CN107473382B - 通过控制溶解氧实现污水碳氮同时去除的生物处理方法 - Google Patents

通过控制溶解氧实现污水碳氮同时去除的生物处理方法 Download PDF

Info

Publication number
CN107473382B
CN107473382B CN201710962727.1A CN201710962727A CN107473382B CN 107473382 B CN107473382 B CN 107473382B CN 201710962727 A CN201710962727 A CN 201710962727A CN 107473382 B CN107473382 B CN 107473382B
Authority
CN
China
Prior art keywords
sewage
dissolved oxygen
concentration
nitrogen
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710962727.1A
Other languages
English (en)
Other versions
CN107473382A (zh
Inventor
陈琛
黄珊
彭晓春
吴彦瑜
洪鸿加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong South China Environmental Protection Industry Technology Research Institute Co ltd
South China Institute of Environmental Science of Ministry of Ecology and Environment
Original Assignee
Guangdong South China Environmental Protection Industry Technology Research Institute Co ltd
South China Institute of Environmental Science of Ministry of Ecology and Environment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong South China Environmental Protection Industry Technology Research Institute Co ltd, South China Institute of Environmental Science of Ministry of Ecology and Environment filed Critical Guangdong South China Environmental Protection Industry Technology Research Institute Co ltd
Priority to CN201710962727.1A priority Critical patent/CN107473382B/zh
Publication of CN107473382A publication Critical patent/CN107473382A/zh
Application granted granted Critical
Publication of CN107473382B publication Critical patent/CN107473382B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/301Aerobic and anaerobic treatment in the same reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/307Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明公开了一种通过控制溶解氧实现污水碳氮同时去除的生物处理方法,包括以下步骤:S1:将污水通入至只含有一个生物处理池的污水处理系统,然后将已经驯化好的活性污泥接种于所述生物处理池内,接种后生物处理池内活性污泥浓度为0.5~100g/L;S2:控制污水处理系统内溶解氧浓度并分阶段运行;S3:检验进出水的总氮、总碳及各种阴阳离子的浓度;S4:在7天的连续运行中,维持溶解氧浓度为0.1mg/L≤DO<1.0mg/L的条件下,测定系统对含有不同碳氮比污水的TOC的TN去除效率。本发明中的碳氮去除是在同一个污水处理池中完成,通过控制溶解氧,从而控制微氧型细菌的群落结构,优先实现氨氧化,而反硝化细菌可以进一步实现污水中碳和氮的同时去除。

Description

通过控制溶解氧实现污水碳氮同时去除的生物处理方法
技术领域
本发明涉及环境科学与工程技术领域,具体是涉及一种通过控制溶解氧实现污水碳氮同时去除的生物处理方法。
背景技术
现有的污水处理工艺主要是由好氧-厌氧两部分组成。在好氧工艺流程中,有机碳被微生物分解为二氧化碳进而从水中去除;与此同时,有机氮被转化为无机氮(主要为氨氮),硝化反应将氨氮氧化成为亚硝酸盐和硝酸盐氮。在厌氧工艺流程中,实现氮元素的最终去除,即好氧工艺中生成的亚硝酸盐和硝酸盐被反硝化细菌逐步还原,最终生成氮气从水体中释放。好氧过程主要依赖于好氧型细菌,厌氧过程主要依赖于厌氧和兼氧型细菌,两种过程以及相应细菌种群难以在同一个系统中稳定共存。也就是说,现有的技术无法达到碳氮在同一个污水反应池、同步稳定去除。
根据好氧-厌氧反应分步进行的原理,现在常用的污水脱氮工艺主要有缺氧-好氧(A-O)工艺或(厌氧-缺氧-好氧)A-A-O工艺、续批式活性污泥法(SBR)工艺、氧化沟工艺等类型。在一体式的污水处理装置中,常见的工艺是以下两种工艺。
(1)生物接触氧化工艺
生物接触氧化工艺,是从生物膜法派生出来的一种污水生物处理法。该工艺在池内装填比表面积大、空隙率高、有一定的生物膜附着力的填料,污水全部浸没填料,填料上长满生物膜,在生物膜内微生物的作用下,污水得到净化。生物接触氧化法,采用与曝气池相同的曝气方法,提供微生物所需的氧量,并起搅拌与混合的作用,相当于在曝气池内投加填料,以供微生物栖息,是一种介于活性污泥法与生物滤池两者之间的生物处理法,具有活性污泥法特点的生物膜法,它兼具两者的优点。
生物接触氧化工艺,其中的调节池或是砖混结构的构筑物,或是玻璃钢罐体,调节池中设有格栅;调节池之后是由污水处理设备公司提供的一体化污水处理装置,是集厌氧、好氧、沉淀等功能于一体的玻璃钢池体。污水在一体化装置内部,流经厌氧池、接触氧化池、沉淀池、出水池,通过硝化作用和反硝化作用脱氮,通过生物降解作用去除有机物,通过沉淀池进行泥水分离,在出水池中通过除磷装置进行除磷。最后,处理水经出水管道排入附近水体。
(2)膜生物反应器(MBR)工艺
膜生物反应器(MBR)是一种由膜分离单元与生物处理单元相结合的污水处理技术,用高效膜分离技术代替生物处理中的二沉池,出水水质相当于二沉池出水再加超滤的效果,几乎能将所有的微生物截留在生物反应器中,这使反应器中的生物污泥浓度提高,污泥泥龄延长,出水的有机污染物浓度降到最低,能有效地去除氨氮。
一体式MBR工艺,其中的提升井、预处理池、调节池、缺氧池、好氧池都为钢混结构的构筑物,出水池为砖混结构的构筑物,在提升井和调节池中设有格栅,在好氧池中设有超滤膜组件。污水经1级潜污泵提升进入预处理池,污水在预处理池中进行厌氧反应,降解部分有机物,提高污水可生化性。然后污水进入调节池,调节水量水质,同时在调节池的前段设有细格栅,用以去除污水中的细小颗粒物和纤维物,以减轻后续生物处理段的系统负荷并防止潜污泵堵塞。污水经2级潜污泵提升进入缺氧池,缺氧池中的反硝化细菌利用污水中的有机物作为碳源,将回流硝化液中的硝态氮还原成氮气排放到环境中去。经脱氮后的污水流入好氧池中,好氧池内有曝气装置进行曝气,污水在好氧池中进行硝化反应和有机物的降解。同时,溶配药系统定时向好氧池内投加混凝剂用于除磷。经生物降解后的污水在抽吸泵的抽提作用下通过超滤膜,滤液经由超滤膜集水管路汇集到出水池,然后由出水池将处理水排入附近水体。
现有的生活污水生物脱碳脱氮工艺是由好氧区生物处理及厌氧区生物处理两段式工艺组成。这些工艺的共同点是,好氧及厌氧过程是分开的,碳氮分别在好氧区和厌氧区去除,并不是同步去除。
(1)好氧区生物处理需要大量曝气,这在实际运行过程中会消耗大量的电能,增加运行成本。
(2)两个区域碳氮比不平衡,导致厌氧区菌落碳源不足问题。好氧区的有机碳通过生物处理,大量降解并生成二氧化碳而从水体消除;厌氧区的菌落将会因为进入厌氧区有机碳的不足而难以达到活跃状态。因此这类污水处理工艺中总是有一个备用的有机碳源,即添加填料过程。或者需要将部分好氧区污水回流到厌氧区,从而为厌氧区提供足够的碳源。
(3)溶解氧突变导致反应装置机制不稳定。在好氧区和厌氧区过渡的时候有一个溶氧浓度的突变点,如果整个反应装置的因为溶氧没有在两个区域间过渡好,会引起好氧菌和厌氧菌失活,进而会导致整个污水处理系统瘫痪失活。
针对并结合上述现有技术的缺点,本发明技术拟合并生活污水处理中的好氧区及厌氧区,设计一个只有一个生物处理池的污水处理技术。该技术通过溶解氧控制,使系统在低氧条件下运行,优化生物处理池中的低氧型活性污泥细菌群落,同步进行硝化和反硝化过程,从而达到在低氧条件下碳氮同步去除的目的。
发明内容
本发明的目的是针对现有污水处理工艺中的生物处理阶段,拟通过控制溶解氧,进行同步的硝化反硝化反应,实现碳氮在同一个污水处理池中同步去除,使处置后的污水碳氮浓度达到排放标准。
本发明的技术方案是:
一种通过控制溶解氧实现污水碳氮同时去除的生物处理方法,包括以下步骤:
S1:将污水(所述污水为人工配水或过滤后的生活污水)通入至只含有一个生物处理池的污水处理系统,然后将已经驯化好的活性污泥接种于所述生物处理池内,接种后生物处理池内活性污泥浓度为0.5~100g/L;所述污水处理系统中设有两个水质检测器,分别为检测进水和出水化学物质含量,所述生物处理池中包含一个可实时监测溶解氧的探头;
所述实时监测溶解氧的探头连接着一个转换装置,从而控制两个气泵的电源开关,当溶解氧浓度小于限定的最低值(0.1mg/L),启动气泵一,通入空气至溶解氧浓度达到限定最高值(1.0mg/L);当溶解氧浓度大于限定的最高值,启动气泵二,通入氮气至溶解氧浓度回复到限定最高值;
S2:在污水处理系统内溶解氧浓度(DO)为0.2~1.0mg/L的条件下运行,首先控制水力停留时间(HRT)为24h运行10~15天,接着将水力停留时间(HRT)降至12h运行10~15天,再将水力停留时间(HRT)降至6~8h运行,再运行15天;在污水处理系统内溶解氧浓度(DO)为0.1mg/L≤DO<1.0mg/L的条件下继续运行,(90%以上的时间,DO能维持在0.1–0.4mg/L之间),水力停留时间为6~8h;
S3:检验进出水的TN、TOC及各种阴阳离子的浓度,包括NH4 +,Na+,Mg2+,K+,Ca2+;NO3 -,NO2 -,SO4 2-,PO4 3-,Cl-,计算TN及TOC的去除效率;
S4:在7天的连续运行中,维持溶解氧浓度为0.1mg/L≤DO<1.0mg/L的条件下,(90%以上的时间,DO能维持在0.1–0.4mg/L之间),停留时间为6h时,测定系统对含有不同碳氮比污水的TOC和TN去除效率。
进一步地,在上述方案中,所述进水中氨氮浓度为70~100mg/L,TOC浓度为70~100mg/L,pH为7.0~7.3,污水的温度为18~25℃。
进一步地,在上述方案中,所述活性污泥来源于城市生活污水处理厂,经过长期驯化后成为适应于低氧、甚至厌氧环境中的活性污泥。
进一步地,所述活性污泥内的主要细菌群落包括多种低氧寡养型氨氧化细菌、低氧型亚硝化细菌、厌氧氨氧化细菌、反硝化细菌。所述的活性污泥细菌群落为适应于低氧、厌氧环境中的活性污泥,从而实现在长期低溶解氧甚至厌氧条件下的稳定共存和生长。
进一步地,在上述方案中,所述水质检测器的监测指标包括:TOC、TN及NH4 +,Na+,Mg2+,K+,Ca2+;NO3 -,NO2 -,SO4 2-,PO4 3-,Cl-
本发明的碳去除原理为:部分有机碳被低氧型活性污泥氧化分解为CO2而从水中去除;反硝化细菌能同步利用有机碳,进行完整地或者部分的反硝化反应。氮去除原理为:有机氮被活性污泥转化为以氨氮为主要形式的无机氮,氨氮被低氧型硝化细菌、低氧型氨氧化古细菌氧化为亚硝氮和硝态氮;反硝化细菌将亚硝氮和硝态氮逐步还原为氮气而从水中去除。
本发明的TN及TOC去除率:在7天的连续培养中,在不添加溶解氧的前提下(溶氧浓度为0.5-2.1mg/L),停留时间为12h时,测定系统对不同TOC和TN的去除效率。在TOC为134mg/L,TN为81mg/L时,系统对高浓度TOC和TN的去除率分别为52%和49%。在TOC为71mg/L,TN为36mg/L时,系统对低浓度TOC和TN的去除效率分别为59%和57%。
与现有技术相比较,本发明的有益效果是:
1)只有一个生物污水处理反应池。相对于建造两个独立的污水生物处理池,节约了成本,并且更为稳定。
为实现一个生物污水处理同步去除碳氮,本发明采用的主要技术包括:1)通过控制溶解氧技术来实现污水处理中的低氧状态;2)采用能适应微氧条件下生存的硝化细菌代替常见技术中的好养型硝化细菌,从而实现在一个生物处理反应池中多种细菌的共存及协同作用,实现硝化和反硝化反应同步进行。
(2)以微氧型生物处理为主。相对于现有技术需要在好氧区域大量曝气,本技术不需要通入过量的氧气,可以节约成本。
生物降解是需要氧气的过程,为此常见技术中需要在好氧区域大量曝气。而本技术利用污水中自带的溶解氧,或者通入少量的氧气,使整个系统处于微氧的状态。而微氧状态下好氧生物处理则是通过选择和富集能适应微氧条件下的硝化细菌为主要细菌群落。
(3)不需要额外添加有机碳源。相对于现有技术需要在厌氧区重新添加大量有机碳源,本技术可节约有机碳源成本,并减少二次污染的可能性。
由于本技术中的碳氮去除是在同一个污水处理池中完成,反硝化细菌可以利用污水中的有机碳进行反硝化反应。而本技术通过控制溶解氧,从而控制微氧型细菌的群落结构,能够实现硝化和反硝化同步进行,从而达到碳氨同时去除的效果。
附图说明
图1是本发明的系统流程图;
图2是污水反应器稳定运行后,科水平上细菌群落分布基本特征图;
图3是稳定运行后污水反应器12h TOC去除效率;
图4是稳定运行后污水反应器12h TN去除效率;
图5是稳定运行后污水反应器12h NH4 +去除效率;
图6是在不添加溶解氧的前提下,系统对不同TOC和TN的去除效率;
图7是低溶解氧状态下的氮去除情况示意图;
图8是温度对本系统的影响情况示意图。
具体实施方式
如图1所示的一种通过控制溶解氧实现污水碳氮同时去除的生物处理方法,包括以下步骤:
S1:将污水通入至只含有一个生物处理池的污水处理系统,然后将已经驯化好的活性污泥接种于所述生物处理池内,接种后生物处理池内活性污泥浓度为50g/L;所述活性污泥来源于城市生物污水处理厂,经过长期驯化后成为适应于低氧、厌氧环境中的活性污泥。所述活性污泥内的主要细菌群落包括低氧寡养型氨氧化细菌、低氧型亚硝化细菌、厌氧氨氧化细菌、反硝化细菌。所述的活性污泥细菌群落为适应于低氧、厌氧环境中的活性污泥,从而实现在长期低溶解氧甚至厌氧条件下的共存;所述污水处理系统中设有两个水质检测器,分别为检测进水和出水化学物质含量,水质检测器的监测指标包括:TOC、TN及NH4 +,Na+,Mg2+,K+,Ca2+;NO3 -,NO2 -,SO4 2-,PO4 3-,Cl-;所述生物处理池中包含一个可监测溶解氧的探头;
所述实时监测溶解氧的探头连接着一个转换装置,从而控制两个气泵的电源开关,当溶解氧浓度小于限定的最低值(0.1mg/L),启动气泵一,通入空气至溶解氧浓度达到限定最高值(1.0mg/L);当溶解氧浓度大于限定的最高值,启动气泵二,通入氮气至溶解氧浓度回复到限定最高值;
S2:在污水处理系统内溶解氧浓度(DO)为0.6mg/L的条件下运行,首先控制水力停留时间(HRT)为24h运行12天,接着将水力停留时间(HRT)降至12h运行12天,再将水力停留时间(HRT)降至7h运行,再运行15天;在污水处理系统内溶解氧浓度(DO)为0.1mg/L≤DO<1.0mg/L的条件下继续运行,(90%以上的时间,DO能维持在0.1–0.4mg/L之间),水力停留时间为7h;
S3:检验进出水的TN、TOC及各种阴阳离子的浓度,包括NH4 +,Na+,Mg2+,K+,Ca2+;NO3 -,NO2 -,SO4 2-,PO4 3-,Cl-,计算总氮及总碳的去除效率;
S4:在7天的连续运行中,维持溶解氧浓度为0.1mg/L≤DO<1.0mg/L的条件下,(90%以上的时间,DO能维持在0.1–0.4mg/L之间),停留时间为6h时,测定系统对含有不同碳氮比污水的TOC和TN去除效率。
如图2所示,污水反应器稳定运行后,科水平上细菌群落分布基本特征图;科水平上的优势细菌群落(从高到低):Comamonadaceae、Rhodocyclaceae、unidentified_Acidobacteria、Alcaligenaceae、Cytophagaceae、Saprospiraceae、Caulobacteraceae、Xanthomonadaceae、Bradyrhizobiaceae、Planctomycetaceae、Nitrosomonadaceae、Nitrospiraceae、Chitinophagaceae、Methylocystaceae、Sphingomonadaceae、Flavobacteriaceae及Anaerolineaceae。
其中:
低氧寡养型氨氧化细菌(Saprospiraceae、Nitrosomonadaceae、Chitinophagaceae、Sphingomonadaceae和Flavobacteriaceae)
低氧型亚硝化细菌(Nitrospiraceae)
厌氧氨氧化细菌(Planctomycetaceae)
反硝化细菌(Comamonadaceae、Rhodocyclaceae、Alcaligenaceae、Cytophagaceae、Caulobacteraceae、Xanthomonadaceae及Bradyrhizobiaceae)
如图3-5所示,是稳定运行后污水反应器12h TOC、TN及NH4 +的去除效率;12小时内TOC去除率为86.7%-96.4%,TN去除率为46.0%-55.1%。
如图6所示,在7天的连续培养中,在不添加溶解氧的前提下(溶氧浓度为0.5-2.1mg/L),停留时间为12h时,测定系统对不同TOC和TN的去除效率。在TOC为134mg/L,TN为81mg/L时,系统对高浓度TOC和TN的去除率分别为52%和49%。在TOC为71mg/L,TN为36mg/L时,系统对低浓度TOC和TN的去除效率分别为59%和57%。
如图7所示,当溶解氧含量低于0.5mg/L时,24小时内总氮去除率为46%;当溶解氧含量为3mg/L时,24小时内总氮去除率为33%。由此可见,本系统更适应于低溶解氧状态下的氮去除。
如图8所示,当气温为15度时,12h总氮的去除率为11%,24h总氮的去除率为20%。当气温为30度时,12h总氮的去除率为31%,48h总氮的去除率为49%。由此可知,温度对本系统有一定的影响性。

Claims (1)

1.一种通过控制溶解氧实现污水碳氮同时去除的生物处理方法,其特征在
于,包括以下步骤:
S1:将污水通入至只含有一个生物处理池的污水处理系统,然后将已经驯化好的活性污泥接种于所述生物处理池内,接种后生物处理池内活性污泥浓度为50g/L;所述污水处理系统中设有两个水质检测器,分别检测进水和出水化学物质含量,所述生物处理池中包含一个监测溶解氧的探头;
所述监测溶解氧的探头连接着一个转换装置,从而控制两个气泵的电源开关,当溶解氧浓度小于限定的最低值,启动气泵一,通入空气至溶解氧浓度达到限定最高值;当溶解氧浓度大于限定的最高值,启动气泵二,通入氮气至溶解氧浓度回复到限定最高值;
S2:在污水处理系统内溶解氧浓度(DO)为0.6mg/L 的条件下运行, 首先控制水力停留时间(HRT)为24h运行12天,接着将水力停留时间(HRT)降至12h运行12天,再将水力停留时间(HRT)降至7h运行,再运行15天;在污水处理系统内溶解氧浓度(DO)为0.1mg/L≤DO<1.0mg/L 的条件下持续运行,水力停留时间为6h;
S3:检验进出水的总氮(TN)、总有机碳(TOC)及各种阴阳离子的浓度,包括 NH4 +,Na+,Mg2 +,K+,Ca2+,NO3 -,NO2 -,SO4 2-,PO4 3-,Cl-,计算TN及TOC的去除效率;
S4:在7天的连续运行中,维持溶解氧浓度为0.1mg/L≤DO<1.0 mg/L 的条件下,停留时间为6h时,测定系统对含有不同碳氮比污水的TOC和TN的去除效率;
所述污水中氨氮浓度为70mg/L,TOC浓度为70 mg/L,pH 为7.0,污水的温度为18℃;
所述活性污泥来源于城市生活污水处理厂,经过长期驯化后成为适应于低氧、厌氧环境中的活性污泥,所述活性污泥内的主要细菌群落包括低氧寡养型氨氧化细菌、低氧型亚硝化细菌、厌氧氨氧化细菌和反硝化细菌;
所述水质检测器的监测指标包括:TOC、TN及NH4 +,Na+,Mg2+,K+,Ca2+,NO3 -,NO2 -,SO4 2-,PO4 3-,Cl-
CN201710962727.1A 2017-10-16 2017-10-16 通过控制溶解氧实现污水碳氮同时去除的生物处理方法 Expired - Fee Related CN107473382B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710962727.1A CN107473382B (zh) 2017-10-16 2017-10-16 通过控制溶解氧实现污水碳氮同时去除的生物处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710962727.1A CN107473382B (zh) 2017-10-16 2017-10-16 通过控制溶解氧实现污水碳氮同时去除的生物处理方法

Publications (2)

Publication Number Publication Date
CN107473382A CN107473382A (zh) 2017-12-15
CN107473382B true CN107473382B (zh) 2020-06-30

Family

ID=60605173

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710962727.1A Expired - Fee Related CN107473382B (zh) 2017-10-16 2017-10-16 通过控制溶解氧实现污水碳氮同时去除的生物处理方法

Country Status (1)

Country Link
CN (1) CN107473382B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110467262A (zh) * 2019-08-22 2019-11-19 中国能源建设集团广东省电力设计研究院有限公司 一种新型污水处理装置
CN110627320B (zh) * 2019-09-26 2022-01-28 北京工业大学 基于物理-化学-生物法的废水处理组合装置及工艺
CN112746032B (zh) * 2019-10-30 2023-02-03 中国石油化工股份有限公司 一种硫细菌的富集培养方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942290A (zh) * 2012-11-15 2013-02-27 青岛思普润水处理有限公司 一种微氧自养生物除氮的污水处理方法
CN103359827A (zh) * 2013-08-14 2013-10-23 哈尔滨工业大学 一种mbr反应器自养脱氮工艺的快速启动方法及利用其同步去除生活污水中碳氮的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340439B2 (en) * 2012-09-13 2016-05-17 D.C. Water & Sewer Authority Method and apparatus for nitrogen removal in wastewater treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942290A (zh) * 2012-11-15 2013-02-27 青岛思普润水处理有限公司 一种微氧自养生物除氮的污水处理方法
CN103359827A (zh) * 2013-08-14 2013-10-23 哈尔滨工业大学 一种mbr反应器自养脱氮工艺的快速启动方法及利用其同步去除生活污水中碳氮的方法

Also Published As

Publication number Publication date
CN107473382A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
CN101357813B (zh) 生活垃圾渗滤液的处理方法
CN106746175A (zh) 一种餐厨垃圾废水处理方法
CN210122541U (zh) 基于微纳米气泡技术的智能化污水深度处理系统
CN109205954A (zh) 微电解催化氧化、生化处理高浓度废水工艺
CN102583747A (zh) 一种高氨氮制革废水生化脱氮处理装置及工艺
CN110342638B (zh) 基于双回流和梯度限氧的低碳氮比污水脱氮装置及其方法
CN106430845A (zh) 餐厨垃圾废水处理装置
CN107473382B (zh) 通过控制溶解氧实现污水碳氮同时去除的生物处理方法
CN102653436B (zh) 污水回用处理系统及工艺
CN100522849C (zh) 一种深度处理氨氮污水的方法
CN113896324A (zh) 以超高no2-积累率实现中试规模低温城市污水短程硝化快速启动并稳定维持的方法
CN112225397A (zh) 基于双污泥反硝化除磷及生物滤塔的污水处理系统及方法
KR20180117340A (ko) 하수 처리 시스템
CN202576155U (zh) 一种高氨氮制革废水生化脱氮处理装置
CN114212885A (zh) 两级全程氨氧化-短程反硝化厌氧氨氧化处理主流低碳氮比生活污水的装置与方法
CN109626563A (zh) 一种农村生活污水深度脱氮方法
CN213357071U (zh) 一种实现低氨氮废水短程硝化-厌氧氨氧化脱氮稳定运行的系统
Bortone et al. Nitrification and denitrification in activated-sludge plants for pig slurry and wastewater from cheese dairies
CN102951770A (zh) 生活污水处理体系及方法
CN108178424B (zh) 一种双回流活性污泥床污水处理方法
CN112811750A (zh) 一种生活垃圾填埋场渗滤液全量化处理系统及处理方法
CN113072184A (zh) 基于厌氧氨氧化的独立反硝化“耦合”的系统和水处理方法
CN111620440A (zh) 一种用改良cass-mbr工艺处理低碳氮比生活污水的方法及设备
CN110697991A (zh) 一种垃圾渗沥液生物处理工艺及系统
CN113402017B (zh) 以葡萄糖为共基质驯化活性污泥及其深度处理焦化废水的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200630

Termination date: 20211016