滤装置
CN107473520B (zh) 结合混凝旋流过滤与多维汇水湿地的一种工艺方法
CN109970289A (zh) 一种城镇污水处理提标深度处理工艺及装置
CN107055871B (zh) 一种新型混凝沉淀截留过滤气水反冲洗一体化高效滤池
CN109336334A (zh) 一种快速净化合流制溢流污水的磁净化系统及净化方法
CN107399885B (zh) 一种具有反冲洗的混凝旋流过滤的净化系统及其方法
WO2006121268A1 (en) Non-point source pollution treatment apparatus
CN103539280A (zh) 一种一体化净水装置
CN107417056B (zh) 一种带有自动净化功能的调蓄池及其净化方法
CN110330140B (zh) 盐碱区域水体污染治理和再生回用系统及方法
CN208561944U (zh) 一种地表水预处理装置及石墨烯过滤器
KR20140112728A (ko) 비점 오염물질 저감 시스템
CN110922000A (zh) 一种适用准ⅳ类水标准的城镇污水处理工艺
CN207418513U (zh) 一种具有反冲洗的混凝旋流过滤的净化系统
CN203820565U (zh) 一种含油污水气浮悬浮层过滤装置
CN206553347U (zh) 一种磁加载沉淀过滤净化系统
CN212078160U (zh) 一种集成排水、污水处理的市政道路管网系统
CN107473521B (zh) 一种连续性高效净化系统及其方法
KR100896056B1 (ko) 우수 처리장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant