CN107469090B - 可共载抗肿瘤药物和核酸药物的纳米载体及抗肿瘤药物纳米制剂 - Google Patents

可共载抗肿瘤药物和核酸药物的纳米载体及抗肿瘤药物纳米制剂 Download PDF

Info

Publication number
CN107469090B
CN107469090B CN201710697142.1A CN201710697142A CN107469090B CN 107469090 B CN107469090 B CN 107469090B CN 201710697142 A CN201710697142 A CN 201710697142A CN 107469090 B CN107469090 B CN 107469090B
Authority
CN
China
Prior art keywords
nano
drug
tumor
nucleic acid
sirna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710697142.1A
Other languages
English (en)
Other versions
CN107469090A (zh
Inventor
韩旻
刘惠娜
林梦婷
郭宁宁
郭望葳
王田田
皇甫铭一
陈捷键
高建青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710697142.1A priority Critical patent/CN107469090B/zh
Publication of CN107469090A publication Critical patent/CN107469090A/zh
Application granted granted Critical
Publication of CN107469090B publication Critical patent/CN107469090B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/14Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明涉及一种可共载抗肿瘤药物和核酸药物的纳米载体及抗肿瘤药物纳米制剂,所述纳米载体以亲水性高分子作为骨架材料,由亲水性高分子与多胺类化合物交联得到,其表面修饰GSH刺激响应性的阳离子化合物。该纳米载体能够共载核酸药物和抗肿瘤药物,同时进一步合成的纳米制剂在肿瘤细胞内具有双响应性,能够在肿瘤细胞内分别释放核酸药物和抗肿瘤药物,可显著提高药物的抗肿瘤作用。

Description

可共载抗肿瘤药物和核酸药物的纳米载体及抗肿瘤药物纳米 制剂
技术领域
本发明涉及纳米制剂领域,具体涉及一种可共载抗肿瘤药物和核酸药物的纳米载体及抗肿瘤药物纳米制剂。
背景技术
在肿瘤的临床治疗中,化学治疗占有非常重要的地位,但其疗效一直受到药物的体内毒副作用和肿瘤耐药性的严重制约。肿瘤多药耐药性(multidrug resistance,MDR)是指肿瘤细胞对于多种结构不相关的化疗药物表现出的交叉抵抗现象。研究发现肿瘤细胞的MDR机制非常复杂,肿瘤微环境的改变会造成细胞凋亡异常,这也成为肿瘤耐药发生和发展的重要因素。由此可见,肿瘤细胞凋亡途径的异常在肿瘤耐药性发展的过程中所发挥的重要作用,对细胞凋亡途径进行调控成为克服耐药性的一条新路径。
线粒体是真核细胞的“能量工厂”,参与细胞三羧酸循环、自由基生成、脂质代谢等重要生理化学过程。同时,也是细胞凋亡的调控中心。线粒体靶向给药从而促进细胞凋亡也为克服肿瘤耐药性提供了的新思路。纳米载体可以利用线粒体的两大特性:较大的跨内膜膜电位和线粒体蛋白的进入机制来实现靶向功能。亲脂性阳离子如三苯基膦(triphenylphosphine,TPP)可以借助线粒体较大的膜电位聚集在线粒体。然而线粒体所处的环境为半透明胶状的细胞质,包含多种细胞器、蛋白质、多糖等,具有较大的黏度,表面修饰三苯基膦的纳米载体则需要克服许多障碍才能到达线粒体,可能会影响线粒体靶向的效率。
近年来的研究发现肿瘤的侵袭转移和耐药之间存在密切的联系,抑制肿瘤的侵袭转移成为克服肿瘤耐药的一个新的切入点。Twist是一种高度保守的碱性螺旋-环-螺旋转录因子家族重要成员,过度表达会抑制E-钙粘蛋白功能,导致细胞间黏附作用丧失从而使细胞具有侵袭能力,故Twist在肿瘤侵袭转移中发挥了重要的作用,Twist基因可以被作为新的靶点来克服肿瘤的多药耐药。
因此,在研究制备的线粒体靶向的透明质酸纳米制剂的基础上,如何共载抗肿瘤药物和核酸药物,提高抗肿瘤活性,克服肿瘤的耐药性,成为亟待解决的技术问题。
发明内容
本发明的目的在于针对现有技术的不足,提供一种可共载抗肿瘤药物和核酸药物的纳米载体及抗肿瘤药物纳米制剂,该纳米载体能够共载核酸药物和抗肿瘤药物,同时进一步合成的纳米制剂在肿瘤细胞内具有双响应性,能够在肿瘤细胞内分别释放核酸药物和抗肿瘤药物,可显著提高药物的抗肿瘤作用。
针对上述的技术问题本发明所提供的技术方案为:
一种可共载抗肿瘤药物和核酸药物的纳米载体,所述纳米载体以亲水性高分子作为骨架材料,由亲水性高分子与多胺类化合物交联得到,其表面修饰GSH刺激响应性的阳离子化合物。
上述的技术方案中,纳米载体为亲水性链状结构,由亲水性高分子作为骨架材料,亲水性高分子可以选用水溶性聚合物或者水溶性多糖等。亲水性高分子与多胺类化合物交联后,使得纳米载体表面具有连接抗肿瘤药物和阳离子化合物的基团,如羧基或醛基等。其中的阳离子化合物可以选用阳离子小分子或阳离子聚合物,通过静电吸附核酸药物。
优选的,所述亲水性高分子为甲氧基聚乙二醇胺、N-(2-羟丙基)甲基丙烯酰胺聚合物、肝素、葡聚糖、透明质酸或海藻酸钠。其中N-(2-羟丙基)甲基丙烯酰胺聚合物HPMA、肝素、葡聚糖可以通过自身分子结构中的羟基与阳离子化合物中的氨基,通过N,N'-羰基二咪唑(CDI)/4-二甲氨基吡啶(DMAP)连接。透明质酸或海藻酸钠可通过自身结构中的羧基与阳离子化合物中的氨基,通过碳二亚胺连接,可采用1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)为缩合剂。
所述亲水性高分子进一步优选为透明质酸(Hyaluronan,HA),由于透明质酸的水溶性和生物相容性良好、生物可降解、无免疫抗原性、无致炎性。其次,透明质酸的特异性受体CD44在多种恶性肿瘤细胞表面均过度表达,利用透明质酸携载抗肿瘤药物可以通过特异性受体介导的细胞内吞作用选择性地进入肿瘤细胞,提高其在体内的靶向性,减少药物在正常组织的蓄积。
优选的,所述亲水性高分子的重均分子量为0.8~1000kDa;若选用的亲水性高分子的分子量较大,最终形成的纳米制剂的粒径会增加,因此要选用适合的分子量,以控制纳米制剂的粒径,使得抗肿瘤药物纳米制剂的粒径为100~300nm,有利于抗肿瘤药物纳米制剂蓄积在肿瘤部位。
优选的,所述亲水性高分子与多胺类化合物的摩尔比为1:1~100;
优选的,所述纳米载体与阳离子化合物的摩尔比为1:1~100。
优选的,所述多胺类化合物为精胺。
当亲水性高分子为透明质酸(HA),多胺类化合物为精胺(spermine)时,HA-spermine纳米载体的制备方法包括:
(1)称取透明质酸溶解于去离子水中,加入NaIO4水溶液,室温下避光反应,加入乙二醇终止反应,透析,冻干,得到产物HA-CHO;
(2)上述产物HA-CHO和精胺溶解在PBS反应,调节pH直至沉淀溶解,加入氰基硼氢化钠反应,透析,得到HA-spermine纳米载体。
优选的,所述阳离子化合物为含有二硫键的季铵盐,其阳离子结构式如下:
Figure BDA0001379432740000031
其中,R1和R2分别独立地表示为C2~C4的烷基,R3独立地表示为氨基、羟基、羧基、醛基、巯基、肼基或琥珀酰亚胺基。
上述的季铵盐分子量较小,使其具有较小的细胞毒性;其次,阳离子结构中的N,N,N-三甲基具有正电荷,能够吸附带负电荷的核酸药物,而阳离子结构式另一端的R3为可用于接枝纳米载体的基团。此外,季铵盐的阳离子结构中含有二硫键,可在还原性谷胱甘肽的作用下断裂。
优选的,所述季铵盐的阳离子的结构式如下:
Figure BDA0001379432740000041
优选的,上述的小分子量的季铵盐的制备方法,包括如下步骤:
1)胱胺二盐酸盐与二碳酸二叔丁酯进行BOC保护反应,得到一端BOC保护的胱胺;
2)一端BOC保护的胱胺与碘化钾进行取代反应,得到一端BOC保护的N,N,N-三甲基胱胺碘盐;
3)一端BOC保护的N,N,N-三甲基胱胺碘盐与三氟乙酸进行脱BOC反应,得到N,N,N-三甲基胱胺三氟乙酸盐。
本发明还提供一种抗肿瘤药物纳米制剂,包括如上述的纳米载体、抗肿瘤药物和核酸药物;所述抗肿瘤药物与纳米载体通过pH响应性化合物连接,所述纳米载体表面修饰的阳离子化合物通过静电吸附核酸药物。
上述的抗肿瘤药物纳米制剂(简称:纳米制剂)中的纳米载体为亲水性链状结构,可以分别连接抗肿瘤药物和阳离子化合物,而带正电性的阳离子化合物易静电吸附负电的核酸药物。
纳米载体利用亲水性长链在体内长循环并通过EPR效应聚集于肿瘤部位后,在肿瘤溶酶体弱酸性pH的微环境下,pH响应性敏感基团断裂,逃逸进入细胞浆,同时释放抗肿瘤药物。在细胞浆中还原性GSH刺激响应,阳离子化合物中基团(如二硫键)发生断裂,释放核酸药物。其中,功能性核酸可用于抑制耐药基因的表达,从而联合药物杀伤耐药细胞,同时利用该纳米载体携载功能性探针可有效实时反馈药效。
优选的,所述pH响应性化合物为己二酸二酰肼、草酰二肼等,pH响应性化合物与抗肿瘤药物连接时形成pH响应性敏感基团(如酯键、腙键、亚胺、缩醛等),之后pH响应性化合物携带抗肿瘤药物通过如酰胺键等方式与纳米载体结合。进一步优选,所述pH响应性化合物为己二酸二酰肼。
所述抗肿瘤药物为疏水性药物。优选的,所述抗肿瘤药物为阿霉素-三苯基膦、盐酸阿霉素、博来霉素、佐柔比星、表柔比星、柔红霉素、喜树碱和紫杉醇中的一种。进一步优选为阿霉素-三苯基膦(DOX-TPP),抗肿瘤药物通过腙键结合于ADH;ADH-DOX-TPP再通过酰胺键结合于纳米载体亲水链HA上。所述己二酸二酰肼与阿霉素-三苯基膦的质量比为1:1~1.2,纳米载体与己二酸二酰肼-阿霉素-三苯基膦的质量比为1:1~1.5。
优选的,所述核酸药物为寡核苷酸、质粒DNA、siRNA或microRNA。进一步优选,所述核酸药物为siRNA。siRNA是外源性双链RNA的加工产物,在细胞内能激发与之互补的目标mRNA的沉默,具有特异性高的优点。例如针对目标Twist时,由于Twist是一种高度保守的碱性螺旋-环-螺旋转录因子家族重要成员,其是表皮-间叶细胞转换过程中重要的调控因子,过量表达会导致对肿瘤的侵袭和转移,可以选用核酸药物siTwist,以使目标Twist的沉默。
优选的,所述纳米载体与核酸药物的质量比为25~100:1。通过凝胶电泳实验与纳米制剂表面电位测量实验发现,在该质量比范围内,siRNA可完全吸附于抗肿瘤药物纳米制剂表面,且易于与抗肿瘤药物共载。
优选的,所述抗肿瘤药物纳米制剂的制备方法,包括如下步骤:
(1)将ADH和DOX-TPP混合溶解,加入三氟乙酸,室温避光反应,得到ADH-DOX-TPP;
(2)将HA-spermine纳米载体溶解于水中,加入EDC溶液和NHS溶液在pH为4.5-5.5条件下反应,之后调节pH至6.5-7.5,加入ADH-DOX-TPP溶液反应,再加入N,N,N-三甲基胱胺三氟乙酸盐反应,经透析、冻干得到HSTC纳米制剂;
(3)将HSTC纳米制剂溶液与核酸药物溶液混合后,恒温震荡,得到抗肿瘤药物纳米制剂。
上述制备过程中,首先将透明质酸HA通过高碘酸钠氧化,生成醛基,并进一步通过精胺与醛基的胺醛反应,内部交联得到HA-spermine纳米载体。同时将DOX-TPP中的DOX上的酮羰基与己二酸二酰肼(ADH)中的氨基结合生成腙键,得到ADH-DOX-TPP,并将ADH的另一端的氨基与HA结构中的羧基通过加成反应生成酰胺键,得到HA-ADH-DOX-TPP。HA结构中的另一部分羧基与阳离子N,N,N-三甲基胱胺中的氨基相结合,得到产物HSTC,最后通过静电吸附得到抗肿瘤药物纳米制剂。
同现有技术相比,本发明的有益效果体现在:
(1)本发明所提供的纳米载体由亲水性高分子与多胺类化合物交联得到,其表面修饰GSH刺激响应性的阳离子化合物,该纳米载体能够共载核酸药物和抗肿瘤药物。
(2)本发明所提供的中间体GSH刺激响应性的阳离子化合物为含有二硫键的季铵盐,可在还原性谷胱甘肽的作用下断裂,降低了阳离子化合物的细胞毒性,改善了核酸药物释放,具有较好的应用前景。
(3)本发明所提供的抗肿瘤药物纳米制剂具有双响应性,抗肿瘤药物纳米制剂进入溶酶体后,受肿瘤溶酶体弱酸性pH的微环境影响,pH响应性敏感基团断裂,抗肿瘤药物释放,在细胞浆中还原性GSH刺激响应,阳离子化合物中基团(如二硫键)发生断裂,释放核酸药物,联合药物杀伤耐药细胞,克服肿瘤多药耐药的问题。
附图说明
图1为实施例1中胱胺、胱胺-BOC、N,N,N-三甲基胱胺碘盐-BOC和N,N,N-三甲基胱胺三氟乙酸盐的核磁谱图;
图2为实施例1中N,N,N-三甲基胱胺三氟乙酸盐的碳谱图;
图3为实施例3中N,N,N-三甲基胱胺碘盐-BOC的质谱图;
图4为实施例3中N,N,N-三甲基胱胺氯化盐的质谱图;
图5为实施例4中HA(48kDa)、HA(48kDa)-CHO、spermine、HA(48kDa)-spermine、HA(48kDa)-spermine-DOX-TPP及48kDa HSTC的核磁谱图;
图6为实施例4中HA(48kDa)-spermine-DOX-TPP的粒径分布图(A)和透射电镜图(B);
图7为实施例5中48kDa HSTC/siRNA的粒径分布图(A)和透射电镜图(B);
图8为应用例1中对比样和不同质量比混合的HSTC/siRNA的琼脂糖凝胶电泳图;
图9为应用例1中经DTT处理后对比样和不同质量比混合的HSTC/siRNA的琼脂糖凝胶电泳图;
图10为应用例2中siRNA在细胞中的释放荧光图;
图11为应用例3中对比样和FAM-siRNA在MCF-7/ADR细胞中的释放摄取图;
图12为应用例4中HSTC/FAM-siRNA与细胞孵育1h(A),4h(B)及12h(C)后的溶酶体逃逸图;
图13为应用例5中用PEI转染siTwist后,Twist mRNA在MCF-7/ADR细胞中的表达;
图14为应用例5中用HSTC(B)转染siTwist后,Twist mRNA在MCF-7/ADR细胞中的表达;
图15为应用例6中HSTC/siScramble、HSTC/siTwist-3及HSTC/siTwist-mix在MCF-7/ADR细胞上的细胞毒性;
图16为应用例7中DOX和HSTC/siRNA肿瘤组织内的累积量;
图17为应用例7中免疫组化染色观察细胞色素C、细胞核破裂(Tunel)、Twist蛋白和P-gp蛋白在肿瘤组织的表达;
图18为应用例7中H&E染色观察HSTC/siTwist对正常组织和肿瘤形态的影响。
具体实施方式
下面结合具体的实施例对本发明作进一步的说明。
实施例1:合成N,N,N-三甲基胱胺三氟乙酸盐
1)称取200mg胱胺二盐酸盐(记为胱胺)溶解于10ml甲醇中,并加入386μl三乙胺;将192.5mg二碳酸二叔丁酯(BOC酸酐)溶解于2ml甲醇中,逐滴加到胱胺二盐酸盐甲醇溶液中,室温搅拌反应30min,旋蒸蒸干甲醇。继续加入50ml的磷酸二氢钠溶液(NaH2PO4,1M),用乙醚洗两次以除去两端都连接上BOC酸酐的产物,使用NaOH(1M)用调节溶液的pH到9,用乙酸乙酯萃取得到一端BOC保护的胱胺,旋蒸蒸干乙酸乙酯层,得到白色的产物(记为胱胺-BOC)。
2)称取50mg上述产物,溶解于1ml乙腈中,加入64.6mg K2CO3和73μl碘甲烷,室温避光反应3d,离心去除K2CO3,旋蒸蒸干上清液,用乙醚洗涤2次,得到白色产物(记为N,N,N-三甲基胱胺碘盐-BOC)。
3)用1ml甲醇溶解上述的白色产物,加入1ml三氟乙酸,反应2h,此时溶液变成黄褐色,旋蒸蒸干后再次溶解于2ml甲醇溶液,加入30μl三乙胺中和残留的三氟乙酸,蒸干甲醇获得N,N,N-三甲基胱胺三氟乙酸盐。
针对实施例1中的胱胺、胱胺-BOC、N,N,N-三甲基胱胺碘盐-BOC和N,N,N-三甲基胱胺三氟乙酸盐,均用D2O作为溶剂溶解,进行1H-NMR分析,如图1所示。
结果表明:胱胺亚甲基的特征峰在2.9ppm和3.3ppm,中间产物胱胺-BOC中BOC所带有的三个甲基的特征峰在1.3ppm,由于BOC中羰基的作用,使得胱胺中靠近羰基的亚甲基上的氢的特征峰向右发生位移到2.7ppm。进一步在胱胺-BOC上修饰三个甲基的产物N,N,N-三甲基胱胺碘盐-BOC,其三个甲基的特征峰在3.1ppm。脱BOC保护后,BOC所带有的三个甲基的特征峰消失,证明N,N,N-三甲基胱胺三氟乙酸盐的成功合成。
针对实施例1中的N,N,N-三甲基胱胺三氟乙酸盐,进行碳谱分析,如图2所示,其中,1化学位移33.3,2化学位移37.74,3化学位移为30.02,4化学位移65.33,5化学位移53.21,结果表明N,N,N-三甲基胱胺三氟乙酸盐的成功合成。
实施例2:合成N,N,N-三甲基胱胺碘化盐
(1)称取500mg胱胺二盐酸盐(记为胱胺)溶解于10ml甲醇中,并加入965μl三乙胺;反应30分钟,将223mg氯甲酸苄酯(CBZ)溶解于2ml甲醇中,逐滴加到胱胺二盐酸盐甲醇溶液中,室温搅拌反应,通过薄层色谱法观察反应进度,待原料点消失后,旋蒸蒸干甲醇。继续加入盐酸溶液(HCl,1M),用乙醚洗两次以除去两端都连接上CBZ酸酐的产物,使用NaOH(1M)用调节溶液的pH到9,用乙酸乙酯萃取得到一端CBZ保护的胱胺,旋蒸蒸干乙酸乙酯层,得到白色的产物(记为胱胺-CBZ)。
(2)称取胱胺-CBZ 39mg,加入64.6mg K2CO3,73μL碘甲烷溶于1ml乙腈中,反应3d,离心去除K2CO3,蒸干上清液,用乙醚洗涤2次,得到白色产物,加入二氯甲烷和石油醚(体积比3:1)洗涤旋转蒸干,重复洗涤旋干2次,除去乙腈。
(3)用甲醇(3ml)溶解产物,加入15%Pd/C(0.026g),在室温下氢化12小时,获得N,N,N-三甲基胱胺碘化盐。
实施例3:合成N,N,N-三甲基胱胺氯化盐
本实施例除脱BOC时加入1ml盐酸饱和乙酸乙酯(3M),室温反应30分钟,旋干溶剂,其余步骤与实施例1相同,制备得固体N,N,N-三甲基胱胺氯化盐。
结果表明:针对实施例3中的N,N,N-三甲基胱胺碘盐-BOC和N,N,N-三甲基胱胺氯化盐进行质谱表征,如图3~4所示。N,N,N-三甲基胱胺碘盐-BOC的分子离子峰([M+H]+)为295.17,而N,N,N-三甲基胱胺氯化盐的分子离子峰([M+H]+)为195.10,由此证明N,N,N-三甲基胱胺氯化盐已经成功合成。
实施例4:合成N,N,N-三甲基胱胺-透明质酸(48kDa)-精胺-阿霉素-三苯基膦纳米制剂(HSTC)
(1)称取100mg透明质酸(HA,Mw 48kDa)溶解于30ml去离子水中,逐滴加入50mgNaIO4水溶液,室温避光条件下反应2d,加入0.2ml乙二醇,搅拌1h后终止反应。收集产物后用3500WM透析袋透析3d,透析介质为去离子水,冻干后置于4℃保存,得到产物HA-CHO。
(2)称取62mg上述产物HA-CHO和318mg精胺(spermine)溶解在PBS(PH7.4-7.8,0.1M)中搅拌4h,会产生一些沉淀,加NaOH(1M)调节pH直至沉淀溶解。加入10倍量的氰基硼氢化钠反应3d,收集产物HA-spermine后以3500WM透析袋透析12h以除去未反应上的精胺,透析介质为去离子水,即得到HA-spermine。
(3)将72mg己二酸二酰肼(ADH)和80mg DOX-TPP溶解于15ml无水甲醇中,形成混悬液,氮气保护搅拌30min,加入100μl三氟乙酸,在室温避光条件下搅拌24h。旋蒸蒸干甲醇后,加入乙醇溶解产物,离心去除未反应的ADH,再次旋蒸蒸干乙醇层,得到红色产物ADH-DOX-TPP。
(4)称取31mg HA-spermine溶解于10ml去离子水中,将30mg EDC和18mg NHS溶解于2ml去离子水中,调节到pH 5.0反应1h后,调节到pH7.4,逐滴加入4ml ADH-DOX-TPP甲醇溶液(10mg/ml)反应4h,加入1.5倍量的N,N,N-三甲基胱胺三氟乙酸盐(实施例1制备),反应过夜,收集产物后以3500WM透析袋透析3d,透析介质为去离子水,冻干后置于4℃保存,即得到N,N,N-三甲基胱胺-透明质酸-精胺-阿霉素-三苯基膦纳米制剂(48k Da HSTC)。
针对实施例4中的HA(48kDa)、HA(48kDa)-CHO、spermine、HA(48kDa)-spermine、HA(48kDa)-spermine-DOX-TPP及48kDa HSTC进行核磁共振分析,如图5所示。
结果表明:HSTC的核磁图谱可以观察到DOX-TPP中苯环的特征峰在7.2-7.8ppm,HA中甲基和亚甲基的特征峰在1.25ppm和3.25-3.8ppm,精胺中亚甲基的特征峰出现在1.65ppm和2.8-3.0ppm,N,N,N-三甲基胱胺中三个甲基的特征峰出现在1.25ppm,峰面积明显增加,由此证明成功合成了HSTC。
针对实施例4中的HA(48kDa)-spermine-DOX-TPP进行粒径测定,采用MalvernZetasizer Nano ZS90系列激光粒径分析仪表征,结果如图6A所示,其平均粒径为192.4nm。
针对实施例4中的HA(48kDa)-spermine-DOX-TPP进行形貌观察,采用透射电镜表征,如图6B所示,载体形态为类圆形,且具有较好的分散性。因为DOX-TPP具有一定的疏水性,可以自发形成以DOX-TPP为疏水性内核,HA为亲水性外层的纳米制剂。并且TPP带有正电荷,可以与HA上所携带的负电荷产生静电作用,使得纳米制剂相互缠绕更紧密,提高纳米制剂的稳定性。
实施例5:合成抗肿瘤药物纳米制剂(48kDa HSTC/siRNA)
将实施例4合成的纳米制剂48kDa HSTC与siRNA按质量比为100:1混合于DEPC水中,37℃,100rpm恒温震荡30min,得N,N,N-三甲基胱胺-透明质酸(48kDa)-精胺-阿霉素-三苯基膦+siRNA纳米制剂(48kDa HSTC/siRNA)。
针对实施例5中的48kDa HSTC/siRNA进行粒径测定,采用Malvern ZetasizerNano ZS90系列激光粒径分析仪表征,结果如图7A所示,其平均粒径为79.7nm。
针对实施例5中的48kDa HSTC/siRNA进行形貌观察,采用透射电镜表征,如图7B所示,其为球形纳米粒,粒径约为100nm,粒径较为均一。
实施例6:合成抗肿瘤药物纳米制剂(100kDa HSTC/siRNA)
按照实施例4的合成方法,不同之处在于透明质酸的分子量为100kDa,步骤(1)中HA投药量为48mg,步骤(2)中HA-CHO投药量为29.8mg,步骤(4)中HA-spermine投药量为14.9mg外,其余步骤与实施例4相同,得到纳米制剂100kDa HSTC。
继续参照实施例5的合成过程,制备得N,N,N-三甲基胱胺-透明质酸(100kDa)-精胺-阿霉素-三苯基膦+siRNA纳米制剂(100kDa HSTC/siRNA)。
实施例7:合成抗肿瘤药物纳米制剂(28kDa HSTC/siRNA)
按照实施例4的合成方法,不同之处在于透明质酸的分子量为28kDa,步骤(1)中HA投药量为171.4mg,步骤(2)中HA-CHO投药量为106.3mg,步骤(4)中HA-spermine投药量为53.1mg外,其余步骤与实施例4相同,得到纳米制剂28kDa HSTC。
继续参照实施例5的合成过程,制备得N,N,N-三甲基胱胺-透明质酸(28kDa)-精胺-阿霉素-三苯基膦+siRNA纳米制剂(28kDa HSTC/siRNA)。
实施例8:合成抗肿瘤药物纳米制剂(78kDa HSTC/siRNA)
按照实施例4的合成方法,不同之处在于透明质酸的分子量为78kDa,步骤(1)中HA投药量为61.5mg,步骤(2)中HA-CHO投药量为38.2mg,步骤(4)中HA-spermine投药量为19.1mg外,其余步骤与实施例4相同,得到纳米制剂78kDa HSTC。
继续参照实施例5的合成过程,制备得N,N,N-三甲基胱胺-透明质酸(78kDa)-精胺-阿霉素-三苯基膦+siRNA纳米制剂(78kDa HSTC/siRNA)。
应用例1:48kDa HSTC结合siRNA的效率和谷胱甘肽响应siRNA释放考察
48kDa HSTC对siRNA的结合能力通过琼脂糖凝胶电泳实验来进行判断,步骤如下:将1μl的siRNA溶液(100ng/μl)和0.5μg、2.5μg、5μg、10μg、15μg的HSTC制剂进行混合配置成总体积为21μl的溶液,不足21μl的加入相应体积的DEPC水补足,将其混合均匀,放置37℃恒温振荡箱振荡30min后,将不同质量比(5:1、25:1、50:1、100:1、150:1)混合的HSTC/siRNA,加入4μl Loading buffer,混合均匀。配置含0.1%GelRed的浓度为2%的琼脂糖凝胶,在电压100V条件下进行30min电泳后,放置紫外灯下观察。
结果显示,HSTC上接枝了N,N,N-三甲基胱胺,在中性条件下携带正电荷,siRNA中性条件下携带负电荷,两者通过正负电荷的静电作用结合。琼脂糖凝胶电泳可以直观的反映HSTC和siRNA的结合效率。在一定电泳条件下,游离siRNA在电场力的作用下向正极移动。而与HSTC形成复合物后,siRNA被阻滞在加样孔。将HA-spermine和HSTC以不同的质量比与siRNA在37℃条件下孵育30min,PEI做为阳性对照,结果如图8所示,随着HSTC和siRNA质量比的增加,游离siRNA条带的荧光强度逐渐减弱。
为考察HSTC/siRNA的体外GSH响应性释放,将不同质量比混合的HSTC/siRNA,每组21μL,分别用655.2μg和163.8μg(浓度分别为200mmol/L和50mmol/L)二硫苏糖醇处理2h后,后续同上操作分析。
如图9所示,当用200mM的DTT处理后,可以观察到siRNA再次游离显现出条带。质量比为25和50下,siRNA完全释放,质量比为100,约50%基因释放,质量比继续增加到150,仅有较少一部分的基因释放。DTT浓度为50mM时,处理相同的时间,siRNA的释放减少。而PEI组,DTT处理后则没有释放出siRNA。
结论:HSTC与siRNA质量比为对50:1时,大部分siRNA已经与HSTC结合。当HSTC与siRNA的质量比为100:1时,两者完全结合。而中间产物HA-spermine在所有质量比下都无法结合siRNA。载体对基因的结合能力随着载体与基因质量比的升高而增强,DTT破坏二硫键导致siRNA释放的越少。当DTT的浓度升高,对二硫键的破坏力越强,siRNA释放的越多,该基因载体具有还原性敏感控制siRNA的释放的功能。
应用例2:siRNA的细胞内释放实验
将对数生长期的MCF-7/ADR细胞以每孔2×104个细胞接种于腔室盖玻片中,在37℃,5%CO2条件下培养24h后,除去培养液,加入含谷胱甘肽还原乙酯(GSH-Oet,浓度为20mM)的培养液处理细胞2h,加入48kDa HSTC/FAM-siRNA(浓度为100nM),放置于细胞培养箱孵育2h后,使用PBS清洗3遍,加入100μl含10%胎牛血清的PBS,使用共聚焦显微镜观察FAM-siRNA在MCF-7/ADR细胞中的释放情况,如图10所示。
结论:空白对照组图像中显示出玫红色(如白色箭头1所示)和淡紫色荧光(如白色箭头2所示),没有显示出绿色荧光,说明siRNA还被HSTC结合没有释放,而GSH-OEt处理组,细胞内可以观察到绿色荧光(如白色箭头3所示),说明GSH水平提高可以加速siRNA的释放。
应用例3:siRNA的细胞摄取实验
将对数生长期的MCF-7/ADR细胞以每孔5×104个细胞的数量接种于12孔板上,在37℃,5%CO2条件下培养24h后,除去培养液,加入0.5ml含FAM-siRNA(浓度为100nM,比例为78kDa HSTC:siRNA=100:1)的培养液,放置于细胞培养箱孵育4h,PBS清洗3次,消化为悬浮细胞,使用流式细胞仪检测细胞内FAM-siRNA的荧光强度。
如图11所示,78k Da HSTC比HA-spermine和HST更能帮助提高siRNA的摄取量,大约是其2倍,接近PEI和Lipo 2000的siRNA摄取值。因此,HSTC基因载体可以提高siRNA的摄取量。
应用例4:HSTC/siRNA纳米制剂溶酶体逃逸考察实验
将对数生长期的MCF-7/ADR细胞以每孔2×104个细胞接种于腔室盖玻片中,在37℃,5%CO2条件下培养24h后,除去培养液,加入含HSTC/FAM-siRNA(浓度为100nM)的培养液。置于细胞培养箱孵育1h,4h或12h后,加入75nM的Lyso-Tracker Blue(Lifetechnologies)染色溶酶体1h,PBS清洗3次,加入含10%胎牛血清的PBS,使用共聚焦显微镜观察HSTC/FAM-siRNA在MCF-7/ADR细胞中的转运情况。
如图12所示,当载体与细胞孵育1h后(A组),观察到红色荧光和蓝色荧光重合形成的玫红色荧光(如白色箭头1所示),蓝色荧光和红色荧光的重合部分也有绿色荧光的存在,但是因为绿色荧光较弱而被掩盖以至于在合并图中没有显示出来。这些现象说明HSTC/siRNA复合物此时处在溶酶体中。当与细胞孵育4h后(B组),观察到玫红色荧光数量减少,有少量红色荧光(如白色箭头3所示)和黄色荧光(如白色箭头2所示),这个现象可以说明HSTC/siRNA复合物一部分从溶酶体中逃逸出来,且有一部分DOX-TPP从制剂中释放出来。与细胞孵育12h后(C组),图中可以观察到一些绿色荧光(如白色箭头4所示)和红色荧光(如白色箭头5所示),且存在很少量的玫红色荧光(如白色箭头6所示)。
