CN107449806A - 用于电力变压器绝缘状态监测的湿度传感系统 - Google Patents

用于电力变压器绝缘状态监测的湿度传感系统 Download PDF

Info

Publication number
CN107449806A
CN107449806A CN201710633629.3A CN201710633629A CN107449806A CN 107449806 A CN107449806 A CN 107449806A CN 201710633629 A CN201710633629 A CN 201710633629A CN 107449806 A CN107449806 A CN 107449806A
Authority
CN
China
Prior art keywords
composite
humidity
tio
humidity sensing
electric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710633629.3A
Other languages
English (en)
Inventor
韦玥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Yixin Intelligent Technology Co Ltd
Original Assignee
Shenzhen Yixin Intelligent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Yixin Intelligent Technology Co Ltd filed Critical Shenzhen Yixin Intelligent Technology Co Ltd
Priority to CN201710633629.3A priority Critical patent/CN107449806A/zh
Publication of CN107449806A publication Critical patent/CN107449806A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Abstract

本申请涉及一种用于电力变压器绝缘状态监测的湿度传感系统,包括变压器油箱、油气分离膜、渗透气体引出室、湿度传感元件、微处理器、无线通讯模块、声光报警器;该湿度传感元件置于变压器油中渗透气体引出室中,通过检测湿敏薄膜的电阻变化实现变压器油环境的湿度检测,根据相应的湿度变化判断电力变压器绝缘状态,并做出预警;其中,该湿度传感元件与微处理器、声光报警器、无线通讯模块相连;所述湿度传感元件为电阻型湿度传感器,该敏感材料为TiO2复合材料,该TiO2复合材料为一种TiO2/石墨烯/金属纳米线/Fe3O4复合材料。

Description

用于电力变压器绝缘状态监测的湿度传感系统
技术领域
本申请涉及湿度传感器及其制作方法技术领域,尤其涉及一种用于电力变压器绝缘状态监测的湿度传感系统。
背景技术
大型电力变压器作为电力系统的枢纽设备,其安全运行对保障电力系统安全稳定显得尤为重要,一旦变压器发生故障,将给国民经济造成巨大的损失。电力变压器绝缘状态监测在智能电网建设中备受重视。我国各发电厂和变电站中使用的电力变压器90%为油浸式变压器,该类变压器的绝缘系统以绝缘油和绝缘纸为主,在长期运行中其湿度的变化会导致绝缘性能严重劣化,引发电力设备故障甚至发生爆炸。因此,电力变压器绝缘油环境的湿度监测是诊断电力变压器故障、预防灾难性事故发生较为有效的重要手段和决策依据,对于电网稳定安全运行、提高设备利用率和降低设备检修费用至关重要。
发明内容
本发明旨在提供一种用于电力变压器绝缘状态监测的湿度传感系统,以解决上述提出问题。
本发明的实施例中提供了一种用于电力变压器绝缘状态监测的湿度传感系统,包括变压器油箱、油气分离膜、渗透气体引出室、湿度传感元件、微处理器、无线通讯模块、声光报警器;该湿度传感元件置于变压器油中渗透气体引出室中,通过检测湿敏薄膜的电阻变化实现变压器油环境的湿度检测,根据相应的湿度变化判断电力变压器绝缘状态,并做出预警;其中,该湿度传感元件与微处理器、声光报警器、无线通讯模块相连;所述湿度传感元件为电阻型湿度传感器,该敏感材料为TiO2复合材料,该TiO2复合材料为一种TiO2/石墨烯/金属纳米线/Fe3O4复合材料。
本发明的实施例提供的技术方案可以包括以下有益效果:
本发明采用的湿敏传感元件制备工艺简单方便,不依赖于苛刻的制备设备,成本低廉,而且具有响应速度快,重复性和稳定性好的特点。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明湿度传感系统的结构示意图;
其中,1-变压器油箱,2-变压器,3-绝缘油,4-油气分离膜,5-变压器油中渗透气体引出室,6-湿度传感元件,7-微处理器,8-无线通讯模块,9-声光报警器。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
本申请的实施例涉及一种用于电力变压器绝缘状态监测的湿度传感系统,包括变压器油箱1、油气分离膜4、渗透气体引出室5、湿度传感元件6、微处理器7、无线通讯模块8、声光报警器9;变压器油箱1内包括变压器2和绝缘油3,该湿度传感元件6置于变压器油中渗透气体引出室5中,通过检测湿敏薄膜的电阻变化实现变压器油环境的湿度检测,根据相应的湿度变化判断电力变压器绝缘状态,并做出预警。
所述湿度传感元件6与微处理器7、声光报警器9、无线通讯模块8相连,具有数据采集、存储、显示,声光报警功能,将监测数据传送给上位机及无线远程传输。
本发明所述湿度传感元件6为电阻型湿度传感器,其中,该敏感材料为TiO2复合材料。
在现有技术中,TiO2系材料具有优良的湿敏性能,其湿敏性能的研究也一直广受关注。氧化钛系材料的形貌可控,可生成纳米颗粒、纳米棒或多孔结构,但是,纯相TiO2电阻高、灵敏度低、响应恢复迟缓,需要外加热源且需要长时间响应,从而使其在湿度传感器中的应用受到限制。因此,对具有低电阻、高灵敏性、更快响应恢复时间的TiO2系湿度传感器的研究具有重要现实意义;TiO2具有优良的湿敏性能,但是其电阻较高,限制了其在湿敏材料中的应用,本发明的技术方案中,将TiO2复合材料作为湿敏材料,该TiO2复合材料为一种TiO2/石墨烯/金属纳米线/Fe3O4复合材料,该复合材料产生的技术效果在于:1.通过上述掺杂,石墨烯作为该TiO2粒子、Fe3O4粒子的载体,使得上述粒子在复合材料中分散均匀,具有理想的大的比表面积,增加了湿敏灵敏度及降低了响应恢复时间;2.该复合材料中,由于金属纳米线材料的添加,使得所述复合材料呈现一种丝网状涂层,不仅有利于对水汽的吸附,并且增加了复合材料的导电性。
优选地,上述的金属纳米线优选金纳米线、银纳米线、钛纳米线中的一种。
进一步优选地,上述的金属纳米线优选钛纳米线。
在上述TiO2复合材料中,该金属纳米线质量占比为5~14%,该Fe3O4质量占比为3%。
在现有技术中,关于TiO2基湿敏材料,通常是通过掺杂来提高TiO2基湿敏材料的导电性,而将金属纳米线掺杂的技术方案不多。本发明的技术方案中,通过掺杂的该金属纳米线,使得该金属纳米线相互之间以及与石墨烯片层之间相互平行,金属纳米线为TiO2复合材料提供导电通路,同时提高了TiO2复合材料的强度和韧性。
在上述TiO2复合材料中,该石墨烯质量占比为6~12%。
石墨烯是一种高导电性碳基材料,其拥有大的比表面积、良好的电学性质和机械性能,是一种理想的支撑材料,将石墨烯与无机粒子的复合受到了关注,石墨烯的大片层结构能够为无机粒子的负载提供充足的点位,且石墨烯优越的导电性促进了复合材料的电子传递,目前,石墨烯与无机纳米粒子的复合材料已被应用到光催化、锂离子电池等领域。本发明的TiO2复合材料中,将TiO2粒子、Fe3O4粒子与石墨烯复合并应用于湿敏传感器技术领域,如上所述,石墨烯大片层结构能够为上述粒子提供负载,使其分散均匀,并且增加了该复合材料的导电性。
上述TiO2复合材料的制备步骤如下:
步骤1、将浓硫酸和天然石墨混合,缓慢搅拌均匀,得到石墨浓度为45g/L的60ml反应液;
步骤2、将上述反应液置于冰浴中,将6g KMnO4缓慢加入反应液中并不断搅拌,3h后,将反应装置置于40℃的水浴中,持续搅拌2h;
步骤3、再向反应液中逐滴加入100ml去离子水,稀释后将反应液升温至95℃持续反应15min;
步骤4、再向反应液中加280ml去离子水和6ml的H2O2以终止反应,经过离心得到土黄色产物,用1.25mol/L的稀盐酸反复洗涤离心并弃除上清液,直至上清液中SO4 2-洗涤干净,最后将所得到的土黄色产物置于50℃真空干燥箱烘干,即可得到氧化石墨;
步骤5、超声处理上述得到的氧化石墨,冷冻干燥上清液即可得到氧化石墨烯;
步骤6、然后取氧化石墨烯5mg溶于100ml无水乙醇,超声混匀得到氧化石墨烯的乙醇悬浮液,然后加入0.2ml的26wt.%的氨水,超声10min得到溶液A;
步骤7、取钛酸四丁酯缓慢滴入溶液A中,再加入适量的金属纳米线、Fe3O4粒子,在40℃下机械搅拌12h,最后离心洗涤得到沉淀物;
步骤8、将上述获得的沉淀物转移至50ml的反应釜中,进行水热反应,在180℃下水热12h,离心后将沉淀进行冷冻干燥,最终获得TiO2/石墨烯/金属纳米线/Fe3O4复合材料。
将上述复合材料涂敷于陶瓷基底表面,然后在其上真空蒸镀对电极,即可得到本发明所述基于TiO2复合材料的电阻型湿敏传感器。
实施例1
本实施例中,TiO2复合材料的制备步骤如下:
步骤1、将浓硫酸和天然石墨混合,缓慢搅拌均匀,得到石墨浓度为45g/L的60ml反应液;
步骤2、将上述反应液置于冰浴中,将6g KMnO4缓慢加入反应液中并不断搅拌,3h后,将反应装置置于40℃的水浴中,持续搅拌2h;
步骤3、再向反应液中逐滴加入100ml去离子水,稀释后将反应液升温至95℃持续反应15min;
步骤4、再向反应液中加280ml去离子水和6ml的H2O2以终止反应,经过离心得到土黄色产物,用1.25mol/L的稀盐酸反复洗涤离心并弃除上清液,直至上清液中SO4 2-洗涤干净,最后将所得到的土黄色产物置于50℃真空干燥箱烘干,即可得到氧化石墨;
步骤5、超声处理上述得到的氧化石墨,冷冻干燥上清液即可得到氧化石墨烯;
步骤6、然后取氧化石墨烯5mg溶于100ml无水乙醇,超声混匀得到氧化石墨烯的乙醇悬浮液,然后加入0.2ml的26wt.%的氨水,超声10min得到溶液A;
步骤7、取钛酸四丁酯缓慢滴入溶液A中,再加入适量的金属纳米线、Fe3O4粒子,在40℃下机械搅拌12h,最后离心洗涤得到沉淀物;
步骤8、将上述获得的沉淀物转移至50ml的反应釜中,进行水热反应,在180℃下水热12h,离心后将沉淀进行冷冻干燥,最终获得TiO2/石墨烯/金属纳米线/Fe3O4复合材料。
将上述复合材料涂敷于陶瓷基底表面,然后在其上真空蒸镀对电极,即可得到本发明所述基于TiO2复合材料的电阻型湿敏传感器。
该金属纳米线为金纳米线,该金纳米线长度为100~500nm,直径为20~100nm;
该Fe3O4质量占比为3%,该金属纳米线质量占比为5%,该石墨烯质量占比为6%;
对上述湿敏传感器进行测试,在100Hz电压频率下测试湿敏传感器的阻抗,本发明中灵敏度定义为11%湿度下的阻抗值Im(11%)与95%湿度下的阻抗值Im(95%)的比值,即S=Im(11%)/Im(95%),发现,本实施例中该湿敏传感器的灵敏度为873,该湿敏传感器响应-恢复时间为6s、19s。
实施例2
本实施例中,TiO2复合材料的制备步骤如下:
步骤1、将浓硫酸和天然石墨混合,缓慢搅拌均匀,得到石墨浓度为45g/L的60ml反应液;
步骤2、将上述反应液置于冰浴中,将6g KMnO4缓慢加入反应液中并不断搅拌,3h后,将反应装置置于40℃的水浴中,持续搅拌2h;
步骤3、再向反应液中逐滴加入100ml去离子水,稀释后将反应液升温至95℃持续反应15min;
步骤4、再向反应液中加280ml去离子水和6ml的H2O2以终止反应,经过离心得到土黄色产物,用1.25mol/L的稀盐酸反复洗涤离心并弃除上清液,直至上清液中SO4 2-洗涤干净,最后将所得到的土黄色产物置于50℃真空干燥箱烘干,即可得到氧化石墨;
步骤5、超声处理上述得到的氧化石墨,冷冻干燥上清液即可得到氧化石墨烯;
步骤6、然后取氧化石墨烯5mg溶于100ml无水乙醇,超声混匀得到氧化石墨烯的乙醇悬浮液,然后加入0.2ml的26wt.%的氨水,超声10min得到溶液A;
步骤7、取钛酸四丁酯缓慢滴入溶液A中,再加入适量的金属纳米线、Fe3O4粒子,在40℃下机械搅拌12h,最后离心洗涤得到沉淀物;
步骤8、将上述获得的沉淀物转移至50ml的反应釜中,进行水热反应,在180℃下水热12h,离心后将沉淀进行冷冻干燥,最终获得TiO2/石墨烯/金属纳米线/Fe3O4复合材料。
将上述复合材料涂敷于陶瓷基底表面,然后在其上真空蒸镀对电极,即可得到本发明所述基于TiO2复合材料的电阻型湿敏传感器。
该金属纳米线为钛纳米线,该钛纳米线长度为200~800nm,直径为50~500nm;
本实施例中,该Fe3O4质量占比为3%,该金属纳米线质量占比为5%,该石墨烯质量占比为6%。
对上述湿敏传感器进行测试,在100Hz电压频率下测试湿敏传感器的阻抗,本发明中灵敏度定义为11%湿度下的阻抗值Im(11%)与95%湿度下的阻抗值Im(95%)的比值,即S=Im(11%)/Im(95%),发现,本实施例中该湿敏传感器的灵敏度为1896,该湿敏传感器响应-恢复时间为4s、12s。
实施例3
本实施例中,TiO2复合材料的制备步骤如下:
步骤1、将浓硫酸和天然石墨混合,缓慢搅拌均匀,得到石墨浓度为45g/L的60ml反应液;
步骤2、将上述反应液置于冰浴中,将6g KMnO4缓慢加入反应液中并不断搅拌,3h后,将反应装置置于40℃的水浴中,持续搅拌2h;
步骤3、再向反应液中逐滴加入100ml去离子水,稀释后将反应液升温至95℃持续反应15min;
步骤4、再向反应液中加280ml去离子水和6ml的H2O2以终止反应,经过离心得到土黄色产物,用1.25mol/L的稀盐酸反复洗涤离心并弃除上清液,直至上清液中SO4 2-洗涤干净,最后将所得到的土黄色产物置于50℃真空干燥箱烘干,即可得到氧化石墨;
步骤5、超声处理上述得到的氧化石墨,冷冻干燥上清液即可得到氧化石墨烯;
步骤6、然后取氧化石墨烯5mg溶于100ml无水乙醇,超声混匀得到氧化石墨烯的乙醇悬浮液,然后加入0.2ml的26wt.%的氨水,超声10min得到溶液A;
步骤7、取钛酸四丁酯缓慢滴入溶液A中,再加入适量的金属纳米线、Fe3O4粒子,在40℃下机械搅拌12h,最后离心洗涤得到沉淀物;
步骤8、将上述获得的沉淀物转移至50ml的反应釜中,进行水热反应,在180℃下水热12h,离心后将沉淀进行冷冻干燥,最终获得TiO2/石墨烯/金属纳米线/Fe3O4复合材料。
将上述复合材料涂敷于陶瓷基底表面,然后在其上真空蒸镀对电极,即可得到本发明所述基于TiO2复合材料的电阻型湿敏传感器。
该金属纳米线为银纳米线,该银纳米线长度为300~800nm,直径为50~500nm;
该Fe3O4质量占比为3%,该钛纳米线质量占比为14%,该石墨烯质量占比为12%。
对上述湿敏传感器进行测试,在100Hz电压频率下测试湿敏传感器的阻抗,本发明中灵敏度定义为11%湿度下的阻抗值Im(11%)与95%湿度下的阻抗值Im(95%)的比值,即S=Im(11%)/Im(95%),发现,本实施例中该湿敏传感器的灵敏度为2387,该湿敏传感器响应-恢复时间为3s、9s。
以上所述仅为本发明的较佳方式,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种用于电力变压器绝缘状态监测的湿度传感系统,包括变压器油箱、油气分离膜、渗透气体引出室、湿度传感元件、微处理器、无线通讯模块、声光报警器;该湿度传感元件置于变压器油中渗透气体引出室中,通过检测湿敏薄膜的电阻变化实现变压器油环境的湿度检测,根据相应的湿度变化判断电力变压器绝缘状态,并做出预警;其中,该湿度传感元件与微处理器、声光报警器、无线通讯模块相连;其特征在于,所述湿度传感元件为电阻型湿度传感器,该敏感材料为TiO2复合材料,该TiO2复合材料为一种TiO2/石墨烯/金属纳米线/Fe3O4复合材料。
2.根据权利要求1所述的一种用于电力变压器绝缘状态监测的湿度传感系统,其特征在于,上述的TiO2复合材料中,所述金属纳米线为金纳米线、银纳米线、钛纳米线中的一种。
3.根据权利要求2所述的一种用于电力变压器绝缘状态监测的湿度传感系统,其特征在于,上述的TiO2复合材料中,所述金属纳米线为钛纳米线。
4.根据权利要求1所述的一种用于电力变压器绝缘状态监测的湿度传感系统,其特征在于,上述TiO2复合材料中,该金属纳米线质量占比为5~14%,该Fe3O4质量占比为3%。
5.根据权利要求1所述的一种用于电力变压器绝缘状态监测的湿度传感系统,其特征在于,上述TiO2复合材料中,该石墨烯质量占比为6~12%。
6.根据权利要求1所述的一种用于电力变压器绝缘状态监测的湿度传感系统,其特征在于,该TiO2复合材料的制备步骤如下:
步骤1、将浓硫酸和天然石墨混合,缓慢搅拌均匀,得到石墨浓度为45g/L的60ml反应液;
步骤2、将上述反应液置于冰浴中,将6g KMnO4缓慢加入反应液中并不断搅拌,3h后,将反应装置置于40℃的水浴中,持续搅拌2h;
步骤3、再向反应液中逐滴加入100ml去离子水,稀释后将反应液升温至95℃持续反应15min;
步骤4、再向反应液中加280ml去离子水和6ml的H2O2以终止反应,经过离心得到土黄色产物,用1.25mol/L的稀盐酸反复洗涤离心并弃除上清液,直至上清液中SO4 2-洗涤干净,最后将所得到的土黄色产物置于50℃真空干燥箱烘干,即可得到氧化石墨;
步骤5、超声处理上述得到的氧化石墨,冷冻干燥上清液即可得到氧化石墨烯;
步骤6、然后取氧化石墨烯5mg溶于100ml无水乙醇,超声混匀得到氧化石墨烯的乙醇悬浮液,然后加入0.2ml的26wt.%的氨水,超声10min得到溶液A;
步骤7、取钛酸四丁酯缓慢滴入溶液A中,再加入适量的金属纳米线、Fe3O4粒子,在40℃下机械搅拌12h,最后离心洗涤得到沉淀物;
步骤8、将上述获得的沉淀物转移至50ml的反应釜中,进行水热反应,在180℃下水热12h,离心后将沉淀进行冷冻干燥,最终获得TiO2/石墨烯/金属纳米线/Fe3O4复合材料。
CN201710633629.3A 2017-07-28 2017-07-28 用于电力变压器绝缘状态监测的湿度传感系统 Pending CN107449806A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710633629.3A CN107449806A (zh) 2017-07-28 2017-07-28 用于电力变压器绝缘状态监测的湿度传感系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710633629.3A CN107449806A (zh) 2017-07-28 2017-07-28 用于电力变压器绝缘状态监测的湿度传感系统

Publications (1)

Publication Number Publication Date
CN107449806A true CN107449806A (zh) 2017-12-08

Family

ID=60489623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710633629.3A Pending CN107449806A (zh) 2017-07-28 2017-07-28 用于电力变压器绝缘状态监测的湿度传感系统

Country Status (1)

Country Link
CN (1) CN107449806A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956713A (zh) * 2018-06-29 2018-12-07 五邑大学 传播路径水平分布的ZnO/碳纳米线敏感材料及其制备方法和高敏度传感器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553034A (zh) * 2013-11-12 2014-02-05 哈尔滨工业大学 一种三维孔状石墨烯骨架的制备方法及其应用
CN104406513A (zh) * 2014-10-29 2015-03-11 同济大学 一种石墨烯基表面应变传感器的制备方法
CN104569074A (zh) * 2014-12-23 2015-04-29 桂林电子科技大学 一种纳米复合湿度敏感材料、电阻式湿度传感器及其制备方法
CN104934108A (zh) * 2014-12-31 2015-09-23 重庆元石石墨烯技术开发有限责任公司 金属纳米线—石墨烯桥架结构复合材料及其制备方法
CN105445335A (zh) * 2015-11-17 2016-03-30 中国石油大学(华东) 一种用于电力变压器绝缘状态监测的湿度传感系统
CN205484657U (zh) * 2015-11-17 2016-08-17 中国石油大学(华东) 用于变压器绝缘监测的湿度检测装置
CN106198666A (zh) * 2016-06-30 2016-12-07 重庆大学 一种检测铅离子的复合材料修饰玻碳电极及其制备方法
CN106702535A (zh) * 2015-08-05 2017-05-24 中国科学院苏州纳米技术与纳米仿生研究所 一种石墨烯纤维及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553034A (zh) * 2013-11-12 2014-02-05 哈尔滨工业大学 一种三维孔状石墨烯骨架的制备方法及其应用
CN104406513A (zh) * 2014-10-29 2015-03-11 同济大学 一种石墨烯基表面应变传感器的制备方法
CN104569074A (zh) * 2014-12-23 2015-04-29 桂林电子科技大学 一种纳米复合湿度敏感材料、电阻式湿度传感器及其制备方法
CN104934108A (zh) * 2014-12-31 2015-09-23 重庆元石石墨烯技术开发有限责任公司 金属纳米线—石墨烯桥架结构复合材料及其制备方法
CN106702535A (zh) * 2015-08-05 2017-05-24 中国科学院苏州纳米技术与纳米仿生研究所 一种石墨烯纤维及其制备方法
CN105445335A (zh) * 2015-11-17 2016-03-30 中国石油大学(华东) 一种用于电力变压器绝缘状态监测的湿度传感系统
CN205484657U (zh) * 2015-11-17 2016-08-17 中国石油大学(华东) 用于变压器绝缘监测的湿度检测装置
CN106198666A (zh) * 2016-06-30 2016-12-07 重庆大学 一种检测铅离子的复合材料修饰玻碳电极及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956713A (zh) * 2018-06-29 2018-12-07 五邑大学 传播路径水平分布的ZnO/碳纳米线敏感材料及其制备方法和高敏度传感器
CN108956713B (zh) * 2018-06-29 2020-12-01 五邑大学 传播路径水平分布的ZnO/碳纳米线敏感材料及其制备方法和高敏度传感器

Similar Documents

Publication Publication Date Title
Chen et al. Electrochemical supercapacitors: from mechanism understanding to multifunctional applications
Ehsani et al. Environment‐friendly electrodes using biopolymer chitosan/poly ortho aminophenol with enhanced electrochemical behavior for use in energy storage devices
CN105445335A (zh) 一种用于电力变压器绝缘状态监测的湿度传感系统
CN107556510B (zh) 一种柔性传感器电极的制备方法
Zhao et al. Nanocomposites of sulfonic polyaniline nanoarrays on graphene nanosheets with an improved supercapacitor performance
Chang et al. A full-set and self-powered ammonia leakage monitor system based on CNTs-PPy and triboelectric nanogenerator for zero-carbon vessels
CN104807859B (zh) 低温原位生长纳米结构半导体金属氧化物的方法及应用
Karthika et al. Flexible polyester cellulose paper supercapacitor with a gel electrolyte
CN107393721A (zh) 一种二硫化钼量子点修饰的石墨烯‑氧化锌纳米管阵列传感材料的制备方法
CN107525832A (zh) 一种银纳米线修饰的柔性纤维传感器电极的制备方法
Zhang et al. The preparation of high performance Multi-functional porous sponge through a biomimic coating strategy based on polyurethane dendritic colloids
Shi et al. Highly specific capacitance materials constructed via in situ synthesis of polyaniline in a cellulose matrix for supercapacitors
Liu et al. The influence of dopant type and dosage on the dielectric properties of polyaniline/nylon composites
CN112649477A (zh) 一种以rGO/In2O3为电极材料的自发电气体传感器
Bora et al. Room temperature operating sensitive and reproducible ammonia sensor based on PANI/hematite nanocomposite
CN205484657U (zh) 用于变压器绝缘监测的湿度检测装置
CN107449806A (zh) 用于电力变压器绝缘状态监测的湿度传感系统
Dias et al. Characterization of a carbon xerogel-based sensor for detection of acetone, ethanol, and methanol vapors
CN107436314A (zh) 一种基于TiO2复合材料的湿敏传感器
CN207742140U (zh) 一种自供电式矿井有害气体检测装置
CN103736107B (zh) 一种具有电化学传感功能的磁共振造影剂及其制备方法
Ratan et al. Swift heavy ion beam modified MoS2-PVA nanocomposite free-standing electrodes for polymeric electrolyte based asymmetric supercapacitor
Choi et al. Improvement of the adhesion between polyaniline and commercial carbon paper by acid treatment and its application in supercapacitor electrodes
CN109293918B (zh) 一种聚苯胺纳米丛及其制备方法及装置
CN104658768B (zh) 钛氧化物的制备方法及其超级电容器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171208

RJ01 Rejection of invention patent application after publication