CN107459738A - 一种磷酸锆纳米复合阻燃剂 - Google Patents

一种磷酸锆纳米复合阻燃剂 Download PDF

Info

Publication number
CN107459738A
CN107459738A CN201710791755.1A CN201710791755A CN107459738A CN 107459738 A CN107459738 A CN 107459738A CN 201710791755 A CN201710791755 A CN 201710791755A CN 107459738 A CN107459738 A CN 107459738A
Authority
CN
China
Prior art keywords
parts
zirconium phosphate
phosphate
nano composite
composite flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710791755.1A
Other languages
English (en)
Inventor
周玉军
罗玉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mianzhu Yao Long Chemical Co Ltd
Original Assignee
Mianzhu Yao Long Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mianzhu Yao Long Chemical Co Ltd filed Critical Mianzhu Yao Long Chemical Co Ltd
Priority to CN201710791755.1A priority Critical patent/CN107459738A/zh
Publication of CN107459738A publication Critical patent/CN107459738A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/328Phosphates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种磷酸锆纳米复合阻燃剂,该阻燃剂的组成成份包括:改性α‑磷酸锆,PVC发泡材料,乙二胺,抑烟剂,磷酸锌,磷酸铵,本发明的阻燃剂具有优良的阻燃性能。

Description

一种磷酸锆纳米复合阻燃剂
技术领域
本发明涉及阻燃剂领域,特别是涉及一种磷酸锆纳米复合阻燃剂。
背景技术
近些年来,聚合物层状纳米复合材料是纳米复合材料领域研究十分活跃的材料之一,聚合物纳米复合材料是有多种不同组分或相构成的聚合物多相体系,其中包括的纳米粒子种类很多,如蒙脱土、层状双羟基化合物、钛纳米管、α-磷酸锆、多面体低聚硅倍半氧烷、二氧化钛、二氧化硅等等。纳米材料的特殊结构决定了其拥有其他材料所不具备的特殊性能(如:小尺寸效应、量子尺寸效应、宏观隧道效应等等)。因此这些纳米粒子的介入给聚合物材料带来了新的希望和生机,为提高聚合材料抵抗热和火的能力,以及机械性能提供了良好的方法。
磷酸锆类化合物是近年来发展起来的一种新型多功能的介孔材料, 其中晶形α-磷酸锆(α-ZrP)属于阳离子型层状化合物,离子交换容量大约(600mmol/100g)是黏土的6倍,具有良好的阻燃性能。
大量的研究显示,聚合物和磷酸锆类化合物形成复合材料时,聚合物的机械性能、热阻性能等可以得到较好的改善,本发明在研究磷酸锆类化合物的基础上提出了一种磷酸锆纳米复合阻燃剂。
发明内容
本发明提供一种具有良好阻燃性能的磷酸锆纳米复合阻燃剂,该阻燃剂的组成成份包括:改性α-磷酸锆,PVC发泡材料,乙二胺,抑烟剂,磷酸锌,磷酸铵。
进一步,所述组成成份按重量份计为:改性α-磷酸锆20~29份, PVC发泡材料30~37份,乙二胺11~18份,阻燃剂25~37份,磷酸锌11~17 份,磷酸铵12~16份。
PVC在受热热解的过程中首先失去HCl,生成顺式/反式并存的多烯结构体。随着材料温度的升高,热解程度的增加,发生有焰燃烧,这时反式多烯交联成炭,而顺式多烯则经过氧化降解、环化反应等过程会释放出芳香族类化合以及小分子脂肪烃类的化合物、CO、HCl等有毒的气体及一系列微小固体颗粒,这些小分子往往不能够完全燃烧,会产生大量的炭微粒,飘散于气体中形成黑烟以及产生腐蚀性气体,因而必须加入适当的抑烟剂。
进一步,所述组成成份按重量份计为:改性α-磷酸锆25份,PVC发泡材料33份,乙二胺15份,磷酸锌15份,磷酸铵13份。
进一步,所述抑烟剂为锡酸镁,硼酸锌。
当只加入锡酸镁,硼酸锌能够显著的增加成炭量以及减少芳香族化合物的产生,一方面通过ATH脱去的水分带走热量,另一方面通过路易斯酸促使成炭作用;
加入磷酸锌和磷酸铵类抑烟剂后,与改性α–磷酸锆却表现出协同阻燃的作用。
进一步,所述抑烟剂按重量计为锡酸镁16份,硼酸锌14份。
当加入锡酸镁16份,硼酸锌14份时抑烟作用最强。
进一步,所述PVC发泡材料的组成包括PVC,苯二甲酸二辛酯,二甲酰胺,氧化锌,硬脂酸镁。
进一步,所述PVC发泡材料按重量份计为PVC20份,苯二甲酸二辛酯5份,二甲酰胺3份,氧化锌3份,硬脂酸镁2份。
进一步,所述改性α-磷酸锆的制备方法包括以下步骤,①取α-磷酸锆粉末分散于蒸馏水中,分散均匀。然后按液固比100ml:g,甲胺溶液:α-磷酸锆=1.5:1~3.2:1,加入0.2mol.L-1的甲胺水溶液,经反应,得混合物;②将十六烷基三甲基溴化铵水溶液滴加到步骤①混合物中, 搅拌、超声、洗涤处理,得到改性α-磷酸锆。
在α-磷酸锆中磷酸基团的存在使得其和PVC之间的相容性较弱,因此有必有对α-ZrP进行有机改性,使用本发明的方法制得的改性α- 磷酸锆使得本发明的复合阻燃剂的性能显著增强。
进一步,所述胺与α-磷酸锆的摩尔比为2.5:1。
本发明的有益效果是:总的来说PVC的阻燃性通过气相阻燃,凝聚相阻燃等机理来实现。
本发明的阻燃剂在气相中将燃烧停止或者能够延缓链式自由基燃烧反应的阻燃过程,PVC燃烧将形成自由基抑制剂,从而导致燃烧链式反应而中断;PVC燃烧产生惰性微粒,促进自由基在其表面相互结合,从而导致燃烧链终止;PVC燃烧产生大量气体或者高密度蒸汽,起到稀释,隔绝可氧气或者降低PVC燃烧体温度的作用。
本发明抑烟剂的特点:添加量小、对聚合物机械性能影响小、价格高、有的有毒、但是抑烟作用小。
具体实施方式
实施例1
改性α-磷酸锆的制备方法包括以下步骤,①取一定量的α-磷酸锆粉末分散于蒸馏水中,在KS-300型超声仪中超声分散均匀。然后按优化组成配比:液固比=100ml:g,甲胺溶液:α-磷酸锆=2.5:1,加入 0.2mol·L-1的甲胺水溶液,超声处理5min~8min,将所得产物离心、洗涤,并在60℃下真空干燥,得到混合物。②将0.2mol/L十六烷基三甲基溴化铵水溶液200~1500ml滴加到步骤①混合物中,通过搅拌或超声处理使C16分子嵌入α-磷酸锆层间,最后用热的蒸馏水充分洗涤除去残余的表面活性剂,离心分离,直到离心液中没有澳离子检出没有溴离子,产物与60下真空干燥,即可得到本发明改性α-磷酸锆。
实施例2
改性α-磷酸锆的制备方法包括以下步骤,①取一定量的α-磷酸锆粉末分散于蒸馏水中,在KS-300型超声仪中超声分散均匀。然后按优化组成配比:液固比=100ml/g,甲胺溶液:α-磷酸锆=1.5:1,加入 0.2mol·L-1的甲胺水溶液,超声处理5min~8min,将所得产物离心、洗涤,并在60℃下真空干燥,得到混合物。②将0.2mol/L十六烷基三甲基溴化铵水溶液200~1500ml滴加到步骤①混合物中,通过搅拌或超声处理使C16分子嵌入α-磷酸锆层间,最后用热的蒸馏水充分洗涤除去残余的表面活性剂,离心分离,直到离心液中没有澳离子检出没有溴离子,产物与60下真空干燥,即可得到本发明改性α-磷酸锆。
实施例3
改性α-磷酸锆的制备方法包括以下步骤,①取一定量的α-磷酸锆粉末分散于蒸馏水中,在KS-300型超声仪中超声分散均匀。然后按优化组成配比:液固比=100ml/g,甲胺溶液:α-磷酸锆=3.2:1,加入 0.2mol·L-1的甲胺水溶液,超声处理5min~8min,将所得产物离心、洗涤,并在60℃下真空干燥,得到混合物。②将0.2mol/L十六烷基三甲基溴化铵水溶液200~1500ml滴加到步骤①混合物中,通过搅拌或超声处理使C16分子嵌入α-磷酸锆层间,最后用热的蒸馏水充分洗涤除去残余的表面活性剂,离心分离,直到离心液中没有澳离子检出没有溴离子,产物与60下真空干燥,即可得到本发明改性α-磷酸锆。
实施例4
在反应容器中加入实施例1制备的改性α-磷酸锆25份,PVC20份,苯二甲酸二辛酯5份,二甲酰胺3份,氧化锌3份,硬脂酸镁2份,乙二胺15份,磷酸锌15份,磷酸铵13份,锡酸镁16份,硼酸锌14份, 160℃的条件下反应3h,将温度升高到250℃,压力10MPa,继续反应30min,冷却后5min制成本发明磷酸锆复合阻燃剂。
实施例5
在反应容器中加入实施例1制备的改性α-磷酸锆20份,PVC23份,苯二甲酸二辛酯6份,二甲酰胺3份,氧化锌3份,硬脂酸镁2份,乙二胺11份,磷酸锌17份,磷酸铵12份,锡酸镁11份,硼酸锌14份, 160℃的条件下反应3h,将温度升高到250℃,压力10MPa,继续反应30min,冷却后5min制成本发明磷酸锆复合阻燃剂。
实施例6
在反应容器中加入实施例1制备的改性α-磷酸锆29份,PVC20份,苯二甲酸二辛酯4份,二甲酰胺2份,氧化锌2份,硬脂酸镁2份,乙二胺18份,磷酸锌11份,磷酸铵16份,锡酸镁15份,硼酸锌17份, 160℃的条件下反应3h,将温度升高到250℃,压力10MPa,继续反应30min,冷却后5min制成本发明磷酸锆复合阻燃剂。
实施例7
对比例
在反应容器中加入实施例1制备的α-磷酸锆25份,PVC20份,乙二胺15份,磷酸锌15份,磷酸铵13份,160℃的条件下反应3h,将温度升高到250℃,压力10MPa,继续反应30min,冷却后5min制成本发明磷酸锆复合阻燃剂。
实施例8
力学性能测试
将实施例4~7制备的磷酸锆复合阻燃剂样品依次简称样品1~4,进行力学性能测试:按照GB/T528-1998标准进行拉伸强度性能测试,拉伸速率为50mm/min;遵照GB/T 529-1999标准进行撕裂强度性能测试,撕裂速度为50mm/min。
测试结果如下
阻燃性能测试
极限氧指数是评价聚合物材料相对燃烧性的一种方法,将实施例4~7制备的磷酸锆复合阻燃剂样品依次简称样品1~4,进行极限氧指数,其结果如下:
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

1.一种磷酸锆纳米复合阻燃剂,其特征在于,该阻燃剂的组成成份包括:改性α-磷酸锆,PVC发泡材料,乙二胺,抑烟剂,磷酸锌,磷酸铵。
2.根据权利要求1所述的一种磷酸锆纳米复合阻燃剂,其特征在于,所述组成成份按重量份计为:改性α-磷酸锆20~29份,PVC发泡材料30~37份,乙二胺11~18份,抑烟剂25~37份,磷酸锌11~17份,磷酸铵12~16份。
3.根据权利要求1所述的一种磷酸锆纳米复合阻燃剂,其特征在于,所述组成成份按重量份计为:改性α-磷酸锆25份,PVC发泡材料33份,乙二胺15份,磷酸锌15份,磷酸铵13份。
4.根据权利要求1所述的一种磷酸锆纳米复合阻燃剂,其特征在于,所述抑烟剂为锡酸镁,硼酸锌。
5.根据权利要求1所述的一种磷酸锆纳米复合阻燃剂,其特征在于,所述抑烟剂按重量计为锡酸镁16份,硼酸锌14份。
6.根据权利要求1所述的一种磷酸锆纳米复合阻燃剂,其特征在于,所述PVC发泡材料的组成包括PVC,苯二甲酸二辛酯,二甲酰胺,氧化锌,硬脂酸镁。
7.根据权利要求1所述的一种磷酸锆纳米复合阻燃剂,其特征在于,所述PVC发泡材料按重量份计为PVC20份,苯二甲酸二辛酯5份,二甲酰胺3份,氧化锌3份,硬脂酸镁2份。
8.根据权利要求1所述的一种磷酸锆纳米复合阻燃剂,其特征在于,所述改性α-磷酸锆的制备方法包括以下步骤,①取α-磷酸锆分散于蒸馏水中,然后按液固比100ml:g,甲胺溶液:α-磷酸锆=1.5:1~3.2:1,加入 0.2mol.L-1的甲胺水溶液,经反应,得混合物;②将十六烷基三甲基溴化铵水溶液滴加到步骤①混合物中,经处理,得到改性α-磷酸锆。
9.根据权利要求8所述的一种磷酸锆纳米复合阻燃剂,其特征在于所述胺与α-磷酸锆的摩尔比为2.5:1。
CN201710791755.1A 2017-09-05 2017-09-05 一种磷酸锆纳米复合阻燃剂 Pending CN107459738A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710791755.1A CN107459738A (zh) 2017-09-05 2017-09-05 一种磷酸锆纳米复合阻燃剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710791755.1A CN107459738A (zh) 2017-09-05 2017-09-05 一种磷酸锆纳米复合阻燃剂

Publications (1)

Publication Number Publication Date
CN107459738A true CN107459738A (zh) 2017-12-12

Family

ID=60551766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710791755.1A Pending CN107459738A (zh) 2017-09-05 2017-09-05 一种磷酸锆纳米复合阻燃剂

Country Status (1)

Country Link
CN (1) CN107459738A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109438759A (zh) * 2018-09-29 2019-03-08 华南理工大学 一种具有阻燃作用的氮-磷复合插层改性磷酸锆及制备方法
CN116903963A (zh) * 2023-08-03 2023-10-20 上海舜睿新材料股份有限公司 一种防火阻燃橡胶地板及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101829544A (zh) * 2010-05-11 2010-09-15 常州大学 一种高容量吸附酚类化合物磷酸锆材料及制备方法
CN104017311A (zh) * 2014-06-21 2014-09-03 苏州金刚防火钢型材系统有限公司 钢塑高阻燃防火门窗型材及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101829544A (zh) * 2010-05-11 2010-09-15 常州大学 一种高容量吸附酚类化合物磷酸锆材料及制备方法
CN104017311A (zh) * 2014-06-21 2014-09-03 苏州金刚防火钢型材系统有限公司 钢塑高阻燃防火门窗型材及其制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JENNY ALONGI ET AL.: "Flame retardancy properties of a-zirconium phosphate based composites", 《POLYMER DEGRADATION AND STABILITY》 *
汪多仁: "《绿色纳米化学品》", 31 July 2007, 科学技术文献出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109438759A (zh) * 2018-09-29 2019-03-08 华南理工大学 一种具有阻燃作用的氮-磷复合插层改性磷酸锆及制备方法
CN109438759B (zh) * 2018-09-29 2021-03-30 华南理工大学 一种具有阻燃作用的氮-磷复合插层改性磷酸锆及制备方法
CN116903963A (zh) * 2023-08-03 2023-10-20 上海舜睿新材料股份有限公司 一种防火阻燃橡胶地板及其制备方法

Similar Documents

Publication Publication Date Title
Wu et al. Surface decoration of Halloysite nanotubes with POSS for fire-safe thermoplastic polyurethane nanocomposites
Vahidi et al. Advancements in traditional and nanosized flame retardants for polymers—A review
Kong et al. Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan
Yu et al. Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability
Xu et al. Synthesis and characterization of a novel organic-inorganic hybrid char-forming agent and its flame-retardant application in polypropylene composites
Jiang et al. Green flame-retardant flexible polyurethane foam based on polyphenol-iron-phytic acid network to improve the fire safety
Jing et al. Core-shell flame retardant/graphene oxide hybrid: a self-assembly strategy towards reducing fire hazard and improving toughness of polylactic acid
Liu et al. Multifunctional polyurethane sponge coatings with excellent flame retardant, antibacterial, compressible, and recyclable properties
Meng et al. Synthesis of ZIF-8 with encapsulated hexachlorocyclotriphosphazene and its quenching mechanism for flame-retardant epoxy resin
Peng et al. Amorphous cobalt borate nanosheets grown on MoS2 nanosheet for simultaneously improving the flame retardancy and mechanical properties of polyacrylonitrile composite fiber
Jia et al. Octopus sucker-inspired hierarchical structure MXene@ carbon nanotubes enhancing the mechanical properties and fire safety of thermoplastic polyurethane composites through the interfacial engineering
CN107459738A (zh) 一种磷酸锆纳米复合阻燃剂
Zhang et al. In situ-synthesis of calcium alginate nano-silver phosphate hybrid material with high flame retardant and antibacterial properties
Zhou et al. Facile preparation of nickel phosphide (Ni12P5) and synergistic effect with intumescent flame retardants in ethylene–vinyl acetate copolymer
Qiu et al. A simple and universal strategy for construction and application of silica-based flame-retardant nanostructure
Yan et al. Novel bio-derived phytic acid and melamine interlayered/surface dual modified layered double hydroxide by one-pot method and its highly efficient flame retardant performance for polypropylene
Bao et al. The effect of strawberry-like nickel-decorated flame retardant for enhancing the fire safety and smoke suppression of epoxy resin
Wu et al. Self-assembled double core-shell structured zeolitic imidazole framework-8 as an effective flame retardant and smoke suppression agent for thermoplastic polyurethane
Kotal et al. Layered double hydroxide as nanofiller in the development of polyurethane nanocomposites
Sui et al. Covalently functionalized graphene oxide wrapped by silicon–nitrogen-containing molecules: preparation and simultaneous enhancement of the thermal stability, flame retardancy and mechanical properties of epoxy resin nanocomposites
Teng et al. Layer-by-layer self-assembly of Ce-doped titanate nanotube-based hybrid coating on bamboo fibre materials for flame retardancy and thermostability
Xu et al. Zinc hydroxystannate-or zinc stannate-coated calcium carbonate as flame retardant for semirigid poly (vinyl chloride)
CN109553891A (zh) 一种环保无卤阻燃电缆材料及其制备方法
Qu et al. Zinc hydroxystannate‐coated metal hydroxides as flame retardant and smoke suppression for flexible poly vinyl chloride
CN111054008A (zh) 一种凝胶干水灭火剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171212