结论:HSTC/siRNA纳米制剂通过内吞作用进入细胞,1h时几乎全部的制剂都在溶酶体中,4h时一部分制剂完成了溶酶体逃逸,且有一部分DOX-TPP从制剂中释放出来,12h时大部分的制剂实现了溶酶体逃逸,siRNA从制剂中释放出来。
应用例5:PCR检测目的基因的表达实验
将对数生长期的MCF-7/ADR细胞以每孔105个细胞接种于6孔板中,在37℃,5%CO2条件下培养24h后,除去培养液,加入含HSTC/siTwist制剂的无血清培养液,基因终浓度为200nM,放置于细胞培养箱孵育8h,换含血清培养液继续孵育48h。根据mRNA抽提试剂盒(生工生物工程(上海)股份有限公司)的使用说明书提取RNA,使用PrimeScript RT试剂盒(Promega公司,麦迪逊,威斯康星州,美国)合成了该RNA的互补DNA序列。荧光定量PCR在7500fast荧光定量PCR仪(Applied Biosystems公司,美国)上进行。其变性、退火、延伸的条件分别是:95℃×2min,95℃×3s,72℃×30s,扩增40个循环。Twist和GAPDH的引物如下所示:
Twist特异性引物:
F:GGAGTCCGCAGTCTTACGAG
R:TCTGGAGGACCTGGTAGAGG
GAPDH特异性引物:
F:GGAGCGAGATCCCTCCAAAAT
R:GGCTGTTGTCATACTTCTCATGG
如图13所示,siTwist-mix组细胞内Twist mRNA的表达量最低,仅为对照组的22%,siTwist-3组细胞内mRNA的表达量为对照组的41%,而siTwist-1和siTwist-2抑制Twist mRNA的效果相对较弱,其mRNA的表达量分别为对照组的100%和81%。Siscramble作为空白对照对Twist mRNA表达没有影响。
如图14所示,实验筛选出两种干扰效果较好的基因siTwist-3和siTwist-mix,对HSTC/siTwist的基因沉默效率进行考察。HSTC/siTwist-mix对Twist基因的沉默效率最高,其mRNA的表达量为对照组的40%,HSTC/siTwist-3处理后细胞内Twist mRNA的表达量为对照组的66%。
结论:HSTC/siTwist纳米复合物可以抑制mRNA的合成,从而沉默Twist蛋白的表达。
应用例6:HSTC/siRNA的细胞毒性实验
对数生长期的MCF-7/ADR细胞以每孔104个细胞的数量接种于96孔板上,在37℃,5%CO2条件下培养24h后,除去培养液,加入150μl含药的培养液,使得最终药物浓度为43μM、86μM和172μM,置于培养箱内孵育48h后,每孔加入20μl四甲基偶氮唑蓝溶液(5mg/ml)孵育4h后弃去培养液,每孔加入150μl二甲基亚砜,放置在振荡器上振荡10min,使用酶标仪于570nm下测定密OD值,采用以下公式计算细胞生存百分率以评价细胞毒性。
细胞生存百分率=实验组OD值/对照组OD值×100%
如图15所示,相对于携载非功能基因的HSTC/siScramble,HSTC/siTwist-3和HSTC/siTwist-mix增加了对MCF-7/ADR细胞的毒性。在浓度43和86μM时,HSTC/siTwist-3具有显著性差异,基因抑制Twist和P-gp的表达,增大了耐药细胞对药物的敏感性。
应用例7:HSTC/siTwist体内抗肿瘤活性研究
4-6周龄的Balb/c雌性裸鼠,提前1周喂食含雌二醇的水,浓度0.3mg/ml。在右侧前肢皮下接种MCF-7/ADR细胞,细胞浓度为107/100μl,每只注射100μl,建立MCF-7/ADR小鼠肿瘤模型。
将荷瘤裸鼠随机分成4组,当肿瘤体积长到50mm3开始腹腔给予PBS、游离DOX(4mg/kg)、HSTC/siTwist(相对阿霉素浓度4mg/kg,siTwist浓度2mg/kg),每2天给药一次,共10次。实验结束后,取出裸鼠心脏、肝脏、脾脏、肺、肾脏、肿瘤组织,放入4%甲醛溶液中固定48h,进行石蜡切片,一部分采用HE染色观察组织器官,一部分肿瘤组织进行Anti-Cytochrome c、Anti-Twist和Anti-pgp免疫组化染色。另取一部分肿瘤组织采取冰冻处理,直接切片放置在载玻片上,通过共聚焦观察纳米载体在肿瘤部位的药物累积情况。
荷瘤裸鼠腹腔注射PBS,DOX及HSTC/siTwist-mix,治疗21天后,药物在肿瘤部位累积的情况通过组织切片的方法来观察。如图16所示,结果显示HSTC/siTwist肿瘤组织中的红色荧光强度(如白色圈内所示)明显强于游离DOX组。结论:透明质酸的纳米制剂在体内循环后,可以较多的累积在肿瘤部位,以发挥抗肿瘤作用。
如图17所示,通过观察肿瘤组织中cytochrome C蛋白的表达量来说明凋亡诱导情况。HSTC/siRNA组cytochrome C蛋白的表达量明显高于DOX组,说明累积在肿瘤细胞的透明质酸纳米制剂能够释放出线粒体靶向药物DOX-TPP,通过线粒体途径诱导产生凋亡。
进一步通过Tunel实验观察肿瘤组织凋亡情况,棕褐色的为凋亡细胞(如黑色箭头所示),可以看出HSTC/siRNA组的凋亡细胞多于DOX组。为了进一步考察HSTC/siRNA基因载体在体内基因沉默的效果,将肿瘤组织进行免疫组化染色,观察肿瘤组织中Twist和P-gp蛋白的表达量。HSTC/siRNA处理组Twist蛋白(如黑色箭头所示)表达量低于DOX组,说明基因载体在体内也能够发挥抑制蛋白表达的作用。同时,其P-gp蛋白的表达量也明显降低。结论:减少Twist蛋白表达可以抑制种肿瘤的转移,也引起P-gp蛋白的表达减少,克服了肿瘤的耐药性以取得更好的抗肿瘤效果。
为了考察透明质酸纳米制剂在体内对于其他器官的影响,观察裸鼠心脏、肝脏、脾脏、肺、肾脏、肿瘤等组织的形态变化,结果显示DOX组裸鼠心脏肌束间出现裂隙,心肌有扭曲现象。如图18所示,裸鼠肾脏变化最为明显,图中虚线部分为病变的肝脏出现明显的坏死和炎症现象。进一步通过检测血液中谷丙转氨酶(ALT)的含量考察肝功能损伤的情况,DOX组ALT明显高于制剂组,说明肝功能受到了损害,结果如表1所示。
表1 HSTC/siTwist对血液中ALT含量的影响
Figure BDA0001379432740000171
HSTC/siRNA处理组未发现明显组织器官形态改变,证明透明质酸纳米制剂在体内治疗中安全性较好。对于肿瘤组织,DOX、HSTC/siRNA都观察到出现细胞核固缩和溶解的现象,说明肿瘤细胞发生了凋亡。
结论:DOX组造成了心脏和肝脏的损伤,透明质酸纳米制剂在体内治疗中安全性较好。

Claims (6)

1.一种可共载抗肿瘤药物和核酸药物的纳米载体,其特征在于,所述纳米载体以亲水性高分子作为骨架材料,由亲水性高分子与多胺类化合物交联得到,其表面修饰GSH刺激响应性的阳离子化合物;
所述亲水性高分子为透明质酸;
所述多胺类化合物为精胺;
所述阳离子化合物为含有二硫键的季铵盐,所述季铵盐的阳离子的结构式如下:
Figure FDA0002407812110000011
2.如权利要求1所述的可共载抗肿瘤药物和核酸药物的纳米载体,其特征在于,所述亲水性高分子的重均分子量为0.8~1000kDa;所述亲水性高分子与多胺类化合物的摩尔比为1:1~100;所述纳米载体与阳离子化合物的摩尔比为1:1~100。
3.一种抗肿瘤药物纳米制剂,其特征在于,包括如权利要求1~2任一所述的纳米载体、抗肿瘤药物和核酸药物;所述抗肿瘤药物与纳米载体通过pH响应性化合物连接,所述纳米载体表面修饰的阳离子化合物通过静电吸附核酸药物;所述pH响应性化合物为己二酸二酰肼。
4.如权利要求3所述的抗肿瘤药物纳米制剂,其特征在于,所述抗肿瘤药物为阿霉素-三苯基膦、盐酸阿霉素、博来霉素、佐柔比星、表柔比星、柔红霉素、喜树碱和紫杉醇中的一种。
5.如权利要求3所述的抗肿瘤药物纳米制剂,其特征在于,所述核酸药物为寡核苷酸。
6.如权利要求3所述的抗肿瘤药物纳米制剂,其特征在于,所述核酸药物为质粒DNA、siRNA或microRNA。
CN201710697142.1A 2017-08-15 2017-08-15 可共载抗肿瘤药物和核酸药物的纳米载体及抗肿瘤药物纳米制剂 Active CN107469090B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710697142.1A CN107469090B (zh) 2017-08-15 2017-08-15 可共载抗肿瘤药物和核酸药物的纳米载体及抗肿瘤药物纳米制剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710697142.1A CN107469090B (zh) 2017-08-15 2017-08-15 可共载抗肿瘤药物和核酸药物的纳米载体及抗肿瘤药物纳米制剂

Publications (2)

Publication Number Publication Date
CN107469090A CN107469090A (zh) 2017-12-15
CN107469090B true CN107469090B (zh) 2020-05-12

Family

ID=60600600

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710697142.1A Active CN107469090B (zh) 2017-08-15 2017-08-15 可共载抗肿瘤药物和核酸药物的纳米载体及抗肿瘤药物纳米制剂

Country Status (1)

Country Link
CN (1) CN107469090B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112089839A (zh) * 2020-09-25 2020-12-18 深圳瀚光科技有限公司 一种用于癌症治疗的智能光纳米药物和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1303735B1 (it) * 1998-11-11 2001-02-23 Falorni Italia Farmaceutici S Acidi ialuronici reticolati e loro usi medici.
US10092658B2 (en) * 2012-02-07 2018-10-09 Phi Biomed Co., Ltd. Method for manufacturing transdermally delivered hyaluronic acid-protein conjugate and transdermally delivered hyaluronic acid-protein conjugate manufactured using same
CN103254442B (zh) * 2013-04-28 2015-01-14 天津大学 二硫键键接的聚酯梳型接枝共聚物及其制备方法和应用
CN105664176B (zh) * 2016-03-24 2018-08-24 浙江大学 一种线粒体靶向的多糖纳米制剂及其制备方法

Also Published As

Publication number Publication date
CN107469090A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
Wang et al. Amphiphilic carbon dots as versatile vectors for nucleic acid and drug delivery
Shen et al. A glutathione-responsive sulfur dioxide polymer prodrug as a nanocarrier for combating drug-resistance in cancer chemotherapy
JP4796063B2 (ja) 治療薬を送達するための方法および物
Lu et al. A cationic prodrug/therapeutic gene nanocomplex for the synergistic treatment of tumors
Huang et al. Evaluation and mechanism studies of PEGylated dendrigraft poly-L-lysines as novel gene delivery vectors
Li et al. A poly (amidoamine) dendrimer-based drug carrier for delivering DOX to gliomas cells
Huang et al. Macrocycle-wrapped polyethylenimine for gene delivery with reduced cytotoxicity
Shukla et al. Multifunctional hybrid nanoconstructs facilitate intracellular localization of doxorubicin and genistein to enhance apoptotic and anti-angiogenic efficacy in breast adenocarcinoma
Leiro et al. Biodegradable PEG–dendritic block copolymers: synthesis and biofunctionality assessment as vectors of siRNA
CN113583178B (zh) 一种支化含糖聚合物基纳米粒子及其的制备方法和用途
Xu et al. Co-delivery of doxorubicin and P-glycoprotein siRNA by multifunctional triblock copolymers for enhanced anticancer efficacy in breast cancer cells
Wang et al. Functionalized O-carboxymethyl-chitosan/polyethylenimine based novel dual pH-responsive nanocarriers for controlled co-delivery of DOX and genes
Li et al. Cell penetrating peptide-based polyplexes shelled with polysaccharide to improve stability and gene transfection
AU2021364709A1 (en) Star polymer drug conjugates
Cheng et al. pH-and redox-responsive self-assembly of amphiphilic hyperbranched poly (amido amine) s for controlled doxorubicin delivery
Leiro et al. Versatile fully biodegradable dendritic nanotherapeutics
CN107281161B (zh) 一种药物纳米制剂及其制备方法
Xu et al. Construction of multifunctional mesoporous silicon nano-drug delivery system and study of dual sensitization of chemo-photodynamic therapy in vitro and in vivo
Jang et al. π-Hyaluronan nanocarriers for CD44-targeted and pH-boosted aromatic drug delivery
won Lim et al. Bone targeting nano-aggregates prepared from self-assembled polyaspartamide graft copolymers for pH sensitive DOX delivery
Xiao et al. Poly (amidoamine) dendrimers modified with 1, 2-epoxyhexane or 1, 2-epoxydodecane for enhanced gene delivery applications
CN107469090B (zh) 可共载抗肿瘤药物和核酸药物的纳米载体及抗肿瘤药物纳米制剂
Tian et al. Reduction-responsive modification-induced higher efficiency for attenuation of tumor metastasis of low molecular weight heparin functionalized liposomes
CN111620907B (zh) 一种含磷树冠大分子杂化纳米材料及其制备和应用
Zhao et al. Folate-conjugated dually responsive micelles for targeted anticancer drug delivery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant