CN107453662B - 基于自适应反推控制的机械弹性储能用PMSG闭环I/f控制方法 - Google Patents

基于自适应反推控制的机械弹性储能用PMSG闭环I/f控制方法 Download PDF

Info

Publication number
CN107453662B
CN107453662B CN201710671317.1A CN201710671317A CN107453662B CN 107453662 B CN107453662 B CN 107453662B CN 201710671317 A CN201710671317 A CN 201710671317A CN 107453662 B CN107453662 B CN 107453662B
Authority
CN
China
Prior art keywords
stator
control
energy storage
pmsg
elastic energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710671317.1A
Other languages
English (en)
Other versions
CN107453662A (zh
Inventor
余洋
畅达
米增强
郑晓明
郑小江
李晓龙
孙辰军
魏明磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Hebei Electric Power Co Ltd
North China Electric Power University
Original Assignee
State Grid Hebei Electric Power Co Ltd
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Hebei Electric Power Co Ltd, North China Electric Power University filed Critical State Grid Hebei Electric Power Co Ltd
Priority to CN201710671317.1A priority Critical patent/CN107453662B/zh
Publication of CN107453662A publication Critical patent/CN107453662A/zh
Application granted granted Critical
Publication of CN107453662B publication Critical patent/CN107453662B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0017Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明涉及一种基于自适应反推控制的机械弹性储能用PMSG闭环I/f控制方法,首先建立机械弹性储能箱、PMSG、逆变器依次连接而成的机械弹性储能系统的数学模型;利用坐标变换将PMSG的数学模型变为以定子电流定向的数学模型,由反推控制得出PMSG的控制量;结合自适应控制辨识系统的定子电阻和电感,增强系统的鲁棒性。

Description

基于自适应反推控制的机械弹性储能用PMSG闭环I/f控制 方法
技术领域
本发明涉及一种机械弹性储能系统储能过程控制方法,属于电机技术领域。
背景技术
风电等可再生能源具有间歇性和波动性的特点,大规模风电接入电网会带来调峰、调频、安全稳定运行风险增加等问题。机械弹性储能(Mechanical Elastic EnergyStorage,MEES)具有能量转换效率高、储能容量可调、功率响应速度快、对环境友好等优点,是解决目前新能源并网、消纳等问题的一种有效途径。MEES系统依靠涡簧储存机械能,以永磁同步发电机(permanent magnet synchronous generator,PMSG)作为能量转换执行机构,在电网低负荷时将电能转换为储能箱的弹性势能储存起来,然后在电力高负荷阶段,再将机械能转化为电能。储能箱与发电机联动使机械弹性储能系统在运行过程中转矩和转动惯量实时变化,因此对PMSG的控制提出了较高的要求。
发明内容
本发明的目的是针对控制对象的特点和现有技术的不足,提出了一种机械弹性储能系统在启动和稳定运行阶段的控制方法,来保证系统稳定运行。
本发明所述问题是以下述技术方案实现的:
基于自适应反推控制的机械弹性储能用PMSG闭环I/f控制方法,所述方法首先建立机械弹性储能箱、PMSG、逆变器依次连接而成的机械弹性储能系统的数学模型;利用坐标变换将PMSG的数学模型变为以定子电流定向的数学模型,由反推控制得出PMSG的控制量;结合自适应控制辨识系统的定子电阻和电感,增强系统的鲁棒性。
基于自适应反推控制的机械弹性储能用PMSG闭环I/f控制方法,所述方法包括以下步骤:
a.根据机械弹性储能系统的各个组成部分特性,建立机械弹性储能系统数学模型:
Figure GDA0002242068050000021
Figure GDA0002242068050000022
Figure GDA0002242068050000023
Figure GDA0002242068050000027
其中,M为涡簧材料的弹性模量,H为横截面的惯性矩,a为涡簧片的宽度,b为涡簧片的厚度,L为涡簧长度,ε为d轴与q*轴之间的夹角,wi为d*q*轴的旋转速度,wr为dq轴的旋转速度,ψr为转子励磁空间矢量,Tm为储能箱施加给电机的转矩,np为电机极对数,is为定子电流,B为阻尼系数,L为等效同步电感,
Figure GDA0002242068050000028
为电机定子q*轴电压,
Figure GDA0002242068050000029
为定子d轴电压。
b.控制器设计
eε=ε-ε*
eω=ωrr *
ei=is-is *
Figure GDA0002242068050000024
c.自适应辨识
Figure GDA0002242068050000025
Figure GDA0002242068050000026
本发明的优点和有益效果:
1、本发明采用If控制,由If控制的“转角-自平衡”原理可以自动平衡转矩和速度,不需要速度传感器,能够提高系统的启动性能。
2、本发明采用闭环的控制结构使机械弹性储能系统能够跟踪给定速度和定子电流,防止启动阶段的定子过电流。
3、本发明将自适应控制和反推控制结合提高系统的鲁棒性。
附图说明
下面结合附图对本发明作进一步说明。
图1是储能箱结构图;
图2是以定子电流定向的PMSG矢量关系图;
图3是PMSG闭环I/f控制方案;
图4是10r/min闭环I/f控制下速度波形图;
图5是10r/min闭环I/f控制下电流波形图;
图6是20r/min闭环I/f控制下速度波形图;
图7是20r/min闭环I/f控制下电流波形图;
图8是30r/min闭环I/f控制下速度波形图;
图9是30r/min闭环I/f控制下电流波形图;
图10是电阻的辨识图;
图11是电感的辨识图。
具体实施方式
本发明由以下技术方案实现:
1.机械弹性储能系统数学模型
1.1建立机械弹性储能箱的数学模型
机械弹性储能的储能箱结构如图1所示,储能箱中的涡簧将存储的机械能通过PMSG转化为电能,储能箱的数学模型为:
涡簧片一端与储能箱箱体外壁固定,另一端与储能箱轴相连,轴对涡簧片产生的反力矩很小可以忽略不计,从而任意选择涡簧片的一小段dL进行分析,设在初始状态下涡簧片的曲率半径为r1,在力矩Tm作用下曲率半径为r2,根据材料力学公式建立涡簧箱输出力矩的数学模型:
Figure GDA0002242068050000041
Figure GDA0002242068050000042
其中,M为涡簧材料的弹性模量,H为横截面的惯性矩,a为涡簧片的宽度,b为涡簧片的厚度。假设所取dL在初始情况下相对于曲率中心的角度为dδ1,在力矩Tm的作用下曲率中心的角度变为dδ2,则有:
Figure GDA0002242068050000043
Figure GDA0002242068050000044
在力矩Tm的作用下,可得出转角增加值为:
Figure GDA0002242068050000045
其中,L为涡簧长度,根据材料力学公式可求得外力矩为:
Figure GDA0002242068050000046
1.2建立PMSG的数学模型
PMSG结构简单,发电效率高,选择其作为机械弹性储能系统的能量转换元件。永磁同步发电机是一个高阶、非线性、强耦合的多变量复杂系统,为简化研究做出如下假设:①三相绕组完全对称;②忽略电机齿槽、电枢反应和换相过程的影响;③永磁体磁动势沿气隙正弦分布。
建立以电机转子为d轴的dq坐标系和以定子电流为d*轴的d*q*坐标系,如图2所示,电机定子电流is定向于q*轴,可以得到永磁同步发电机的数学模型为:
Figure GDA0002242068050000051
Figure GDA0002242068050000052
Figure GDA0002242068050000053
Figure GDA0002242068050000059
2.控制系统设计
定义误差:
eε=ε-ε* (11)
eω=ωrr * (12)
ei=is-is * (13)
对角度闭环控制
Figure GDA0002242068050000054
Figure GDA0002242068050000055
Figure GDA0002242068050000056
令李雅普诺夫函数为
Figure GDA0002242068050000057
则李雅普诺夫函数的导数为:
Figure GDA0002242068050000058
速度的闭环控制由式(8)可求得
Figure GDA0002242068050000061
取:
Figure GDA0002242068050000062
取:
Figure GDA0002242068050000063
可求得李雅普诺夫导数为
Figure GDA0002242068050000064
由式(9)可得
Figure GDA0002242068050000065
Figure GDA0002242068050000066
3.自适应辨识
Figure GDA0002242068050000067
Figure GDA0002242068050000068
取李雅普诺夫函数
Figure GDA0002242068050000069
Figure GDA00022420680500000610
Figure GDA00022420680500000611
Figure GDA0002242068050000071
4.稳定性证明:
Figure GDA0002242068050000072
Figure GDA0002242068050000073
通过(32)式表明控制系统是稳定的。
其中ε为d轴与q*轴之间的夹角,ωi为d*q*轴的旋转速度,ωr为dq轴的旋转速度,ψr为转子励磁空间矢量,Tm为储能箱施加给电机的转矩,np为电机极对数,is为定子电流,B为阻尼系数,L为等效同步电感,
Figure GDA0002242068050000075
为电机定子q*轴电压,
Figure GDA0002242068050000074
为定子d轴电压。eε为夹角ε参考值和实际值得偏差,eω为速度参考值和实际值的偏差,ei为定子电流的参考值和实际值的偏差。ε*是d轴和q*轴之间夹角ε的参考值,ωr *是转子转速的参考值,is *是定子电流的参考值。
Figure GDA0002242068050000076
是Rs、L的估计值
Figure GDA0002242068050000077
是Rs、L的偏差值。k1、k2、k3为控制参数,λ1为定子电阻的自适应控制参数,λ2为定子同步电感的自适应控制参数。
图3为闭环的If控制系统的结构框图,闭环的If控制系统由速度环和电流环组成。取PMSG定子三相电流ia ib ic,通过坐标变换为两项旋转坐标系下的电流
Figure GDA0002242068050000078
将额定转速、定子电流和定子电流频率通过前述控制规律得到PMSG的控制量uq和ud,uq和ud通过变频器控制电机。
实施例子
为了验证本文所提出的永磁同步发电机闭环I/f控制方法的性能,在分别验证系统从静止状态到转速达到10r/min,20r/min,30r/min的过程,以验证控制方法对系统各运行工况下均具有良好的控制效果。所用永磁同步发电机参数为:永磁磁通ψr=0.3wb,等效电感L=0.033H,定子电阻Rs=3Ω,阻尼系数B=0.002,极对数np=50。
机械弹性储能系统发电运行过程中由弹簧为PSMG提供转矩,PMSG低谷运行发电,从仿真结果图4、图6和图8可以看出闭环I/f控制方法从静止状态到转速达到10r/min,20r/min,30r/min的过程均有良好的控制效果。闭环I/f控制下可以使系统快速跟踪给定速度并抑制转速的波动,从图5、图7和图9可以看出闭环I/f控制下初始定子电流大于零,该电流产生的转矩能够防止PSMG在初始转矩未知的情况下发生反转。
从图10和图11可以看出,电阻和电感的辨识值在0.5s之内能够准确辨识系统的电阻和电感,仿真结果表明闭环I/f控制具有一定的抗干扰能力。

Claims (1)

1.一种基于自适应反推控制的机械弹性储能用PMSG闭环I/f控制方法,首先建立机械弹性储能箱、PMSG、逆变器依次连接而成的机械弹性储能系统的数学模型,其特征在于:利用坐标变换将PMSG的数学模型变为以定子电流定向的数学模型,由反推控制系统得出PMSG的控制量;结合自适应控制辨识系统的定子电阻和电感,增强系统的鲁棒性,
所述的反推控制系统的方程为:
定义误差:
eε=ε-ε*
eω=ωrr *
ei=is-is *
ε*是d轴和q*轴之间夹角ε的参考值,ε为d轴与q*轴之间的夹角,ωr为dq轴的旋转速度,ωr *是转子转速的参考值,is为定子电流,is *是定子电流的参考值,eε为夹角ε参考值和实际值的偏差,eω为速度参考值和实际值的偏差,ei为定子电流的参考值和实际值的偏差,
Figure FDA0002240698520000011
其中:
Figure FDA0002240698520000012
为电机定子q*轴电压,Usq为定子q轴电压,Rs为PMSG的定子电阻,L为定子同步电感,ψr为转子励磁空间矢量,k3为控制系数,np为电机极对数;
所述的自适应控制辨识系统的方程为:
Figure FDA0002240698520000013
Figure FDA0002240698520000014
其中:λ1为定子电阻的自适应控制参数,λ2为定子同步电感的自适应控制参数,
Figure FDA0002240698520000015
是Rs、L的估计值,
Figure FDA0002240698520000016
是Rs、L的偏差值;
所述的机械弹性储能系统数学模型:
Figure FDA0002240698520000021
Figure FDA0002240698520000022
Figure FDA0002240698520000023
Usd*=-ψrωr cosε-ωiLis
其中,M为涡簧材料的弹性模量,H为横截面的惯性矩,a为涡簧片的宽度,b为涡簧片的厚度,
Figure FDA0002240698520000024
中的L为涡簧长度,
Figure FDA0002240698520000025
中的L为定子同步电感,
Figure FDA0002240698520000026
中的L为定子同步电感,ωi为d*q*轴的旋转速度,Tm为储能箱施加给电机的转矩,B为阻尼系数,
Figure FDA0002240698520000027
为定子d轴电压。
CN201710671317.1A 2017-08-08 2017-08-08 基于自适应反推控制的机械弹性储能用PMSG闭环I/f控制方法 Active CN107453662B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710671317.1A CN107453662B (zh) 2017-08-08 2017-08-08 基于自适应反推控制的机械弹性储能用PMSG闭环I/f控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710671317.1A CN107453662B (zh) 2017-08-08 2017-08-08 基于自适应反推控制的机械弹性储能用PMSG闭环I/f控制方法

Publications (2)

Publication Number Publication Date
CN107453662A CN107453662A (zh) 2017-12-08
CN107453662B true CN107453662B (zh) 2020-04-03

Family

ID=60491172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710671317.1A Active CN107453662B (zh) 2017-08-08 2017-08-08 基于自适应反推控制的机械弹性储能用PMSG闭环I/f控制方法

Country Status (1)

Country Link
CN (1) CN107453662B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787523B (zh) * 2018-12-21 2020-12-25 华北电力大学(保定) 基于最小损耗反推控制的永磁同步电动机驱动柔性负载的储能控制方法
CN111146811B (zh) * 2020-02-24 2021-03-30 上海电力大学 虚拟同步发电机二次调频鲁棒控制方法
CN113300649B (zh) * 2021-06-11 2022-11-18 华北电力大学(保定) 基于增量反推控制的机械弹性储能用pmsm控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932922A (zh) * 2016-06-20 2016-09-07 华北电力大学(保定) 一种机械弹性储能用永磁同步发电机的控制方法
CN106788043A (zh) * 2017-01-18 2017-05-31 华北电力大学(保定) Mees 中永磁同步电机反推自适应直接转矩控制方法
CN106817054A (zh) * 2016-07-12 2017-06-09 华北电力大学(保定) 一种基于参数辨识的机械弹性储能用pmsg控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932922A (zh) * 2016-06-20 2016-09-07 华北电力大学(保定) 一种机械弹性储能用永磁同步发电机的控制方法
CN106817054A (zh) * 2016-07-12 2017-06-09 华北电力大学(保定) 一种基于参数辨识的机械弹性储能用pmsg控制方法
CN106788043A (zh) * 2017-01-18 2017-05-31 华北电力大学(保定) Mees 中永磁同步电机反推自适应直接转矩控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"基于参数辨识及L2增益的PMSG反步控制策略研究";米增强等;《系统仿真学报》;20170108;第29卷(第1期);第144-153页 *
"永磁电机式机械弹性储能系统设计与控制技术研究";余洋;《中国博士学位论文全文数据库》;20170315;全文 *

Also Published As

Publication number Publication date
CN107453662A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
Cárdenas et al. Control strategies for power smoothing using a flywheel driven by a sensorless vector-controlled induction machine operating in a wide speed range
Cardenas et al. Control strategies for enhanced power smoothing in wind energy systems using a flywheel driven by a vector-controlled induction machine
CN102332727A (zh) 一种利用直流侧飞轮储能单元平滑永磁直驱风力发电系统输出有功功率的方法
CN103414209B (zh) 一种基于rmc的dfig直流并网发电系统及其转矩控制方法
CN107453662B (zh) 基于自适应反推控制的机械弹性储能用PMSG闭环I/f控制方法
Abo-Khalil Model-based optimal efficiency control of induction generators for wind power systems
CN109444737B (zh) 一种计及撬棒保护动作时间的双馈风机三相短路电流的解析方法
Gaol et al. Model reference adaptive system observer based sensorless control of doubly-fed induction machine
Zhang et al. Direct torque control of cascaded brushless doubly fed induction generator for wind energy applications
CN108111073B (zh) 一种两相励磁结构三级式起/发电机直流励磁控制方法
Liu et al. A novel direct torque control of doubly-fed induction generator used for variable speed wind power generation
Pimple et al. New direct torque control of DFIG under balanced and unbalanced grid voltage
Sahoo et al. Wind turbine emulation using doubly fed induction motor
Kar et al. A novel PI gain scheduler for a vector controlled doubly-fed wind driven induction generator
Imad et al. Robust Active disturbance Rejection Control of a direct driven PMSG wind turbine
Van Ngo et al. Model predictive direct power control for doubly fed induction generator based wind turbines with three-level neutral-point clamped inverter
Shao et al. Vector control of the brushless doubly-fed machine for wind power generation
Koch et al. Sensorless technique applied to PMSG of WECS using sliding mode observer
Wang et al. Control of pmsg-based wind turbine with virtual inertia
Jena et al. A comparison between PI & SMC used for decoupled control of PMSG in a variable speed wind energy system
Scherer et al. Frequency and voltage control of micro hydro power stations based on hydraulic turbine's linear model applied on induction generators
Liang et al. Robust DC-link voltage control and discrete-time sensorless control for high-speed flywheel energy storage system
Neam et al. The dynamic performance of an isolated self-excited induction generator driven by a variable-speed wind turbine
Aljarhizi et al. Static Power Converters for a Wind Turbine Emulator Driving a Self-Excited Induction Generator
Ademi et al. Theoretical and experimental evaluation of vector control for doubly-fed reluctance generators

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant