CN107452944B - 一种固体颗粒表面制备特定成分包覆层的方法 - Google Patents

一种固体颗粒表面制备特定成分包覆层的方法 Download PDF

Info

Publication number
CN107452944B
CN107452944B CN201710571001.5A CN201710571001A CN107452944B CN 107452944 B CN107452944 B CN 107452944B CN 201710571001 A CN201710571001 A CN 201710571001A CN 107452944 B CN107452944 B CN 107452944B
Authority
CN
China
Prior art keywords
coating layer
salt solution
mixed salt
suspension
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710571001.5A
Other languages
English (en)
Other versions
CN107452944A (zh
Inventor
黄冰心
胡希韬
刘春冬
强文江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201710571001.5A priority Critical patent/CN107452944B/zh
Publication of CN107452944A publication Critical patent/CN107452944A/zh
Application granted granted Critical
Publication of CN107452944B publication Critical patent/CN107452944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明主要属于固体材料表面修饰领域,具体涉及一种固体颗粒表面制备特定成分包覆层的方法。所述方法为将特定成分的混合盐溶液加入固体颗粒的悬浊液中,使混合盐溶液在固体颗粒表面发生氢氧化物共沉淀,得到共沉淀物包覆的固体颗粒,将共沉淀物包覆的固体颗粒烧结后得到具有包覆层的固体颗粒,所述包覆层的成分可根据需求自由设计;通过控制混合盐溶液中各溶质元素的比例控制包覆层的成分;通过控制混合盐溶液中溶质的物质量及悬浊液中固体颗粒的物质量的比例控制包覆层厚度。本发明方法制备得到的包覆层厚度及包覆层成分可控,材料性能稳定。

Description

一种固体颗粒表面制备特定成分包覆层的方法
技术领域
本发明主要属于固体材料表面修饰领域,具体涉及一种固体颗粒表面制备特定成分包覆层的方法。
背景技术
锂离子电池被广泛应用于移动电话、笔记本电脑、照相机等移动电子设备。近年来,电动汽车以及储能设备的发展极大地拓宽了锂离子电池的应用领域,同时,对锂离子电池的能量密度和使用寿命也提出了更高的要求。在锂离子电池中,正极材料约占整体重量的30-40%,此外,正极材料的循环稳定性也是决定锂离子电池使用寿命的重要原因之一,因而正极材料是决定电池能量密度和使用寿命的最关键因素。
能量密度和循环寿命是表征正极材料电化学性能的重要参数,有趣的是,它们都和正极材料的力学稳定性密切相关。在充放电过程中,正极材料的点阵常数随着锂离子的脱出(或嵌入)会发生变化,如LiCoO2的点阵常数变化达到3%,但应该注意对于脆性的电极材料来说,应变>0.1%即被认为是危险的。而对于给定的正极材料,其能量密度取决于可利用的锂离子分数,当过量锂离子脱出时,材料的力学性能变差,更容易发生断裂,因此,能量密度和力学稳定性相关。即使没有过充发生,电极材料在充放电循环过程中,点阵常数随着锂离子的脱出或嵌入发生周期性变化,因而产生周期性应力,在较小的应力下,电极也会发生断裂、粉化,从而造成电极颗粒接触不良,使电池不再适合进一步循环。因此,电极材料的循环寿命强烈依赖于力学稳定性。
研究证明,表面包覆可有效提高正极材料的循环性能,这通常归因于包覆层能提高表面力学强度,防止裂纹产生。颗粒的电化学性能取决于表面层的力学性能和导电性能,与表面层的成分紧密相关,目前采用的包覆方法都是将掺杂元素(如Ti、Zr、Al、Mn等)沉积于颗粒表面,然后高温烧结,使各元素互相扩散,在正极材料表面形成一层含有掺杂元素的包覆层。
但存在的问题是该包覆层的成分由掺杂元素和基体元素的扩散共同决定,最终形成的包覆层成分及厚度难以控制,影响包覆的稳定性。
发明内容
针对上述问题,本发明提供了一种在固体颗粒表面制备特定成分包覆层的方法。该方法形成的包覆层成分及包覆层厚度可控。
本发明是通过以下技术方案实现的:
一种在固体颗粒表面制备特定成分包覆层的方法,所述方法为将特定成分的混合盐溶液加入固体颗粒的悬浊液中,使混合盐溶液在固体颗粒表面生成氢氧化物共沉淀物,将共沉淀物包覆的固体颗粒与锂源混合后烧结得到具有包覆层的固体颗粒,所述包覆层的成分完全可控;
通过控制混合盐溶液中各溶质的物质量控制包覆层的成分。
通过控制混合盐溶液中溶质的物质量及悬浊液中固体颗粒的物质量的比例控制包覆层厚度;
进一步地,所述混合盐溶液的pH为0.1~7以保证溶质完全溶解;所述悬浊液的pH为10~14。
一种锂电正极材料表面制备特定成分包覆层的方法,所述方法为将特定成分的混合盐溶液加入锂电正极材料或前驱体固体颗粒的悬浊液中,使混合盐溶液在固体颗粒表面形成氢氧化物共沉淀物,将共沉淀物包覆的固体颗粒与锂源粉末混合后烧结得到表面形成包覆层的固体颗粒;
所述混合盐溶液还包括锂电正极材料除锂元素以外的其它成分;
通过控制混合盐溶液中各溶质元素的比例控制包覆层的成分。
通过控制混合盐溶液中溶质的物质量及悬浊液中固体颗粒的物质量的比例控制包覆层厚度;
进一步地,所述锂电正极材料为LiNi0.8Co0.1Mn0.1O2;所述包覆层为Li(Ni0.8Co0.1Mn0.1)1-x M x O2,M为Ti、Zr、Mn、Al、Mg、V、Mo、Cr中的任意一种或多种;所述锂源为碳酸锂或者氢氧化锂。
进一步地,所述方法具体为:
包覆层溶液制备:将NiC4H6O4·4H2O、MnC4H6O4·4H2O、CoC4H6O4·4H2O、M(SO4)x的盐类溶于去离子水中,用盐酸溶液将其pH值调整到0.1至7间,以保证所有盐均溶解得到混合盐溶液;固体颗粒悬浊液制备:将固体颗粒LiNi0.8Co0.1Mn0.1O2 (或Ni0.8Co0.1Mn0.1(OH)2)分散于去离子水(或乙醇)中,加入LiOH和氨水的混合溶液,将其pH调整至10至14之间,然后将其置于磁力搅拌器上搅拌,配置成悬浊液;
所述悬浊液中固体颗粒和所述混合盐溶液中溶质的摩尔比为3~100;
沉淀物生成:将所述混合盐溶液滴加入悬浊液中;待滴加结束反应完成,全部沉淀后,将沉淀物清洗使混合液的pH低于10;
锂源混合:将所述沉淀物与碳酸锂或者氢氧化锂粉末均匀混合得到混合颗粒;
烧结:将混合颗粒于600-900℃下烧结4-12小时获得在LiNi0.8Co0.1Mn0.1O2 颗粒表面包覆有Li(Ni0.8Co0.1Mn0.1)1-xMxO2的固体材料。
进一步地,所述方法制备得到的在LiNi0.8Co0.1Mn0.1O2包覆有Li(Ni0.8Co0.1Mn0.1)1- xMxO2的固体材料可作为锂电池正极材料。
进一步地,所述锂电正极材料为LiCoO2、 LiNi1-x-yCoxMnyO2、LiMn2O4,LiFePO4、LiNi1-x-yCoxAlyO2或富锂正极,基于力学与导电性能,具体选择方法包括以下步骤:
1)将多个待选的包覆层材料制备成块体材料;
2)力学性能测试,将块体材料置于微米/纳米压痕设备的测试平台上,施加的压力为:0.1~10 N,分别得到被测试块体材料的硬度、断裂韧性和杨氏模量,然后将被测试块体材料进行脱锂处理,当脱出50% 锂时,选择测试材料的硬度﹑断裂韧性和杨氏模量下降在30%内的块体材料;
3)当两种以上块体材料的硬度﹑断裂韧性和杨氏模量下降值都在30%内时,测试块体材料的导电性能:将块体材料两面镀金,利用交流阻抗谱仪和直流电阻仪测量离子电导和电子电导,得到块体材料的电导率,选择电导率高的块体材料的成分作为包覆层。
进一步地,所述待选的包覆层材料是指多个包含锂电正极材料成分和掺杂元素成分的材料;各材料中锂电正极材料成分和掺杂元素成分比例不同。
进一步地,所述包覆层中的锂电正极材料与待包覆的内层材料相同或相同。例如,待包覆层为NCM811固体颗粒,包覆层材料为含有掺杂元素的LiFePO4。
此处包覆层包括锂电正极材料成分和掺杂元素成分,但并不限于此,包覆层成分的选择只需基于力学和电导性能测试。
本发明的有益技术效果:该方法形成的包覆层成分及厚度可控。
附图说明
图1、本发明实施例1包覆效果示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描述。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
相反,本发明涵盖任何由权利要求定义的在本发明的精髓和范围上做的替代、修改、等效方法以及方案。进一步,为了使公众对本发明有更好的了解,在下文对本发明的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本发明。
实施例1
在固体颗粒LiNi0.8Co0.1Mn0.1O2表面制备Li(Ni0.8Co0.1Mn0.1)0.8Ti0.2O2包覆层。
制备方法具体为:
(1)配制包覆层溶液,浓度为0.1mol/L,其中NiC4H6O4·4H2O为0.064mol/L,MnC4H6O4·4H2O为0.008mol/L, CoC4H6O4·4H2O为0.008mol/L, Ti(SO4)2为0.02mol/L,将上述盐溶于去离子水中,将其pH值调整到1.5得到混合盐溶液;
(2)配置固体颗粒的分散液,将LiNi0.8Co0.1Mn0.1O2或Ni0.8Co0.1Mn0.1(OH)2 颗粒加入去离子水中,每升含基体颗粒1mol,通过氨水和LiOH将其pH调整至12,然后定容至每升水中含有0.5mol LiNi0.8Co0.1Mn0.1O2 基体颗粒,然后将其置于磁力搅拌器上搅拌,形成均一的悬浊液;
(3)按悬浊液中基体颗粒与包覆层溶液中溶质摩尔比25的量取混合盐溶液,以0.5ml/s滴加速度将混合盐溶液加入分散液中;
(4)待滴加结束反应完成,全部沉淀后,将沉淀清洗,最后将沉淀配置成1mol/L的悬浊液,该悬浊液的pH低于10;
(5)将沉淀干燥后在400 ℃保温4小时去除结合水,接着将颗粒与碳酸锂或者氢氧化锂均匀混合;将混合物于800 ℃下保温8小时获得具有特定成分包覆层的正极材料颗粒。
实施例2
在固体颗粒LiNi0.8Co0.1Mn0.1O2表面制备掺杂Ti的LiFePO4包覆层。
本实施例与是实施例1基本相同,其区别在于,包覆层溶液的制备中相应的替换为包含Fe、P和Ti的盐溶液。

Claims (4)

1.一种固体颗粒表面制备特定成分包覆层的方法,其特征在于,所述方法为将特定成分的混合盐溶液加入到固体颗粒的悬浊液中,使混合盐溶液在固体颗粒表面形成氢氧化物共沉淀物,将共沉淀物包覆的固体颗粒与锂源混合后烧结后得到具有特定成分包覆层的固体颗粒,所述包覆层的成分完全可控;
通过控制混合盐溶液中各溶质元素的比例控制包覆层的成分;
通过控制混合盐溶液中溶质的物质量及悬浊液中固体颗粒的物质量的比例控制包覆层厚度;
所述方法具体为:
包覆层溶液制备:将NiC4H6O4·4H2O、MnC4H6O4·4H2O、CoC4H6O4·4H2O、M(SO4)x的盐溶于去离子水中,用盐酸溶液将其pH值调整到0.1至7间,以保证所有盐均溶解得到混合盐溶液;
固体颗粒悬浊液制备:将固体颗粒LiNi0.8Co0.1Mn0.1O2或Ni0.8Co0.1Mn0.1(OH)2分散于去离子水或乙醇中,加入LiOH和氨水的混合溶液,将其pH调整至10至14之间,然后将其置于磁力搅拌器上搅拌,配置成悬浊液;
所述悬浊液中固体颗粒和所述混合盐溶液中溶质的摩尔比为3~100;
沉淀物生成:将所述混合盐溶液滴加入悬浊液中;待滴加结束反应完成,全部沉淀后,将沉淀物清洗使混合液的pH低于10;
锂源混合:将所述沉淀物与碳酸锂或者氢氧化锂粉末均匀混合得到混合颗粒;
烧结:将混合颗粒于600-900℃下烧结4-12小时获得在LiNi0.8Co0.1Mn0.1O2颗粒表面包覆有Li(Ni0.8Co0.1Mn0.1)1-xMxO2的固体材料;
M为Ti、Zr、Mn、Al、Mg、V、Mo、Cr中的任意一种或多种。
2.如权利要求1所述方法,其特征在于,所述混合盐溶液的pH为0.1~7以保证各溶质完全溶解,避免沉淀产生;所述悬浊液的pH为10~14以保证混合盐溶液加入后能完全沉淀。
3.如权利要求1所述方法,其特征在于,所述方法制备得到的在LiNi0.8Co0.1Mn0.1O2颗粒表面包覆有Li(Ni0.8Co0.1Mn0.1)1-xMxO2的固体材料作为锂电池正极材料。
4.如权利要求1所述方法,其特征在于,所述沉淀物生成后在300至500℃保温2至10小时去除结合水。
CN201710571001.5A 2017-07-13 2017-07-13 一种固体颗粒表面制备特定成分包覆层的方法 Active CN107452944B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710571001.5A CN107452944B (zh) 2017-07-13 2017-07-13 一种固体颗粒表面制备特定成分包覆层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710571001.5A CN107452944B (zh) 2017-07-13 2017-07-13 一种固体颗粒表面制备特定成分包覆层的方法

Publications (2)

Publication Number Publication Date
CN107452944A CN107452944A (zh) 2017-12-08
CN107452944B true CN107452944B (zh) 2021-01-08

Family

ID=60488455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710571001.5A Active CN107452944B (zh) 2017-07-13 2017-07-13 一种固体颗粒表面制备特定成分包覆层的方法

Country Status (1)

Country Link
CN (1) CN107452944B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108336349A (zh) * 2018-01-22 2018-07-27 北京科技大学 一种核壳结构的镍钴锰酸锂三元材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577096A (zh) * 2013-10-17 2015-04-29 奇瑞汽车股份有限公司 一种锂离子电池正极材料及其制备方法、电池
CN105244490A (zh) * 2014-07-11 2016-01-13 北京当升材料科技股份有限公司 一种高镍正极材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577096A (zh) * 2013-10-17 2015-04-29 奇瑞汽车股份有限公司 一种锂离子电池正极材料及其制备方法、电池
CN105244490A (zh) * 2014-07-11 2016-01-13 北京当升材料科技股份有限公司 一种高镍正极材料及其制备方法

Also Published As

Publication number Publication date
CN107452944A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
Zhang et al. Understanding fundamental effects of Cu impurity in different forms for recovered LiNi0. 6Co0. 2Mn0. 2O2 cathode materials
US10916767B2 (en) Carbon-coated ternary positive electrode material, preparation method therefor, and lithium ion battery
Zhao et al. Anchoring K+ in Li+ sites of LiNi0. 8Co0. 15Al0. 05O2 cathode material to suppress its structural degradation during high‐voltage cycling
Hassoun et al. An advanced lithium ion battery based on high performance electrode materials
Ming et al. Dual elements coupling effect induced modification from the surface into the bulk lattice for Ni-rich cathodes with suppressed capacity and voltage decay
Zhao et al. Interdiffusion of cations from metal oxide surface coatings into LiCoO2 during sintering
KR20180091678A (ko) 전 고체형 2차 전지용 음극, 전 고체형 2차 전지 및 그 제조방법
Zhang et al. Effects of transition metal doping on electrochemical properties of single-crystalline LiNi0. 7Co0. 1Mn0. 2O2 cathode materials for lithium-ion batteries
CN103000870B (zh) LiZNiXCoYMn1‑X‑YO2材料复配方法
Zhao et al. Facile synthesis of high tap density ZnO microspheres as advanced anode material for alkaline nickel-zinc rechargeable batteries
Qi et al. LiNi0. 5Mn0. 3Co0. 2O2/Au nanocomposite thin film cathode with enhanced electrochemical properties
Ding et al. Using potassium ferricyanide as a dopant to prepare K and Fe co-doped Li4Ti5O12
Li et al. Enhancing high-potential stability of Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 cathode with PrF3 coating
Cao et al. Suppressing the voltage decay based on a distinct stacking sequence of oxygen atoms for Li-rich cathode materials
Han et al. Effects of Al doping on the electrochemical performances of LiNi0. 83Co0. 12Mn0. 05O2 prepared by coprecipitation
Hwang et al. Electrochemical behavior of Li–Cu composite powder electrodes in lithium metal secondary batteries
Pokle et al. In situ monitoring of thermally induced effects in nickel-rich layered oxide cathode materials at the atomic level
WO2019076023A1 (zh) 一种锂钴金属氧化物粉末及其制备方法及四氧化三钴含量的测定方法
JP2009094034A (ja) 水系リチウム二次電池
Chen et al. Y-doped Li4Ti5-xYxO12 with Y2Ti2O7 surface modification anode materials: Superior rate capability and ultra long cyclability for half/full lithium-ion batteries
Wang et al. SeO2-infused grain boundaries effectively improve rate and stability performance of Li-rich manganese-based layered cathode materials
Ju et al. Excellent cycling stability of spherical spinel LiMn 2 O 4 by Y 2 O 3 coating for lithium-ion batteries
Morimoto et al. Improvement of electrochemical properties and oxidation/reduction behavior of cobalt in positive electrode of Ni–metal hydride battery
US20210288307A1 (en) Positive electrode active material
CN105226242B (zh) 一种锂离子电池负极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant